JPH04238250A - Quick evaluation method for intra-metal inclusion by emission spectral analysis method - Google Patents

Quick evaluation method for intra-metal inclusion by emission spectral analysis method

Info

Publication number
JPH04238250A
JPH04238250A JP600491A JP600491A JPH04238250A JP H04238250 A JPH04238250 A JP H04238250A JP 600491 A JP600491 A JP 600491A JP 600491 A JP600491 A JP 600491A JP H04238250 A JPH04238250 A JP H04238250A
Authority
JP
Japan
Prior art keywords
discharge
pulses
intensity
inclusions
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP600491A
Other languages
Japanese (ja)
Other versions
JPH0754300B2 (en
Inventor
Kazusane Mizukami
和実 水上
Masaru Nagashima
長嶋 勝
Mitsuo Uchimura
光雄 内村
Shigeaki Ogibayashi
荻林 成章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP600491A priority Critical patent/JPH0754300B2/en
Publication of JPH04238250A publication Critical patent/JPH04238250A/en
Publication of JPH0754300B2 publication Critical patent/JPH0754300B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/66Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence
    • G01N21/67Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence using electric arcs or discharges

Abstract

PURPOSE:To simply obtain the number, diameter and content of intra-metal inclusions by the emission spectral analysis method. CONSTITUTION:Luminous pulses corresponding to the intensity range determined in 0 through several hundreds pulses at the initial stage of a discharge among the luminous pulses obtained by a discharge are measured by the emission spectral analysis method, and the number, diameter, content and average diameter of intra-metal inclusions are obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は発光分光分析法による金
属中介在物の迅速形態評価法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for rapidly evaluating the morphology of inclusions in metals using optical emission spectroscopy.

【0002】0002

【従来の技術】図5は、従来技術による発光分光分析法
を示す図である。横軸に発光パルス強度、縦軸に出現度
数を取る。出現する発光パルスの分布状態は2種類に大
別され、一つは母材となる金属中に固溶もしくは非常に
微細かつ均一に分布している状態と、もう一つは母材中
に独立して塊状として分布している状態である。母材に
固溶もしくは微細かつ均一に分布している状態では、そ
の量、大きさ共に母材中に均一に分布している。そのた
め、当該箇所に放電した場合は、どの放電スポット場所
においても類似した成分構成をとるため、目的成分の平
均含有量に相当する発光強度を中心とした正規分布型の
強度分布を示す。またこのように母材と固溶している状
態では、母材の鋼と共に酸により化学的に溶解すること
ができる酸可溶性物質の状態を取る。
2. Description of the Related Art FIG. 5 is a diagram showing an optical emission spectroscopic analysis method according to the prior art. The horizontal axis represents the emission pulse intensity, and the vertical axis represents the frequency of appearance. The distribution state of the emitted light pulses that appear can be roughly divided into two types: one is solid solution or very fine and uniform distribution in the base metal, and the other is independent in the base metal. It is in a state where it is distributed in clusters. When it is dissolved in solid solution or finely and uniformly distributed in the base material, it is uniformly distributed in the base material in both quantity and size. Therefore, when a discharge is generated at the location, a similar component composition is obtained at any discharge spot location, and therefore a normal distribution-type intensity distribution is shown centered on the emission intensity corresponding to the average content of the target component. In addition, in this state where it is in solid solution with the base metal, it assumes the state of an acid-soluble substance that can be chemically dissolved by acid together with the base metal steel.

