JP3968055B2 - Method for quantifying specific components contained in base metal by form by emission spectroscopic analysis, computer program, and computer-readable storage medium - Google Patents

Method for quantifying specific components contained in base metal by form by emission spectroscopic analysis, computer program, and computer-readable storage medium Download PDF

Info

Publication number
JP3968055B2
JP3968055B2 JP2003158309A JP2003158309A JP3968055B2 JP 3968055 B2 JP3968055 B2 JP 3968055B2 JP 2003158309 A JP2003158309 A JP 2003158309A JP 2003158309 A JP2003158309 A JP 2003158309A JP 3968055 B2 JP3968055 B2 JP 3968055B2
Authority
JP
Japan
Prior art keywords
specific component
amount
intensity
component
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003158309A
Other languages
Japanese (ja)
Other versions
JP2004061501A (en
Inventor
和実 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003158309A priority Critical patent/JP3968055B2/en
Publication of JP2004061501A publication Critical patent/JP2004061501A/en
Application granted granted Critical
Publication of JP3968055B2 publication Critical patent/JP3968055B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、金属の精錬過程において、成分の管理や調整を迅速かつ的確に行うために、金属成分、特に金属中に存在する特定成分を形態別に迅速、正確に定量する定量方法及びコンピュータプログラム、並びにコンピュータ読み取り可能な記憶媒体に関するものである。
【0002】
【従来の技術】
鉄鋼などの鋼材中に存在する特定成分は、母材中に固溶している酸に可溶な形態や、介在物や析出物の形となって酸に不溶な形態で存在する。この固溶した金属元素成分を固溶成分(または、酸可溶成分)、介在物等の形態をとる金属成分を不溶成分(または、酸不溶成分)と以下略す。前記特定成分元素が母材の材質に与える影響は大きいが、その存在形態および各量に応じて程度が異なるため、該特定成分元素の全量のみでなく、固溶成分、不溶成分の各々に分別して定量することが重要である。特に鋼材等の精錬過程で脱酸元素として用いられるAl、Ti等の固溶成分は、鋼材の材質にも大きく関与するため、該成分の分別定量には迅速性と精度が求められる。
【0003】
従来、この特定成分の形態別分別定量法としては、発光分光分析法におけるパルス強度分布解析(PDA(Pulse Height Distribution Analysis)、以下、PDAと略記する)で得られる発光スペクトルを1パルス毎にデジタル情報として蓄積し、統計処理することにより、横軸に前記特定成分のスペクトル線発光強度、縦軸に出現頻度をとったパルス強度分布図(以下、PDA図と略記する)を作成し、低強度側の正規分布様部を固溶成分の量に起因する発光、高強度側の分布を不溶成分の量に起因する発光と帰属し、分布の中央値を特定成分の全量の代表値とする方法が世界中で使用されている(例えば、非特許文献1、非特許文献2、特許文献1)。
【0004】
以下に、上記従来の鋼中特定成分の形態別分別定量法について、微量Al成分を含有する鋼材を例にとり、該鋼材中の特定成分(Al)を定量分析する方法について説明を行う。
【0005】
図1に分析試料の表面の模式図、図2に横軸に放電回数、縦軸にAl線スペクトル強度を示した図を示す。鋼中に存在する不溶成分Al粒子にスパーク放電発光スポットが当たると、該スポット範囲におけるAl濃度が高いために、高いAlスペクトル線強度を示し、一方、不溶成分Alを含まず、均一な固溶成分Alのみを含む箇所で放電すると、該スポット範囲におけるAlスペクトル線強度は低く、均一となる。
【0006】
図3は、前記分析試料のPDA図である。従来法によると、不溶成分Alに発光スポットが当たると高いスペクトル線強度を示し、該不溶成分Alの個数や直径は個々に異なるため、一般的には正規分布をとらず、分布図の高強度側にかけて広い強度範囲で不均一に分布し、一方、不溶成分Alを含まず、固溶成分Alのみを均一に含む箇所においては、スペクトル線強度が低く均一なために、分布図の左側に正規分布様の分布を示すと説明されている。従来法では、この正規分布様の分布の面積を近似的に求めることにより、固溶成分Alの定量を行い、分布の中央値から全Al量の定量を行う。
【0007】
なお、従来法においては、1から数千パルスの放電を行いサンプリングしているが、このうち1から約数百パルス程度の初期放電は、試料表面均一化のための予備放電とみなし、サンプリング対象範囲から除外していた。
【0008】
従来法は、介在物など不溶成分Alが存在するがゆえに発生する不規則な高強度スペクトル線強度を差し引くことにより、安定したスペクトル線強度を得ることができ、また、通常の製鋼工場での精錬過程などで得られる金属試料などのような、固溶成分Al量と全Al量の存在量がほぼ等しい比率を示す場合においては、PDA図の低強度側の正規分布の面積を求めることにより、従来の化学分析法とほぼ同等の精度で、固溶成分Al量を迅速に定量することができることから、製鋼精錬過程の工程管理分析法として非常に重要視され、世界中で使用されるに至った。
【0009】
しかしながら、従来法は、一般の製鋼工場の精錬過程で製造される鋼材試料に対しては、非常に良く近似することができるものの、例えば、工場実験材などのように、固溶成分Al量と不溶成分Al量の存在量が異なる比率であり、特に不溶成分Al量が高い試料に対しては、上記従来法による定量値と実測値との間にずれが生じることが経験的に認知されており、そのための改善法などが提案されている(例えば、非特許文献3)。しかし、不溶成分Al量の比率が増加すると、従来法による定量値と実測値との間にずれが生じることに対する解明は行われておらず、従って根本的な解決策は何ら実施されていなかった。
【0010】
また近年、鉄鋼精錬で使用されるTiなどの脱酸材を使用した場合には、従来のPDA理論では、前記金属中成分を形態別に精度よく分別定量できないことが、発明者らの実験結果より判明していた。
【非特許文献1】
アグネ「最新の鉄鋼状態分析」(1979)p111
【非特許文献2】
鉄と鋼、Vol.60,13(1974),p276
【非特許文献3】
CAMP-ISIJ, Vol.3(1990)-601
【特許文献1】
特開昭48−24792号公報
【0011】
【発明が解決しようとする課題】
本発明は、前記従来のPDA理論に基づく定量法の問題点を解決し、溶融金属の製錬工程において、金属中成分の形態別分別定量を確実、迅速、正確に行うことを可能にする方法及びコンピュータプログラム、並びにコンピュータ読み取り可能な記憶媒体を提供することを課題とする。
【0012】
【課題を解決するための手段】