【0003】一方、一般的に介在物と称している、母材
に固溶せず独立した酸化物等の形態で存在している物質
、例えば、鋼中の酸化アルミニウム等の介在物近辺に放
電する場合は、放電スポット中に占める目的成分の含有
量が非常に高くなるために、前述した固溶成分と比較し
て高強度パルス側に出現し、その分布形態も存在してい
る介在物の個数、直径が個々に異なるために一般的には
正規分布型を取らず図中の斜線部で示すように正規分布
の高強度側から更に高強度側にかけて広い強度範囲で不
均一に分布するようになる。なおこれらの介在物は、一
般に酸化物等の形態を取っているため、化学的な酸溶解
処理では完全には溶解することが出来ず残査として残る
酸不溶性物質である。
On the other hand, electrical discharge occurs near inclusions, which are generally called inclusions and exist in the form of independent oxides without solid solution in the base metal, such as aluminum oxide in steel. In this case, since the content of the target component in the discharge spot becomes very high, inclusions appear on the high-intensity pulse side compared to the solid solution components mentioned above, and their distribution form is also present. Because the number and diameter of each individual item is different, it generally does not have a normal distribution, but instead has an uneven distribution over a wide intensity range from the high intensity side of the normal distribution to the even higher intensity side, as shown by the shaded area in the figure. become. Note that these inclusions are generally in the form of oxides, etc., and therefore are acid-insoluble substances that cannot be completely dissolved by chemical acid dissolution treatment and remain as a residue.

【0004】上述した酸溶解性物質すなわち母材中に均
一に固溶している物質と酸不溶性物質すなわち母材中に
独立して存在している介在物を発光分析により分別定量
する手段として、酸溶解性物質に帰属した発光パルス数
をN、酸不溶性物質に帰属した発光パルス数をN′、ま
た中央値Imを定める。すると各々の存在量を下式によ
り算出する。
As a means for separately quantifying the above-mentioned acid-soluble substances, that is, substances that are uniformly dissolved in the base material, and acid-insoluble substances, that is, inclusions that are independently present in the base material, by luminescence analysis, The number of luminescence pulses attributed to the acid-soluble substance is N, the number of luminescence pulses attributed to the acid-insoluble substance is N', and the median value Im is determined. Then, the abundance of each is calculated using the following formula.

【0005】     酸可溶性物質強度=Im×(N/ (N+N′
) )    ・・・・・・(5)    酸不溶性物
質強度=Im×(N′/ (N+N′) )  ・・・
・・・(6)これらの強度、パルス数は図1のμ−CP
U12においてA/D変換し、データ処理システム13
にて、既知の標準試料より作成する強度と濃度の換算式
により濃度換算された分析値として供される。なお従来
技術においては、測定するパルス数としては、0から数
千パルスの放電を行いサンプリングしているが、このう
ち0から約数百パルス程度の初期放電は、表面均一化を
目的として単純にサンプリング対象範囲から除去されて
いた。
Acid-soluble substance strength=Im×(N/(N+N′)
) ) ...(5) Acid-insoluble substance strength = Im x (N'/ (N+N') ) ...
...(6) These intensities and pulse numbers are μ-CP in Figure 1.
A/D conversion is performed in U12, and data processing system 13
It is provided as an analytical value converted into concentration using a conversion formula for intensity and concentration created from a known standard sample. In the conventional technology, the number of pulses to be measured ranges from 0 to several thousand pulses for sampling, but the initial discharge of about 0 to about several hundred pulses is simply sampled for the purpose of surface uniformity. It was removed from the sampling range.

【0006】[0006]

【発明が解決しようとする課題】従来技術は、酸可溶性
物質と酸不溶性物質を分別定量することは可能である。 しかしながら、溶鋼の製造過程や製品製造過程等におけ
る工程管理分析を行うのに重要な介在物の量、大きさ、
個数等の存在形態に対する情報を得るには、試料を切断
し鏡面研磨した後に顕微鏡による直接観察で対応する必
要があり、直接的に発光分光分析法より得ることはでき
なかった。
[Problems to be Solved by the Invention] According to the prior art, it is possible to separately quantify acid-soluble substances and acid-insoluble substances. However, the amount and size of inclusions, which are important for process control analysis in the molten steel manufacturing process and product manufacturing process,
To obtain information on the form of existence such as the number of particles, it is necessary to cut the sample, mirror polish it, and then directly observe it using a microscope, and it has not been possible to obtain information directly from emission spectrometry.