本発明者は、金属などの導体中に含有される介在物などの不導体物質に電圧を印加すると、金属と不導体の境界領域に分極が生じて、その部分を狙い選択的に放電が起きる(介在物への選択的放電現象)ことに着目し、1から数千パルスの発光分光分析を行うことにより得られた発光スペクトルを解析することにより、特に発光初期の数百パルスにおいて、介在物の存在個数、直径、含有量、または平均直径を所定の式に従って求めることができることを、特開平4−238250号公報で開示している。一方、特開平9−431450号公報には、特開平4−238250号公報で開示している知見に基づき、放電発光スペクトルを測定、解析して、介在物の組成および粒度分布を求める方法が開示されている。
【0013】
このように、介在物への選択的放電現象は、介在物に関する多くの情報をもたらすことが知られているが、今回、本発明者は、従来のPDA理論においては金属中介在物に放電が発生し始めてから安定放電状態に至るまでの放電は、いわゆる予備放電として除去した上で、安定放電に至ってからのデータのみで議論がなされていることに鑑み、さらに、特開平4−238250号公報や特開平9−431450号公報において、介在物への選択的放電を行った際の「時間的な表面状態変化に対する知見」が欠如していることに気付き、介在物への選択放電を行った際の金属表面状態の経時変化について、(1)放電開始前の介在物存在状態、(2)放電初期の介在物への選択的放電状態、(3)安定放電状態の3ステージに分けてより詳細な観察を行った。なお、試料には微量Tiを含有する鉄鋼を用い、該試料中の特定成分(Ti)の発光分光分析を行った。
【0014】
図4は、試料中の特定成分(Ti)に対して、横軸に時間(スパーク放電パルス数)、縦軸にTi発光強度を記したIT曲線である。放電初期の約数百パルスまでに、発光強度は徐々に低下して、その後、安定するのがわかる。
【0015】
さらに、発明者は、試料のスパーク放電時の下記4ステージにおける介在物の形状、個数、組成について、顕微鏡、走査型電子顕微鏡、電子マイクロプローブ二次元マッピング法(以下、CMA法と略記する)等を用いて解析を実施した。
【0016】
ステージ(a):スパーク 0パルス(放電前)
ステージ(b):スパーク 10パルス時
ステージ(c):スパーク 500パルス時
ステージ(d):スパーク 5000パルス時
その結果、図5に示すように、10パルス時(b)には、介在物へ選択的に放電が発生し介在物が微細拡散することと、500パルス時(c)や5000パルス時(d)には、試料表層は溶融化現象を起こし、介在物らしい形状は見ることができなくなるという事実を得た。さらに、CMA法を用いて、Ti成分の解析を2次元平面分布で行った結果、図6に示すように、スパーク放電前(a)には、介在物個数が約500×500μm四方に約数百個観察されるのに対して、500パルス時(c)や5000パルス時(d)では、該面積あたりの介在物個数が数個程度と激減している事実を発見した。これは、介在物の相当数が選択放電を受けることにより崩壊していることを示している。
【0017】
次に、発明者は、このときTi強度も介在物個数と同様に激減しているか否かを確かめるために、前記各ステージにおける単位面積あたりのTi/Feの強度比の計測を行った。放電開始前ゼロパルス時のTi/Fe強度比を100としたときの比強度を図7に示す。放電初期の10パルス発光時には、放電開始前0パルス時よりも比強度が大きくなるが、放電500パルス時および5000パルス時の強度は、放電開始前ゼロパルス時の強度レベルとほぼ同じである。
【0018】
従って、発明者は、上記知見から、Ti介在物は選択放電を受けたあとに、イオン化、原子化して発光に寄与するものと、母材に微細分散化していくものがあることを突き止めた。すなわち、スパーク放電前は、介在物の大きさは放電スポット径と同レベルであるために、選択放電を受けると高いスペクトル線強度を与えるが、数百パルス以降になると、表層に存在していた介在物の殆どは選択放電を受けて崩壊し、母材に微細分散化していくことを突き止めた。この従来のPDA理論とは異なる、発明者の見出した前記理論を新PDA理論と称する。
【0019】
本発明は、新PDA理論に基づいてなされたものであり、その要旨とするところは以下の通りである。
【0020】
(1) 発光分光分析法を用いて、母材金属中に含有される特定成分を形態別に定量する方法において、試料を採取、切断、切削した後、試料表面を研削および/または研磨して平面状に仕上げてから、発光分光分析装置にセットして、該試料表面と電極との間に電圧を印加してスパーク放電を発生させ、1から数千パルスまで測定を行い、得られた発光スペクトルを分光器によって分光し、1パルスごとの特定成分スペクトル線発光強度をデジタル信号値に変換し、該データを基に、横軸に前記特定成分のスペクトル線発光強度、縦軸に出現頻度をとった度数分布の形に並びかえたパルス強度分布図を作成し、該パルス強度分布図における、低強度側に出現する正規分布様の分布を前記特定成分の全量と帰属し、高強度側に出現する分布を前記特定成分の酸不溶成分量であると帰属し、前記特定成分の全量と酸不溶成分量との差から固溶成分量を求めることを特徴とする、発光分光分析法による母材金属中に含有される特定成分の形態別定量方法。
【0021】
(2) 前記パルス強度分布図における、低強度側に出現する正規分布様の分布のモード値(最頻度値)を用いて、母材金属中に含有される特定成分の全量を定量することを特徴とする前記(1)に記載の発光分光分析法による母材金属中に含有される特定成分の形態別定量方法。
【0022】
(3) 前記パルス強度分布図における、低強度側に出現する正規分布様の分布の面積を求め、該面積から母材金属中に含有される特定成分の全量を定量することを特徴とする前記(1)に記載の発光分光分析法による母材金属中に含有される特定成分の形態別定量方法。
【0023】
(4) 発光分光分析法を用いて、母材金属中に含有される特定成分を形態別に定量する方法において、試料を採取、切断、切削した後、試料表面を研削および/または研磨して平面状に仕上げてから、発光分光分析装置にセットして、該試料表面と電極との間に電圧を印加してスパーク放電を発生させ、1から数千パルスまで測定を行い、得られた発光スペクトルを分光器によって分光し、1パルスごとの特定成分スペクトル線発光強度をデジタル信号値に変換し、1から数千パルスのスペクトル線発光強度を積算した後、該データを基に、前記母材金属中に含有される特定成分の全量を下式(1)に基づいて求め、酸不溶成分量を下式(2)に基づいて求め、
特定成分全量(Total X)=k1×∫a b[I(Total X)]dt +k2 (1)
酸不溶成分量(Insol.X)=k3×∫c d[I(Insol.X)]dt−k4×(特定成分全量)(2)
ここで、Xは特定成分、k1、k2は特定成分発光強度と特定成分全量の実測値から求めた定数、またk3、k4は、特定成分発光強度と特定成分の酸不溶成分量との関係より求めた定数、∫a b[I(Total X)]dtは放電が安定してきたaパルスからbパルスまでの積分強度であって、a=1〜4000パルス、b=1〜5000パルス(a<b)であり、∫c d[I(Insol.X)]dtは放電初期のcパルスからdパルスまでの積分強度であって、c=1〜500パルス、d=1〜1000パルス(c<d)であり、
前記特定成分の全量と酸不溶成分量との差から固溶成分量を求めることを特徴とする、発光分光分析法による母材金属中に含有される特定成分の形態別定量方法。
【0024】
(5) 前記母材金属が鋼材であり、前記特定成分がS、Pb、Ca、Si、Ti、Al、B及びMgから選ばれる1種以上であり、鉄鋼の精錬工程における前記特定成分の形態別定量を行うことを特徴とする前記(1)〜(4)のいずれか1つに記載の発光分光分析法による母材金属中に含有される特定成分の形態別定量方法。
【0025】