【0007】[0007]

【課題を解決するための手段】本発明は従来技術の課題
を解決するものであって、発光分光分析法を用いて、放
電により得られる発光パルスのうち、放電初期の0〜数
百パルス程度を時系列的に計測し、得られた発光パルス
中で定める強度範囲に該当する発光パルスを測定対象と
して、金属中介在物の存在個数、直径、含有量、平均直
径を下式に基づいて求めることを特徴とする発光分光分
析法による金属中介在物の迅速形態評価法である。
[Means for Solving the Problems] The present invention solves the problems of the prior art, and uses an optical emission spectrometry method to analyze the luminescence pulses obtained by discharging from 0 to several hundred pulses at the initial stage of discharge. is measured in time series, and the number, diameter, content, and average diameter of inclusions in the metal are determined based on the following formula, using the luminescence pulses that fall within the intensity range determined in the obtained luminescence pulses as measurement targets. This is a method for rapid morphology evaluation of inclusions in metals using emission spectrometry.

【0008】     存在個数(N)=K1×Σ(F)      
            ・・・・・・(1)    
直    径(r)=K2×I           
             ・・・・・・(2)   
 含有量  (V)=K3×Σ(F×I)      
        ・・・・・・(3)    平均直径
(R)=K4×Σ(F×I)/Σ(F)    ・・・
・・・(4)ここで F        :強度Iにおける発光パルスの出現
頻度。 K1〜K4:顕微鏡測定より求めた実測値と整合性を取
るための補正係数。 I        :Il(Lower )からIu(
Upper )の強度範囲かつ放電サンプリング回数で
放電開始をゼロとしてn=0〜数百パルス程度の初期放
電を対象とする。 この時、強度Iを段階的に分割して測定すれば、各強度
範囲に対応する各直径範囲毎の存在比率も求めることが
できる。以下、図面に基づいて本発明を説明する。
[0008] Number of existing items (N) = K1 × Σ (F)
・・・・・・(1)
Diameter (r) = K2 x I
・・・・・・(2)
Content (V)=K3×Σ(F×I)
・・・・・・(3) Average diameter (R)=K4×Σ(F×I)/Σ(F) ・・・
...(4) where F: frequency of appearance of luminescence pulses at intensity I. K1 to K4: Correction coefficients to ensure consistency with actual measured values obtained from microscopic measurements. I: From Il (Lower) to Iu (
The target is an initial discharge of about n=0 to several hundred pulses with the discharge start being zero in the intensity range of Upper) and the number of discharge sampling times. At this time, if the intensity I is divided into stages and measured, the abundance ratio of each diameter range corresponding to each intensity range can also be determined. The present invention will be explained below based on the drawings.

【0009】図1は、発光分光分析装置の概要図である
。試料1は発光スタンド5に取り付け、アルゴン雰囲気
のもとで放電回路4の最適条件下で電極3との間に放電
させる。(この発光にあずかる部分を発光部6と称する
)。この放電によって生じた光を集光レンズ7を通して
回折格子9に導き、各成分ごとに分光する。この分光さ
れた分光スペクトル8を各々の光電子増倍管10で光強
度を測光する。(この集光、測光にあずかる部分を分光
部11と称する)。次に測光された光強度はμ−CPU
12においてA/D変換され、データ処理システム13
にて、成分含有率(%)に換算される。(このA/D変
換、成分含有率(%)換算にあずかる部分をデータ処理
装置14と称する)。
FIG. 1 is a schematic diagram of an optical emission spectrometer. The sample 1 is attached to a light emitting stand 5, and a discharge is caused between the sample 1 and the electrode 3 under the optimal conditions of the discharge circuit 4 in an argon atmosphere. (The part that participates in this light emission is referred to as the light emitting section 6). The light generated by this discharge is guided to a diffraction grating 9 through a condensing lens 7, and is separated into components. The light intensity of this spectroscopic spectrum 8 is measured by each photomultiplier tube 10. (The part that takes part in this light collection and photometry is called the spectroscopic part 11). Next, the measured light intensity is μ-CPU
A/D conversion is performed in 12, and data processing system 13
It is converted to component content (%). (The part that takes part in this A/D conversion and component content (%) conversion is referred to as a data processing device 14).

【0010】図2は本発明による発光分光評価法を示す
図である。横軸に発光パルス強度、縦軸に出現度数を取
る。出現する発光パルスの分布状態は2種類に大別され
、一つは母材となる金属中に固溶もしくは非常に微細か
つ均一に分布している状態と、もう一つは母材中に独立
して塊状として分布している状態である。母材に固溶も
しくは微細かつ均一に分布している状態では、その量、
大きさ共に母材中に均一に分布しているため、当該箇所
に放電した場合は、どの放電スポット場所においても目
的成分の平均含有量に相当する発光強度を中心とした正
規分布型の強度分布を示す。
FIG. 2 is a diagram showing the emission spectroscopic evaluation method according to the present invention. The horizontal axis represents the emission pulse intensity, and the vertical axis represents the frequency of appearance. The distribution state of the emitted light pulses that appear can be roughly divided into two types: one is solid solution or very fine and uniform distribution in the base metal, and the other is independent in the base metal. It is in a state where it is distributed in clusters. When solid solution or finely and uniformly distributed in the base material, the amount,
Since both size and size are uniformly distributed in the base material, if a discharge is made to the relevant location, a normal distribution type intensity distribution centered on the emission intensity corresponding to the average content of the target component will occur at any discharge spot location. shows.

【0011】一方、一般的に介在物と称している、母材
に固溶せず独立した酸化物等の形態で存在している物質
、例えば、鋼中の酸化アルミニウム等の介在物近辺に放
電する場合は、放電スポット中に占める目的成分の含有
量が非常に高くなるために、前述した固溶成分と比較し
て高強度パルス側に出現し、その分布形態も存在してい
る介在物の個数、直径が個々に異なるために一般的には
正規分布型を取らず図中の斜線部で示すように正規分布
の高強度側から更に高強度側にかけて広い強度範囲で不
均一に分布するようになる。これらの介在物からの発光
分布は、更に詳細に調査すると、以下のような知見が得
られる。
On the other hand, electric discharge occurs near inclusions such as substances such as aluminum oxide in steel, which are generally called inclusions and exist in the form of independent oxides without solid solution in the base metal. In this case, since the content of the target component in the discharge spot becomes very high, inclusions appear on the high-intensity pulse side compared to the solid solution components mentioned above, and their distribution form is also present. Because the number and diameter of each individual item is different, it generally does not have a normal distribution, but instead has an uneven distribution over a wide intensity range from the high intensity side of the normal distribution to the even higher intensity side, as shown by the shaded area in the figure. become. When the emission distribution from these inclusions is investigated in more detail, the following findings are obtained.

【0012】■放電初期においては、個々の介在物の存
在状態が放電による溶融化現象、熱電子による放電現象
が完全には進行していないために、このサンプリングタ
イミングにおける発光パルス情報は介在物の存在形態を
直接的に反映している情報である。■個々の介在物直径
が大きくなるほど放電スポット中に占める目的成分の含
有量が大きくなるため放電時には直径に比例して発光強
度が大きくなる。■一般に酸化物等の形態を取る場合、
絶縁性が高いために放電時においては、介在物と母材金
属との境界周辺に電荷エネルギーを多く保有できるため
、放電時に放出される発光強度は、介在物の大きさに比
例して高強度パルスが発生し、また発生するタイミング
としては介在物の溶融化現象が少ない放電初期において
特に多くの高強度発光パルスが出現する。■また以上の
知見より個々のパルス強度と発生個数を積算した値は介
在物の総含有量に比例して増加してくる。
[0012] In the early stage of discharge, the state of existence of individual inclusions is such that the melting phenomenon due to discharge and the discharge phenomenon due to thermoelectrons have not completely progressed, so the light emission pulse information at this sampling timing is This is information that directly reflects the form of existence. (2) The larger the diameter of each inclusion, the larger the content of the target component in the discharge spot, and therefore the luminescence intensity increases in proportion to the diameter during discharge. ■Generally when taking the form of oxides, etc.
Due to its high insulating properties, during discharge, a large amount of charge energy can be retained around the boundary between the inclusion and the base metal, so the luminous intensity emitted during discharge increases in proportion to the size of the inclusion. Pulses are generated, and the timing at which they occur is that particularly many high-intensity light emission pulses appear in the early stages of discharge when there is little melting of inclusions. (2) Also, from the above findings, the value obtained by integrating the individual pulse intensities and the number of occurrences increases in proportion to the total content of inclusions.