(6) 発光分光分析法を用いて、母材金属中に含有される特定成分を形態別に定量するためのコンピュータプログラムであって、試料表面と電極との間に電圧を印加してスパーク放電を発生させ、1から数千パルスまで測定を行い、得られた発光スペクトルを分光器によって分光し、1パルスごとの特定成分スペクトル線発光強度をデジタル信号値に変換し、該データを基に、横軸に前記特定成分のスペクトル線発光強度、縦軸に出現頻度をとった度数分布の形に並びかえたパルス強度分布図を作成し、該パルス強度分布図における、低強度側に出現する正規分布様の分布を前記特定成分の全量と帰属し、高強度側に出現する分布を前記特定成分の酸不溶成分量であると帰属し、前記特定成分の全量と酸不溶成分量との差から固溶成分量を求める処理を実行させることを特徴とするコンピュータプログラム。
【0026】
(7) 前記パルス強度分布図において、低強度側に出現する正規分布様の分布のモード値(最頻度値)を用いて、母材金属中に含有される特定成分の全量を定量する処理を実行させることを特徴とする前記(6)に記載のコンピュータプログラム。
【0027】
(8) 前記パルス強度分布図において、低強度側に出現する正規分布様の分布の面積を求め、該面積から母材金属中に含有される特定成分の全量を定量する処理を実行させることを特徴とする前記(6)に記載のコンピュータプログラム。
【0028】
(9) 発光分光分析法を用いて、母材金属中に含有される特定成分を形態別に定量するためのコンピュータプログラムであって、試料表面と電極との間に電圧を印加してスパーク放電を発生させ、1から数千パルスまで測定を行い、得られた発光スペクトルを分光器によって分光し、1から数千パルスの特定成分スペクトル線発光強度を積算した後、該データを基に、前記母材金属中に含有される特定成分の全量を下式(1)に基づいて求め、酸不溶成分量を下式(2)に基づいて求め、
特定成分全量(Total X)=k1×∫a b[I(Total X)]dt +k2 (1)
酸不溶成分量(Insol.X)=k3×∫c d[I(Insol.X)]dt−k4×(特定成分全量)(2)
ここで、Xは特定成分、k1、k2は特定成分発光強度と特定成分全量の実測値から求めた定数、またk3、k4は、特定成分発光強度と特定成分の酸不溶成分量との関係より求めた定数、∫a b[I(Total X)]dtは放電が安定してきたaパルスからbパルスまでの積分強度であって、a=1〜4000パルス、b=1〜5000パルス(a<b)であり、∫c d[I(Insol.X)]dtは放電初期のcパルスからdパルスまでの積分強度であって、c=1〜500パルス、d=1〜1000パルス(c<d)であり、
前記特定成分の全量と酸不溶成分量との差から固溶成分量を求める処理を実行させることを特徴とするコンピュータプログラム。
【0029】
(10) 前記(6)〜(9)のいずれか1つに記載のコンピュータプログラムを格納したことを特徴とするコンピュータ読み取り可能な記憶媒体。
【0030】
【発明の実施の形態】
以下、本発明を詳細に説明する。ここでは、Tiを含有する鉄鋼材料を例にとり説明を行うが、本発明はこれに限定されるものではなく、Tiのほか、Al、S、Pb、Ca、Si、B及びMgから選ばれる1種以上を含有する鉄鋼材料等、種々の金属について適用可能である。
【0031】
試料を採取、切断、切削した後、研削および/または研磨して表面を平滑な平面状に仕上げ、該試料を図8に示す発光分光分析装置にセットして、該試料と電極との間にスパーク放電を起こし、1〜数千パルスまで測定を行う。試料は、通常粒度#80〜#200番の研磨紙で研磨し、不活性ガス雰囲気下で該試料と電極間に放電を行う。該不活性ガスは、特に高純度Arが好ましい。得られた発光スペクトルを分光器によって分光し、1パルス毎の発光スペクトル線強度を一定時間積算した後、デジタル信号値に変換して測定する一定時間積分測光法を行う。
【0032】
介在物Tiの大きさは、スパーク放電前は放電スポット径と同レベルであるために、介在物への選択放電を受けると高いスペクトル線強度を与えるが、数百パルス以降になると、表層に存在していた介在物の殆どは選択放電を受けて崩壊し、母材に微細分散化していく。図9に、発光分光分析時における介在物分解微細化および蒸発イメージの経時変化を模式的に示す。
【0033】
試料と電極間にArガス雰囲気で電圧を印加すると、介在物の大きさに応じて、介在物と母材の地鉄との境界部に電荷が蓄積され、分極が発生する。電圧をさらに印加すると試料と電極間に絶縁破壊が発生し、電子雪崩現象で細い糸状の放電チャンネルが形成される。この急激な通電でArがAr+イオンやAr*メタステーブルイオンへと励起される。次に試料表面の電界不均一部に陰極点が形成され爆発が起きる。この時、上述した介在物と母材地鉄との境界部は典型的な電界不均一部であるため介在物は自らが帯電爆発して崩壊する。この時、崩壊した介在物の一部は微細化して母材の地鉄中に分散すると共に、一部はベーパージェット流として陽極電極側に噴出し、Ar+,Ar*イオンなど活性種と衝突しプラズマ光を形成する。このようにして介在物は高いスペクトル線強度を与えながら帯電爆発して微細分散化していく。約数百パルスを経ると、スパーク放電前に表層に存在していた介在物は、放電により蒸発、あるいは母材に微細分散化するため、放電スポットが当たった部分においては、母材に含まれる固溶成分の発光と、不溶成分が微細分散化された分の発光を足し合わせた合計の発光を示すこととなる。
【0034】
また、表面がArスパッタリングなどによって蒸発し、不溶成分が試料表面に新たに析出すると、該不溶成分に対して新たに選択放電が発生するため、この部位に放電スポットが当たったときには高いスペクトル線強度が得られるが、この強度と頻度は、放電初期の数百パルスと比較してはるかに小さい。
【0035】
図10は、PDA図における新PDA法によるピークの帰属を示す模式図である。
【0036】
従来、固溶成分Ti量(Sol. Ti)と帰属されていた低強度側の正規分布様の分布は、前記知見から、母材中の固溶成分Ti量(Sol. Ti)のスペクトル線強度に、母材に微細分散化した不溶成分Ti量(Insol. Ti)のスペクトル線強度が重畳された全Ti量(Total Ti)に相当することが判明した。一方、高強度側の分布は、スパッタリングにより新たに試料表面に析出した介在物からの発光によるものであり、従来のPDA理論通りに不溶成分量(Insol. Ti)と帰属される。
【0037】
前記PDA図において、低強度側に出現する正規分布様の分布のモード値(最頻度値)から、母材中に含有されるTiの全量を定量する。図11に、横軸に上記PDA分布図の正規分布におけるモード値(最頻度値)の値を取り、縦軸に化学分析から求めた全Ti量(Total Ti)をプロットした図を示す。両者は非常に良好な相関関係を示す。なお、ここでは図示していないが、Alなど酸化物を形成する元素を含有する金属に対して、特定成分(Al)を定量するために同様の方法を行った場合においても、PDAモード値は、化学分析から求めた全Al量(Total Al)と良好な相関関係を示す。
【0038】
または、前記PDA図において、低強度側に出現する正規分布様の分布の面積を求め、該面積から母材中に含有されるTiの全量を定量する。図10において、低強度側のピークは、分布のモード値から左半分を正規分布に従うものとして、下式(3)でシミュレーション計算する。この結果を図中に破線で示す。前記破線およびx軸で囲まれた面積が、全Ti量に相当するものとみなす。さらに、PDA分布から前記低強度側の正規分布を差し引いた高強度側のピークとx軸で囲まれた面積を、酸不溶物であるとみなし分離定量する。
【0039】
N=K×exp〔f(I)〕 (3)
(Nは出現頻度、Iはスペクトル強度、Kは定数)
ここでは図示していないが、上記と同様に、横軸に低強度側の正規分布の面積値を取り、縦軸に化学分析から求めた全Ti量(Total Ti)をプロットしても、両者は非常に良好な相関関係を示す。
【0040】
従来のPDA理論において、特定成分Xを含有する金属に関して不溶成分濃度(Insol.X)が高くなるにつれて、PDA理論から求められる固溶成分濃度(Sol.X)の分析精度が悪くなる原因は、PDA図の低強度側の正規分布様分布を固溶成分(Sol.X)と帰属したことによるものである。これに対し、新PDA理論では、前記正規分布を合計成分(Total)分からの発光と帰属しているため、不溶成分濃度が高い場合においても分析精度が優れている。
【0041】
特定成分Xの分別定量方法は、上記PDA図を用いる方法のほかに、特定成分Xのスペクトル線強度を積分する方法により行うことも可能である。