【0013】図3で、本法でサンプリングする発光パル
スの時系列的な範囲を示す。横軸に積算パルス回数を取
ることにより時間推移を取り、縦軸に発生したパルス個
数を強度別(大、中、小)に区分して示す。供試料は、
表面起伏からの発生する発光と区別するために鏡面研磨
した後、顕微鏡によりあらかじめ介在物含有量の多い試
料と少ない試料とで区分して実験を行っている。
FIG. 3 shows the time-series range of emission pulses sampled by this method. The horizontal axis shows the cumulative number of pulses to show the time course, and the vertical axis shows the number of generated pulses classified by intensity (large, medium, small). The sample is
In order to differentiate the light emission from the light emitted from the surface undulations, the samples were mirror-polished and then separated into samples with a high inclusion content and samples with a low inclusion content using a microscope before conducting experiments.

【0014】その結果、放電初期の0〜数百パルス程度
に特異的に介在物からの高強度パルスが出現することを
見出した。この現象は、従来技術では組織の均一化と放
電の安定化を目的として単純に除去していた初期放電の
サンプリング範囲が逆に表面組織の溶融均一化が進んで
いないため直接的に介在物の存在状態を反映しているこ
とを示している。以上の知見より介在物の平均直径、個
数、含有量等を求めるために下記に示す式を考案した。
As a result, it has been found that high-intensity pulses from inclusions appear specifically in the range of 0 to several hundred pulses at the initial stage of discharge. This phenomenon is caused by the fact that the sampling range of the initial discharge, which was simply removed in the conventional technology for the purpose of homogenizing the structure and stabilizing the discharge, is directly affected by inclusions because the melting and uniformity of the surface structure has not progressed. It shows that it reflects the state of existence. Based on the above knowledge, we devised the formula shown below to determine the average diameter, number, content, etc. of inclusions.

【0015】     存在個数(N)=K1×Σ(F)      
            ・・・・・・(1)    
直    径(r)=K2×I           
             ・・・・・・(2)   
 含有量  (V)=K3×Σ(F×I)      
        ・・・・・・(3)    平均直径
(R)=K4×Σ(F×I)/Σ(F)    ・・・
・・・(4)ここで F        :強度Iにおける発光パルスの出現
頻度。 K1〜K4:顕微鏡測定より求めた実測値と整合性を取
るための補正係数。 I        :Il(Lower )からIu(
Upper )の強度範囲かつ放電サンプリング回数で
放電開始をゼロとしてn=0〜数百パルス程度の初期放
電を対象とする。 この時、強度Iを段階的に分割して測定すれば、各強度
範囲に対応する各直径範囲毎の存在比率を求めることが
できる。
[0015] Number of existing pieces (N) = K1 × Σ (F)
・・・・・・(1)
Diameter (r) = K2 x I
・・・・・・(2)
Content (V)=K3×Σ(F×I)
・・・・・・(3) Average diameter (R)=K4×Σ(F×I)/Σ(F) ・・・
...(4) where F: frequency of appearance of luminescence pulses at intensity I. K1 to K4: Correction coefficients to ensure consistency with actual measured values obtained from microscopic measurements. I: From Il (Lower) to Iu (
The target is an initial discharge of about n=0 to several hundred pulses with the discharge start being zero in the intensity range of Upper) and the number of discharge sampling times. At this time, if the intensity I is divided into stages and measured, the abundance ratio for each diameter range corresponding to each intensity range can be determined.

【0016】図4は、本評価法による実施例を示す。縦
軸に発光強度、横軸に発光パルス回数を取る。サンプリ
ング対象範囲は、発光パルス回数で0〜512回かつ発
光強度が約1000以上を対象としている。この図で示
すように初期の約0〜200パルスに特異的に高強度の
発光パルスが観察されており、この範囲が試料表面に存
在している介在物からの情報を直接的に反映している部
分である。なお従来技術においては、この範囲は放電初
期における表面の不均一性からくる異常発光としてサン
プリング対象範囲から除去されていた部分である。
FIG. 4 shows an example using this evaluation method. The vertical axis represents the emission intensity, and the horizontal axis represents the number of emission pulses. The sampling target range is the number of light emission pulses from 0 to 512 and the light emission intensity of about 1000 or more. As shown in this figure, a high-intensity luminescence pulse is observed specifically in the initial pulse of about 0 to 200, and this range directly reflects information from inclusions existing on the sample surface. This is the part where you are. Note that in the prior art, this range was removed from the sampling target range as abnormal light emission due to surface non-uniformity in the early stage of discharge.

【0017】図6は、本評価法により介在物の平均直径
を求めた例である。縦軸に顕微鏡の直接観察より得られ
た介在物の平均直径、横軸に本評価法の(6)式より求
めた値を取ると、図に示すように相関係数でr=0.9
3と高い相関関係を得ることができた。
FIG. 6 shows an example in which the average diameter of inclusions was determined using this evaluation method. If the vertical axis is the average diameter of inclusions obtained by direct observation with a microscope, and the horizontal axis is the value obtained from equation (6) of this evaluation method, the correlation coefficient is r = 0.9 as shown in the figure.
We were able to obtain a high correlation with 3.

【0018】表1は、同様に他の面積、体積、個数、平
均直径についても相関関係を求めた結果である。横軸に
面積率、体積率、存在個数、平均直径を取り、縦軸に本
評価法より求めた新PDA値と単に高強度パルス数のみ
を取る。その結果、単に高強度パルス数だけで相関を取
るより、パルス個数に強度を掛け合わせて重みをつけた
方が相関係数で高い値を示すことがわかる。なお本評価
法は、実施例では鋼中に存在するアルミニウム酸化物を
例として取り上げたが、他の金属中における介在物にお
いても本法は適用できる。
Table 1 shows the results of similarly determining correlations for other areas, volumes, numbers, and average diameters. The horizontal axis shows the area ratio, volume ratio, number of particles, and average diameter, and the vertical axis shows only the new PDA value obtained by this evaluation method and the number of high-intensity pulses. As a result, it can be seen that the correlation coefficient shows a higher value when weighted by multiplying the number of pulses by the intensity, rather than simply calculating the correlation based on the number of high-intensity pulses. In addition, although this evaluation method took up aluminum oxide present in steel as an example in the example, this method can also be applied to inclusions in other metals.

【0019】[0019]

【表1】[Table 1]

【0020】[0020]

【発明の効果】従来技術では溶鋼の製造過程や製品製造
過程等における工程管理分析を行うのに重要な介在物の
量、大きさ、個数等の存在形態に対する情報を得るには
、試料を切断し鏡面研磨した後に顕微鏡による直接観察
に対応する必要があったが、本発明を用いることにより
、直接的に発光分光分析法より迅速に得ることが可能と
なった。
[Effect of the invention] In the prior art, in order to obtain information on the existence form such as the amount, size, number, etc. of inclusions, which is important for performing process control analysis in the manufacturing process of molten steel or product manufacturing process, etc., it is necessary to cut the sample. However, by using the present invention, it has become possible to directly observe this using a microscope more quickly than by direct emission spectrometry.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】発光分光分析装置の概要図。FIG. 1 is a schematic diagram of an optical emission spectrometer.