【0042】
特定成分Xの全量(Total X)は、下式(1)から求められる。
【0043】
特定成分Xの全量(Total X)=k1×∫a b[I(Total X)]dt +k2 (1)
ここで、k1、k2は特定成分Xの発光強度と特定成分Xの全量の実測値から求めた定数、∫a b[I(Total X)]dtは、放電が安定してきたaパルスからbパルスまでのスペクトル線強度の積分値であり、aは1〜4000パルス、bは1〜5000パルスを取り、a<bである。
【0044】
前記a、bは、目的成分のスペクトル線強度変化が安定してくるパルス数に定めるのが好ましく、数百パルスほど積分することが望ましく、500パルス以上であれば放電が安定し、かつ積分強度の精度が確保できるため、a:500パルス以上、b:1000パルス以上が好ましい。特に、a:3000パルス程度、b:4000パルス程度の場合に、分析精度は安定かつ向上する。なお、通常の分析においては、5000パルス以上放電を実施しても差し支えないが、あまり長く放電しても、分析精度の向上は望めず、迅速性が阻害されるので、通常は上限5000パルス程度が実用上問題とならない。
【0045】
特定成分Xの不溶成分量(Insol.X)は、放電初期のスペクトル線強度を用い、下式(2)から求められる。
【0046】
不溶成分X量(Insol.X)=k3×∫c d[I(Insol.X)]dt−k4×(全X量)(2)
ここで、k3、k4は発光スペクトル線強度と母材中の特定成分Xの全量の実測値から求めた定数、∫c d[I(Insol.X)]dtは放電初期のcパルスからdパルスまでのスペクトル線強度の積分値であり、cは1〜500パルス、dは1〜1000パルスを取り、c<dである。特に、c:1パルス、d:300〜500パルスの場合に、不溶成分X量(Insol.X)起因の発光が多く、精度も向上する。
【0047】
前記(1)式および(2)式より得られた全X量(Total X)と不溶成分X量(Insol.X)の値から、下式(4)に従って固溶成分X量(Sol.X)が求められる。
【0048】
固溶成分X量(Sol.X)=全X量(Total X)−不溶成分X量(Insol.X)(4)
上記(1)、(2)、(4)式は、通常のPDA解析機能を持った発光分析装置においても適用できるが、PDA機能を持たない全積分方式の発光分析装置においても適用できる。すなわち、パルス数に相当するサンプリング時間を定めて、その時間内の全積分値を時間分解で取ることにより、PDA機能を持たない全積分方式の発光分析装置においても、簡易に不溶成分量、合計成分量を得ることができる。
【0049】
特定成分の全量、不溶成分量、および固溶成分量の分別定量は、コンピュータプログラム並びに該コンピュータプログラムを格納したコンピュータ読み取り可能な記憶媒体を用いて行うことが可能である。
【0050】
コンピュータプログラムとしては、特定成分のパルス強度分布図において、低強度側に出現する正規分布様の分布を前記特定成分の全量と帰属し、高強度側に出現する分布を前記特定成分の酸不溶成分量であると帰属し、前記特定成分の全量と酸不溶成分量との差から固溶成分量を求める処理を実行させるコンピュータプログラムや、該特定成分の発光スペクトルを分光器によって分光し、必要に応じて1パルスごとの発光強度をデジタル信号値に変換し、1〜数千パルスのスペクトル線強度を積算した後、該データを基に、前記母材金属中に含有される特定成分の全量を上式(1)に基づいて求め、酸不溶成分量を上式(2)に基づいて求め、前記特定成分の全量と酸不溶成分量との差から固溶成分量を求める処理を実行させるコンピュータプログラムを使用する。
【0051】
【実施例】
試料にTi脱酸試料を用い、図8に示すスパーク放電発光分析装置を用いて、放電周波数333Hzにおける放電を行い、3000〜4000パルス(放電開始から約10秒〜13秒)のスペクトル線強度の積分値をとった。次に、前式(1)に従って全Ti量を求めるとともに、1〜500パルス(放電開始から約1.5秒間)のスペクトル線強度の積分値をとり、全Ti量の値を用いて補正し、前式(2)に従って不溶成分Ti量(Insol.Ti)を求めた。そして、全Ti量(Total Ti)から不溶成分Ti量(Insol.Ti)を差し引くことにより、固溶成分Ti量(Sol.Ti)を求めた。その結果を図12に示す。この等価グラフからわかるように、本発明の新PDA理論を用いることにより、簡易に固溶成分(Sol.)、不溶成分(Insol.)分を精度良く分別定量することができる。
【0052】
ここでは、全積分方式の発光分析装置を用いた場合の定量方法について示したが、PDA図の低強度側の正規分布様分布のモード値、または該正規分布様分布の面積から全Ti量を求めた場合においても、高精度に定量できることを確認した。
【0053】
【発明の効果】
本発明は、スパーク放電発光分析により母材中に含まれる特定成分の全量、不溶成分量、および固溶成分量の分別定量を行う方法であり、該分析により得られたPDA図において、従来法では固溶成分量起因とされる低強度側の正規分布様のピークを合計成分量(固溶成分量+不溶成分量)起因と帰属することにより、従来法よりも正確に形態別に分別定量することが可能となった。本発明により、鉄鋼などの製錬工程における精錬課程のAl、Ti等の迅速かつ正確な形態別の定量的管理が必要な成分に対して、固溶成分量、不溶成分量に分別定量した成分コントロールを迅速かつ正確に行うことが可能となる。従って、本発明は、精錬精度向上に寄与し、産業上、極めて価値の高い発明であるといえる。
【図面の簡単な説明】
【図1】図1は、分析試料の表面の模式図である。
【図2】図2は、横軸に放電回数、縦軸にAl線スペクトル強度を示したIT曲線を示す。
【図3】図3は、従来法によるPDA図を示す。
【図4】図4は、鉄鋼中のTiのIT曲線(横軸:時間(スパーク放電パルス数)、縦軸:Ti発光強度)を示す。
【図5】図5は、スパーク放電を行った際のTi含有鉄鋼材料の表面状態の走査型電子顕微鏡写真(a:放電ゼロ、b:10パルス時、c:500パルス時、d:5000パルス時)である。
【図6】図6は、スパーク放電を行った際のTi含有鉄鋼材料の電子マイクロプローブ二次元マッピング法(CMA)解析写真(a:放電ゼロ、b:10パルス時、c:500パルス時、d:5000パルス時)である。
【図7】図7は、放電ゼロ、10、500、5000パルス時におけるTi/Fe強度比を示す。
【図8】図8は、スパーク発光分析装置の模式図である。
【図9】図9は、発光分光分析時における介在物分解微細化および蒸発イメージの経時変化を模式的に示した図である。
【図10】図10は、PDA図と新PDA法におけるピークの帰属を示す模式図である。
【図11】図11は、PDA図の低強度側の正規分布様分布のモード値と全Ti量の関係を示す図である。
【図12】図12は、化学分析値と新PDA法より求めた全量(Total Ti)、固溶成分(Sol.Ti)、不溶成分(Insol.Ti)値の等価グラフである。
【符号の説明】
1…分析試料
2…電極
3…放電装置
4…集光レンズ
5…スリット
6…回折格子
7…分光スペクトル
8…検出器
9…測光装置
10…演算処理装置
20…発光部
30…分光部
40…データ処理部
[0001]
BACKGROUND OF THE INVENTION
The present invention provides a quantitative determination method and a computer program for quickly and accurately quantifying a metal component, particularly a specific component present in a metal, in order to quickly and accurately manage and adjust the component in a metal refining process, The present invention also relates to a computer-readable storage medium.