【図2】本発明による発光分光評価法を示す図。FIG. 2 is a diagram showing the emission spectroscopic evaluation method according to the present invention.

【図3】サンプリングした発光パルスの時系列的な範囲
を示す。
FIG. 3 shows a time-series range of sampled light emission pulses.

【図4】本発明評価法による実施例で、発光強度と発光
パルス回数の関係を示す。
FIG. 4 is an example using the evaluation method of the present invention, showing the relationship between the luminescence intensity and the number of luminescence pulses.

【図5】従来の発光分光分析法を示す。FIG. 5 shows a conventional emission spectrometry method.

【図6】本発明表か法により介在物の平均直径を求めた
例。
FIG. 6 is an example of determining the average diameter of inclusions using the table method of the present invention.

【符号の説明】[Explanation of symbols]

1  試料 3  電極 4  放電回路 5  発光スタンド 6  発光部 7  集光レンズ 8  分光スペクトル 9  回折格子 10  光電子増倍管 11  分光部 12  μ−CPU 13  データ処理システム 14  データ処理装置 1 Sample 3 Electrode 4 Discharge circuit 5. Luminous stand 6 Light emitting part 7 Condensing lens 8 Spectrum 9 Diffraction grating 10 Photomultiplier tube 11 Spectroscopic section 12 μ-CPU 13 Data processing system 14 Data processing device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  発光分光分析法を用いて、放電により
得られる発光パルスのうち、放電初期の0〜数百パルス
程度を時系列的に計測し、得られた発光パルス中で定め
る強度範囲に該当する発光パルスを測定対象として、金
属中介在物の存在個数、直径、含有量、および平均直径
を下式に基づいて求めることを特徴とする発光分光分析
法による金属中介在物の迅速評価法。     存在個数(N)=K1×Σ(F)      
            ・・・・・・(1)    
直    径(r)=K2×I           
             ・・・・・・(2)   
 含有量  (V)=K3×Σ(F×I)      
        ・・・・・・(3)    平均直径
(R)=K4×Σ(F×I)/Σ(F)    ・・・
・・・(4)ここで F        :強度Iにおける発光パルスの出現
頻度。 K1〜K4:顕微鏡測定より求めた実測値と整合性を取
るための補正係数。 I        :Il(Lower )からIu(
Upper )の強度範囲かつ放電サンプリング回数で
放電開始をゼロとしてn=0〜数百パルス程度の初期放
電を対象とする。
Claim 1: Using optical emission spectrometry, among the luminescent pulses obtained by the discharge, about 0 to several hundred pulses at the initial stage of the discharge are measured in chronological order, and the intensity range determined in the obtained luminescent pulses is measured. A rapid evaluation method for inclusions in metal using optical emission spectrometry, which is characterized by determining the number, diameter, content, and average diameter of inclusions in metal based on the following formula using the corresponding luminescence pulse as the measurement target. . Number of existing pieces (N) = K1 x Σ (F)
・・・・・・(1)
Diameter (r) = K2 x I
・・・・・・(2)
Content (V)=K3×Σ(F×I)
・・・・・・(3) Average diameter (R)=K4×Σ(F×I)/Σ(F) ・・・
...(4) where F: frequency of appearance of luminescence pulses at intensity I. K1 to K4: Correction coefficients to ensure consistency with actual measured values obtained from microscopic measurements. I: From Il (Lower) to Iu (
The target is an initial discharge of about n=0 to several hundred pulses with the discharge start being zero in the intensity range of Upper) and the number of discharge sampling times.
JP600491A 1991-01-22 1991-01-22 Rapid Evaluation of Inclusions in Metals by Emission Spectroscopy Expired - Lifetime JPH0754300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP600491A JPH0754300B2 (en) 1991-01-22 1991-01-22 Rapid Evaluation of Inclusions in Metals by Emission Spectroscopy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP600491A JPH0754300B2 (en) 1991-01-22 1991-01-22 Rapid Evaluation of Inclusions in Metals by Emission Spectroscopy