[0002]
[Prior art]
A specific component present in a steel material such as steel exists in a form soluble in an acid dissolved in the base material, or in an insoluble form in the form of inclusions or precipitates. Hereinafter, the solid metal element component is abbreviated as a solid solution component (or acid soluble component), and the metal component in the form of inclusions is abbreviated as an insoluble component (or acid insoluble component). Although the specific component element has a great influence on the material of the base material, the degree varies depending on the existence form and the amount of each element, so that the specific component element is divided into not only the total amount of the specific component element but also the solid solution component and the insoluble component. It is important to quantify separately. In particular, since solid solution components such as Al and Ti used as deoxidizing elements in the refining process of steel materials and the like are greatly involved in the material of the steel materials, rapid and accurate determination of the components is required.
[0003]
Conventionally, as a method for fractional quantification of specific components, the emission spectrum obtained by pulse intensity distribution analysis (PDA (Pulse Height Distribution Analysis), hereinafter abbreviated as PDA) in the emission spectroscopic analysis method is digitalized for each pulse. By accumulating as information and performing statistical processing, a pulse intensity distribution diagram (hereinafter abbreviated as a PDA diagram) is created with the spectral line emission intensity of the specific component on the horizontal axis and the frequency of appearance on the vertical axis. The normal distribution-like portion on the side is attributed to luminescence due to the amount of the solid solution component, the distribution on the high intensity side is attributed to luminescence due to the amount of the insoluble component, and the median value of the distribution is the representative value of the total amount of the specific component Are used all over the world (for example, Non-Patent Document 1, Non-Patent Document 2, and Patent Document 1).
[0004]
Hereinafter, a method for quantitative analysis of the specific component (Al) in the steel material will be described with respect to the conventional method for fractional quantification of the specific component in the steel, taking a steel material containing a small amount of Al component as an example.
[0005]
FIG. 1 is a schematic diagram of the surface of an analysis sample, FIG. 2 is a diagram showing the number of discharges on the horizontal axis, and the Al-line spectrum intensity on the vertical axis. When the spark discharge light emission spot hits the insoluble component Al particles present in the steel, the Al concentration in the spot range is high, so it shows a high Al spectral line intensity, while it does not contain the insoluble component Al and is a uniform solid solution. When discharging at a location containing only the component Al, the Al spectral line intensity in the spot range is low and uniform.
[0006]
FIG. 3 is a PDA diagram of the analysis sample. According to the conventional method, when a light emitting spot hits an insoluble component Al, it shows a high spectral line intensity, and since the number and diameter of the insoluble component Al are different from each other, generally it does not take a normal distribution, and the distribution map has a high intensity. The distribution line is unevenly distributed over a wide intensity range. On the other hand, in the portion that does not contain the insoluble component Al but contains only the solid solution component Al, the spectral line intensity is low and uniform. It is described to show a distribution-like distribution. In the conventional method, the solid solution component Al is quantified by approximately obtaining the area of the distribution like the normal distribution, and the total Al amount is quantified from the median value of the distribution.
[0007]
In the conventional method, 1 to several thousand pulses are discharged and sampled. Of these, the initial discharge of about 1 to several hundred pulses is regarded as a preliminary discharge for homogenizing the sample surface, and is subject to sampling. Excluded from the scope.
[0008]
The conventional method can obtain stable spectral line intensity by subtracting irregular high-intensity spectral line intensity generated due to the presence of insoluble component Al such as inclusions. In the case where the abundance of the solid solution component Al amount and the total Al amount, such as a metal sample obtained in the process, shows a substantially equal ratio, by obtaining the area of the normal distribution on the low intensity side of the PDA diagram, Because it can quickly determine the amount of solid solution component Al with almost the same accuracy as the conventional chemical analysis method, it is regarded as very important as a process control analysis method for steel refining process, and it is used worldwide. It was.
[0009]
However, the conventional method can be approximated very well for a steel sample produced in a refining process of a general steelmaking factory. It is empirically recognized that there is a difference between the quantitative value measured by the conventional method and the actual measurement value for a sample in which the abundance of the insoluble component Al amount is different, especially for a sample having a high insoluble component Al amount. Therefore, an improvement method for that is proposed (for example, Non-Patent Document 3). However, when the ratio of the insoluble component Al amount is increased, there is no elucidation that a deviation occurs between the quantitative value and the actual measurement value according to the conventional method, and thus no fundamental solution has been implemented. .
[0010]
Also, in recent years, when using a deoxidizing material such as Ti used in steel refining, the conventional PDA theory cannot accurately separate and quantify the components in the metal according to the form, based on the experimental results of the inventors. It was known.
[Non-Patent Document 1]
Agne "Latest Steel State Analysis" (1979) p111
[Non-Patent Document 2]
Iron and steel, Vol. 60, 13 (1974), p276
[Non-Patent Document 3]
CAMP-ISIJ, Vol.3 (1990) -601
[Patent Document 1]
JP-A-48-24792
[0011]
[Problems to be solved by the invention]
The present invention solves the problems of the quantitative method based on the conventional PDA theory, and makes it possible to reliably, quickly and accurately perform the fractional quantification of the components in the metal in the molten metal smelting process. It is another object of the present invention to provide a computer program and a computer-readable storage medium.
[0012]
[Means for Solving the Problems]
When a voltage is applied to a non-conductive substance such as an inclusion contained in a conductor such as a metal, the present inventor causes polarization in a boundary region between the metal and the non-conductor, and selectively discharges aiming at that portion. Focusing on the (selective discharge phenomenon to inclusions), by analyzing the emission spectrum obtained by performing the emission spectroscopic analysis of 1 to several thousand pulses, particularly in the initial hundreds of pulses JP-A-4-238250 discloses that the existence number, the diameter, the content, or the average diameter can be determined according to a predetermined formula. On the other hand, Japanese Patent Application Laid-Open No. 9-431450 discloses a method for measuring the discharge emission spectrum based on the knowledge disclosed in Japanese Patent Application Laid-Open No. 4-238250 and determining the composition and particle size distribution of inclusions. Has been.
[0013]
As described above, it is known that the selective discharge phenomenon to the inclusions brings a lot of information about the inclusions, but this time, the present inventor has discovered that the discharge in the inclusions in the metal in the conventional PDA theory. In view of the fact that the discharge from the occurrence of the discharge to the stable discharge state is removed as a so-called preliminary discharge and discussed only with the data after reaching the stable discharge, further, JP-A-4-238250 is disclosed. In Japanese Patent Application Laid-Open No. 9-431450, it was found that there was a lack of “knowledge of temporal surface state change” when performing selective discharge to inclusions, and selective discharge to inclusions was performed. The change of the metal surface state with time is divided into three stages: (1) the presence of inclusions before the start of discharge, (2) selective discharge state to inclusions at the beginning of discharge, and (3) stable discharge state. Detailed Discussion was carried out. In addition, the steel which contains trace amount Ti was used for the sample, and the emission spectral analysis of the specific component (Ti) in this sample was performed.
[0014]
FIG. 4 is an IT curve in which time (spark discharge pulse number) is plotted on the horizontal axis and Ti emission intensity is plotted on the vertical axis for a specific component (Ti) in the sample. It can be seen that by about several hundred pulses at the beginning of discharge, the emission intensity gradually decreases and then stabilizes.
[0015]
Furthermore, the inventor has a microscope, a scanning electron microscope, an electronic microprobe two-dimensional mapping method (hereinafter abbreviated as CMA method), etc., regarding the shape, number, and composition of inclusions in the following four stages at the time of spark discharge of the sample. The analysis was performed using
[0016]
Stage (a): Spark 0 pulse (before discharge)
Stage (b): Spark 10 pulses
Stage (c): Spark 500 pulses
Stage (d): Spark at 5000 pulses
As a result, as shown in FIG. 5, at the time of 10 pulses (b), discharge is selectively generated in the inclusions, and the inclusions are finely diffused, and at the time of 500 pulses (c) and 5000 pulses (d ) Obtained the fact that the surface layer of the sample caused a melting phenomenon, and the shape like inclusions could not be seen. Furthermore, as a result of analyzing the Ti component with a two-dimensional planar distribution using the CMA method, as shown in FIG. 6, before the spark discharge (a), the number of inclusions is reduced to about 500 × 500 μm square. It was found that the number of inclusions per area was drastically reduced to about several at 500 pulses (c) and 5000 pulses (d), whereas hundreds were observed. This indicates that a considerable number of inclusions have collapsed due to selective discharge.
[0017]
Next, the inventor measured the strength ratio of Ti / Fe per unit area in each stage in order to confirm whether the Ti strength was drastically reduced similarly to the number of inclusions. The specific intensity when the Ti / Fe intensity ratio at the time of zero pulse before the start of discharge is set to 100 is shown in FIG. At the time of 10-pulse light emission at the beginning of discharge, the specific intensity is larger than that at 0 pulse before the start of discharge, but the intensity at the time of 500 pulses and 5000 pulses is almost the same as the intensity level at the time of zero pulse before the start of discharge.
[0018]
Therefore, the inventor has found from the above findings that some Ti inclusions are ionized and atomized to contribute to light emission after being subjected to selective discharge, and others are finely dispersed in the base material. That is, before the spark discharge, the size of the inclusion is the same level as the diameter of the discharge spot, so that it gives high spectral line intensity when subjected to selective discharge, but was present on the surface layer after several hundred pulses. It was found that most of the inclusions collapsed upon selective discharge and were finely dispersed in the base material. The theory found by the inventor, which is different from the conventional PDA theory, is referred to as a new PDA theory.
[0019]
The present invention has been made based on the new PDA theory, and the gist thereof is as follows.
[0020]
(1) In a method of quantifying specific components contained in a base metal by form using emission spectroscopy, after a sample is collected, cut, and cut, the sample surface is ground and / or polished. After finishing the sample, set it in an emission spectrometer, apply a voltage between the sample surface and the electrode to generate a spark discharge, measure from 1 to several thousand pulses, and obtain the emission spectrum The specific component spectral line emission intensity for each pulse is converted into a digital signal value, and the horizontal axis indicates the spectral line emission intensity of the specific component and the vertical axis indicates the appearance frequency based on the data. A pulse intensity distribution chart arranged in the form of a frequency distribution is created, and in the pulse intensity distribution chart, a normal distribution-like distribution appearing on the low intensity side is attributed to the total amount of the specific component and appears on the high intensity side. Distribution to In the base metal by emission spectroscopic analysis, the amount of the solid component is determined from the difference between the total amount of the specific component and the amount of the acid insoluble component. Quantification method according to form of specific component contained.
[0021]
(2) Quantifying the total amount of the specific component contained in the base metal using the mode value (most frequent value) of the normal distribution-like distribution appearing on the low intensity side in the pulse intensity distribution diagram. The quantification method according to form of the specific component contained in the base metal by the emission spectroscopic analysis as described in (1) above.
[0022]
(3) Obtaining an area of a normal distribution-like distribution appearing on the low intensity side in the pulse intensity distribution diagram, and quantifying the total amount of the specific component contained in the base metal from the area A method for quantitative determination of specific components contained in a base metal by the emission spectroscopic analysis method according to (1).
[0023]
(4) In a method of quantifying specific components contained in a base metal by form using emission spectroscopic analysis, a sample is collected, cut and cut, and then the sample surface is ground and / or polished. After finishing the sample, set it in an emission spectrometer, apply a voltage between the sample surface and the electrode to generate a spark discharge, measure from 1 to several thousand pulses, and obtain the emission spectrum The spectral line emission intensity for each pulse is converted into a digital signal value, the spectral line emission intensity of 1 to several thousand pulses is integrated, and the base metal is then based on the data. The total amount of the specific component contained therein is determined based on the following formula (1), the acid-insoluble component amount is determined based on the following formula (2),
Total amount of specific ingredients (Total X) = k1 x ∫a b[I (Total X)] dt + k2 (1)
Acid-insoluble component amount (Insol.X) = k3 x ∫c d[I (Insol.X)] dt-k4 × (specific component total amount) (2)
Here, X is a specific component, k1 and k2 are constants obtained from the measured values of the specific component emission intensity and the total amount of the specific component, and k3 and k4 are based on the relationship between the specific component emission intensity and the amount of the acid-insoluble component of the specific component. Calculated constant, ∫a b[I (Total X)] dt is the integrated intensity from the a pulse to the b pulse where the discharge has stabilized, where a = 1 to 4000 pulses, b = 1 to 5000 pulses (a <b),c d[I (Insol.X)] dt is an integrated intensity from c pulse to d pulse at the initial stage of discharge, c = 1 to 500 pulses, d = 1 to 1000 pulses (c <d),
A method for determining the amount of a specific component contained in a base metal by an emission spectroscopic analysis method, wherein the amount of a solid solution component is determined from the difference between the total amount of the specific component and the amount of an acid-insoluble component.
[0024]
(5) The base metal is a steel material, and the specific component is one or more selected from S, Pb, Ca, Si, Ti, Al, B, and Mg, and the form of the specific component in the steel refining process The quantitative determination method for specific components contained in the base metal by the emission spectroscopic analysis according to any one of (1) to (4), wherein the specific determination is performed.
[0025]
(6) A computer program for quantifying specific components contained in a base metal by form using emission spectroscopy, and applying a voltage between a sample surface and an electrode to generate a spark discharge. 1 to several thousand pulses, and the obtained emission spectrum is spectrally separated by a spectrometer, and the specific component spectral line emission intensity for each pulse is converted into a digital signal value. Create a pulse intensity distribution chart arranged in the form of a frequency distribution with the spectral line emission intensity of the specific component on the axis and the appearance frequency on the vertical axis, and a normal distribution appearing on the low intensity side in the pulse intensity distribution chart The distribution of the specific component is attributed to the total amount of the specific component, the distribution appearing on the high-strength side is attributed to the acid-insoluble component amount of the specific component, and the distribution is determined from the difference between the total amount of the specific component and the acid-insoluble component amount. The amount of dissolved components Computer program characterized by executing the mel process.