Publications (2)

Publication Number Publication Date
JPH04238250A true JPH04238250A (en) 1992-08-26
JPH0754300B2 JPH0754300B2 (en) 1995-06-07

Family

ID=11626598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP600491A Expired - Lifetime JPH0754300B2 (en) 1991-01-22 1991-01-22 Rapid Evaluation of Inclusions in Metals by Emission Spectroscopy

Country Status (1)

Country Link
JP (1) JPH0754300B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004233279A (en) * 2003-01-31 2004-08-19 Fujitsu Ltd Evaluation method of semiconductor wafer and manufacturing method of semiconductor device
CN100343656C (en) * 2003-02-25 2007-10-17 鞍钢股份有限公司 Spectral analysis method for online detecting the number and content of inclusions in steel
CN100343657C (en) * 2003-02-25 2007-10-17 鞍钢股份有限公司 Spectral analysis method for online detecting size distribution of inclusions in steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004233279A (en) * 2003-01-31 2004-08-19 Fujitsu Ltd Evaluation method of semiconductor wafer and manufacturing method of semiconductor device
CN100343656C (en) * 2003-02-25 2007-10-17 鞍钢股份有限公司 Spectral analysis method for online detecting the number and content of inclusions in steel
CN100343657C (en) * 2003-02-25 2007-10-17 鞍钢股份有限公司 Spectral analysis method for online detecting size distribution of inclusions in steel

Also Published As

Publication number Publication date
JPH0754300B2 (en) 1995-06-07

Similar Documents

Publication Publication Date Title
Axner et al. Laser-enhanced ionization spectrometry in flames–a powerful and versatile technique for ultra-sensitive trace element analysis
Boué-Bigne Laser-induced breakdown spectroscopy and multivariate statistics for the rapid identification of oxide inclusions in steel products
JPH04238250A (en) Quick evaluation method for intra-metal inclusion by emission spectral analysis method
JPH04294258A (en) Emission spectrochemical analysis method
Diaz et al. Laser ablation at high repetition rate coupled to laser-induced breakdown spectroscopy for analysis of non-matrix matched standards
JP5454403B2 (en) Sol. A method for highly accurate determination of Al and sol. Process operation method of high-precision determination method of Al
JP2978089B2 (en) Particle size distribution measurement method for inclusions in metal
US6480274B1 (en) Method of analyzing oxygen and oxide in metallic material
JPH11160239A (en) Quantitative determination method for very small inclusion in iron and steel
JP4038154B2 (en) Method for evaluating inclusions in metal sample, evaluation apparatus, computer program, and computer-readable storage medium
KR101758530B1 (en) Method for analyzing inclusion in molten steel and method for manufacturing high clean molten steel for steel wire rod
JP4185001B2 (en) Time-resolved evaluation method for inclusions in metal samples
Smith Spectrographic analysis of rare and high purity materials
Patel et al. Laser-excited fluorescence of diatomic lead in a glow discharge source
JP3353632B2 (en) Analysis method of Al in steel by state
JP3323768B2 (en) Analysis of trace amounts of lead in stainless steel by emission spectroscopy
JP3968055B2 (en) Method for quantifying specific components contained in base metal by form by emission spectroscopic analysis, computer program, and computer-readable storage medium
JP2532941B2 (en) Emission spectroscopy
JPS6337891B2 (en)
Xiangjun Pulse optimization criteria for the microcavity hollow cathode discharge emission source
JPH10318926A (en) Emission spectrochemical analysis method of si in silicon steel
JP2002275523A (en) Refined state of steel method for determining
JP2000019118A (en) Method for quantitatively determining element concentration in metallic material
JPH0961356A (en) Emission spectrometric analyzing method
KR20010025911A (en) Measurement method of impurities in hot metal

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19951219