[0026]
(7) In the pulse intensity distribution diagram, a process for quantifying the total amount of the specific component contained in the base metal using a mode value (most frequent value) of a normal distribution-like distribution that appears on the low intensity side. The computer program according to (6), which is executed.
[0027]
(8) In the pulse intensity distribution diagram, an area of a normal distribution-like distribution appearing on the low intensity side is obtained, and a process of quantifying the total amount of the specific component contained in the base metal from the area is executed. The computer program according to (6), which is characterized in that
[0028]
(9) A computer program for quantifying specific components contained in a base metal by form using emission spectroscopy, and applying a voltage between a sample surface and an electrode to generate a spark discharge. 1 to several thousand pulses, and the obtained emission spectrum is spectrally separated by a spectroscope, and the specific component spectral line emission intensity of one to several thousand pulses is integrated. The total amount of the specific component contained in the metal material is determined based on the following formula (1), the amount of acid-insoluble component is determined based on the following formula (2),
Total amount of specific ingredients (Total X) = k1 x ∫a b[I (Total X)] dt + k2 (1)
Acid-insoluble component amount (Insol.X) = k3 x ∫c d[I (Insol.X)] dt-k4 × (specific component total amount) (2)
Here, X is a specific component, k1 and k2 are constants obtained from the measured values of the specific component emission intensity and the total amount of the specific component, and k3 and k4 are based on the relationship between the specific component emission intensity and the amount of the acid-insoluble component of the specific component. Calculated constant, ∫a b[I (Total X)] dt is the integrated intensity from the a pulse to the b pulse where the discharge has stabilized, where a = 1 to 4000 pulses, b = 1 to 5000 pulses (a <b),c d[I (Insol.X)] dt is an integrated intensity from c pulse to d pulse at the initial stage of discharge, c = 1 to 500 pulses, d = 1 to 1000 pulses (c <d),
A computer program for executing a process for obtaining a solid solution component amount from a difference between a total amount of the specific component and an acid insoluble component amount.
[0029]
(10) A computer-readable storage medium storing the computer program according to any one of (6) to (9).
[0030]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail. Here, the steel material containing Ti will be described as an example, but the present invention is not limited to this, and in addition to Ti, 1 selected from Al, S, Pb, Ca, Si, B, and Mg. It is applicable to various metals such as steel materials containing more than seeds.
[0031]
After taking, cutting, and cutting the sample, grinding and / or polishing to finish the surface into a smooth flat surface, set the sample in the emission spectroscopic analyzer shown in FIG. 8, and between the sample and the electrode Spark discharge is generated and measurement is performed from 1 to several thousand pulses. The sample is usually polished with abrasive paper having a particle size of # 80 to # 200, and discharge is performed between the sample and the electrode in an inert gas atmosphere. The inert gas is particularly preferably high-purity Ar. The obtained emission spectrum is spectrally divided by a spectroscope, and the emission spectrum line intensity for each pulse is integrated for a fixed time, and then converted into a digital signal value and measured for a fixed time integral photometry.
[0032]
Since the size of inclusion Ti is the same level as the discharge spot diameter before spark discharge, it gives high spectral line intensity when subjected to selective discharge to inclusions, but exists on the surface layer after several hundred pulses. Most of the inclusions that have been destroyed are subjected to selective discharge and are finely dispersed in the base material. FIG. 9 schematically shows the temporal decomposition of the inclusion decomposition and the evaporation image during emission spectroscopic analysis.
[0033]
When a voltage is applied between the sample and the electrode in an Ar gas atmosphere, electric charges are accumulated at the boundary between the inclusion and the base metal of the base metal according to the size of the inclusion, and polarization occurs. When a voltage is further applied, dielectric breakdown occurs between the sample and the electrode, and a thin thread-like discharge channel is formed due to an electron avalanche phenomenon. This rapid energization excites Ar into Ar + ions and Ar * metastable ions. Next, a cathode spot is formed in the electric field nonuniformity part of the sample surface, and explosion occurs. At this time, since the boundary portion between the inclusion and the base metal is a typical electric field nonuniformity portion, the inclusion itself is charged and exploded and collapses. At this time, a part of the collapsed inclusions is refined and dispersed in the base metal of the base material, and a part of the inclusion is ejected to the anode electrode side as a vapor jet stream and collides with active species such as Ar + and Ar * ions. Plasma light is formed. In this way, the inclusions are charged and exploded and finely dispersed while giving high spectral line intensity. After about several hundred pulses, the inclusions present on the surface layer before the spark discharge evaporate or finely disperse in the base material due to the discharge, so that the portion where the discharge spot hits is included in the base material The total emission is the sum of the emission of the solid solution component and the emission of the finely dispersed insoluble component.
[0034]
Further, when the surface is evaporated by Ar sputtering or the like and an insoluble component is newly deposited on the surface of the sample, a selective discharge is newly generated for the insoluble component. However, this intensity and frequency is much smaller compared to hundreds of pulses at the beginning of discharge.
[0035]
FIG. 10 is a schematic diagram showing the attribution of peaks by the new PDA method in the PDA diagram.
[0036]
The distribution of normal distribution on the low-strength side, which was previously attributed to the amount of solid solution component Ti (Sol. Ti), is based on the above knowledge, and the spectral line intensity of the amount of solid solution component Ti (Sol. Furthermore, it was found that this corresponds to the total Ti amount (Total Ti) on which the spectral line intensity of the insoluble component Ti amount (Insol. Ti) finely dispersed in the base material is superimposed. On the other hand, the distribution on the high intensity side is due to light emission from inclusions newly deposited on the sample surface by sputtering, and is attributed to the amount of insoluble components (Insol. Ti) as in the conventional PDA theory.
[0037]
In the PDA diagram, the total amount of Ti contained in the base material is quantified from the mode value (most frequent value) of the normal distribution-like distribution that appears on the low intensity side. In FIG. 11, the horizontal axis shows the mode value (most frequent value) in the normal distribution of the PDA distribution chart, and the vertical axis shows the total Ti amount obtained from chemical analysis. Both show a very good correlation. Although not shown here, even when a similar method is used to quantify a specific component (Al) for a metal containing an element that forms an oxide such as Al, the PDA mode value is It shows a good correlation with the total Al amount obtained from chemical analysis.
[0038]
Alternatively, in the PDA diagram, an area of a normal distribution-like distribution appearing on the low intensity side is obtained, and the total amount of Ti contained in the base material is quantified from the area. In FIG. 10, the peak on the low intensity side is calculated by the following equation (3), assuming that the left half of the distribution mode value follows the normal distribution. This result is indicated by a broken line in the figure. The area surrounded by the broken line and the x-axis is considered to correspond to the total amount of Ti. Further, the area surrounded by the peak on the high intensity side obtained by subtracting the normal distribution on the low intensity side from the PDA distribution and the area surrounded by the x-axis is regarded as an acid insoluble substance, and separated and quantified.
[0039]
N = K × exp [f (I)] (3)
(N is appearance frequency, I is spectral intensity, K is constant)
Although not shown here, similarly to the above, taking the area value of the normal distribution on the low intensity side on the horizontal axis and plotting the total Ti amount (Total Ti) obtained from chemical analysis on the vertical axis, Indicates a very good correlation.
[0040]
In the conventional PDA theory, as the insoluble component concentration (Insol.X) for the metal containing the specific component X increases, the analysis accuracy of the solid solution component concentration (Sol.X) obtained from the PDA theory deteriorates. This is due to the assignment of the normal distribution-like distribution on the low intensity side of the PDA diagram as the solid solution component (Sol. X). On the other hand, in the new PDA theory, since the normal distribution is attributed to light emission from the total component (Total), the analysis accuracy is excellent even when the concentration of insoluble components is high.
[0041]
The fractional quantification method of the specific component X can be performed by a method of integrating the spectral line intensity of the specific component X in addition to the method using the PDA diagram.
[0042]
The total amount (Total X) of the specific component X is obtained from the following formula (1).
[0043]
Total amount of specific component X (Total X) = k1 x ∫a b[I (Total X)] dt + k2 (1)
Here, k1 and k2 are constants obtained from the measured values of the emission intensity of the specific component X and the total amount of the specific component X,a b[I (Total X)] dt is an integral value of spectral line intensities from the a pulse to the b pulse where the discharge has stabilized, a is 1 to 4000 pulses, b is 1 to 5000 pulses, and a <b It is.
[0044]
The a and b are preferably set to the number of pulses at which the change in the spectral line intensity of the target component becomes stable, and it is desirable to integrate several hundred pulses. When 500 pulses or more, the discharge is stable and the integrated intensity Therefore, a: 500 pulses or more and b: 1000 pulses or more are preferable. In particular, when a is about 3000 pulses and b is about 4000 pulses, the analysis accuracy is stable and improved. In normal analysis, it may be possible to discharge 5000 pulses or more. However, if the discharge is too long, improvement in analysis accuracy cannot be expected, and rapidity is impeded. Usually, the upper limit is about 5000 pulses. Is not a practical problem.
[0045]
The insoluble component amount (Insol.X) of the specific component X is obtained from the following equation (2) using the spectral line intensity at the initial stage of discharge.
[0046]
Insoluble component X amount (Insol.X) = k3 × ∫c d[I (Insol.X)] dt-k4 × (total X amount) (2)
Here, k3 and k4 are constants obtained from the measured values of the emission spectral line intensity and the total amount of the specific component X in the base material.c d[I (Insol.X)] dt is an integral value of the spectral line intensity from the c pulse to the d pulse at the initial stage of discharge, c is 1 to 500 pulses, d is 1 to 1000 pulses, and c <d. . In particular, in the case of c: 1 pulse and d: 300 to 500 pulses, there is much light emission due to the insoluble component X amount (Insol.X), and the accuracy is improved.
[0047]
From the values of the total X amount (Total X) and the insoluble component X amount (Insol.X) obtained from the equations (1) and (2), the solid solution component X amount (Sol. X ) Is required.
[0048]
Solid solution X amount (Sol.X) = Total X amount (Total X) −Insoluble component X amount (Insol.X) (4)
The above formulas (1), (2), and (4) can be applied to an emission analysis apparatus having a normal PDA analysis function, but can also be applied to an all-integration emission analysis apparatus having no PDA function. In other words, by determining the sampling time corresponding to the number of pulses and taking the total integral value within that time by time resolution, even in the total integration type emission analysis apparatus without the PDA function, the amount of insoluble components can be easily calculated. The amount of ingredients can be obtained.
[0049]
The fractional quantification of the total amount of the specific component, the insoluble component amount, and the solid solution component amount can be performed using a computer program and a computer-readable storage medium that stores the computer program.
[0050]
As a computer program, in a pulse intensity distribution diagram of a specific component, a distribution like a normal distribution that appears on the low intensity side is attributed to the total amount of the specific component, and a distribution that appears on the high intensity side is the acid-insoluble component of the specific component A computer program that executes processing for obtaining the amount of the solid solution component from the difference between the total amount of the specific component and the acid-insoluble component amount, and the emission spectrum of the specific component is spectroscopically analyzed by a spectroscope. Accordingly, the light emission intensity for each pulse is converted into a digital signal value, the spectral line intensity of 1 to several thousand pulses is integrated, and then the total amount of the specific component contained in the base metal is calculated based on the data. A computer that calculates the amount of acid-insoluble components based on the above equation (1), calculates the amount of acid-insoluble components based on the above equation (2), and executes processing for determining the amount of solid-soluble components from the difference between the total amount of the specific component and the amount of acid-insoluble components. To use the program.
[0051]
【Example】
Using a Ti deoxidized sample as a sample, using a spark discharge optical emission analyzer shown in FIG. 8, discharge at a discharge frequency of 333 Hz was performed, and the spectral line intensity of 3000 to 4000 pulses (about 10 to 13 seconds from the start of discharge) was obtained. The integral value was taken. Next, the total Ti amount is obtained according to the previous formula (1), and the integral value of the spectral line intensity of 1 to 500 pulses (about 1.5 seconds from the start of discharge) is taken and corrected using the value of the total Ti amount. The amount of insoluble component Ti (Insol.Ti) was determined according to the previous equation (2). Then, by subtracting the insoluble component Ti amount (Insol.Ti) from the total Ti amount (Total Ti), the solid solution component Ti amount (Sol.Ti) was obtained. The result is shown in FIG. As can be seen from the equivalent graph, by using the new PDA theory of the present invention, the solid solution component (Sol.) And the insoluble component (Insol.) Can be easily and accurately quantified.
[0052]
Here, the quantification method in the case of using a total integration type emission spectrometer is shown, but the total Ti amount is calculated from the mode value of the normal distribution-like distribution on the low intensity side of the PDA diagram or the area of the normal distribution-like distribution. Even when it was determined, it was confirmed that it could be quantified with high accuracy.
[0053]
【The invention's effect】
The present invention is a method for performing fractional quantification of the total amount, insoluble component amount, and solid solution component amount contained in a base material by spark discharge emission analysis. In the PDA diagram obtained by the analysis, the conventional method Then, the normal distribution-like peak on the low-intensity side attributed to the solid solution component amount is attributed to the total component amount (solid solution component amount + insoluble component amount), which enables more accurate fractional quantification by form than the conventional method. It became possible. In accordance with the present invention, for components that require rapid and accurate quantitative management by form, such as Al and Ti in the refining process in the smelting process of steel and the like, components that have been separately quantified into solid solution amounts and insoluble component amounts Control can be performed quickly and accurately. Therefore, it can be said that the present invention contributes to the improvement of refining accuracy and is extremely valuable industrially.
[Brief description of the drawings]
FIG. 1 is a schematic view of the surface of an analysis sample.
FIG. 2 shows an IT curve in which the horizontal axis represents the number of discharges and the vertical axis represents the Al line spectrum intensity.
FIG. 3 shows a PDA diagram according to a conventional method.
FIG. 4 shows an IT curve of Ti in steel (horizontal axis: time (number of spark discharge pulses), vertical axis: Ti emission intensity).
FIG. 5 is a scanning electron micrograph of the surface state of a Ti-containing steel material when spark discharge is performed (a: discharge zero, b: at 10 pulses, c: at 500 pulses, d: 5000 pulses) Time).
FIG. 6 is an electron microprobe two-dimensional mapping (CMA) analysis photograph of Ti-containing steel material when spark discharge is performed (a: discharge zero, b: at 10 pulses, c: at 500 pulses, d: at 5000 pulses).
FIG. 7 shows the Ti / Fe intensity ratio at zero discharge, 10, 500, and 5000 pulses.
FIG. 8 is a schematic diagram of a spark emission spectrometer.
FIG. 9 is a diagram schematically showing the inclusion decomposition miniaturization and the temporal change of the evaporation image during emission spectroscopic analysis.
FIG. 10 is a schematic diagram showing attribution of peaks in a PDA diagram and a new PDA method.
FIG. 11 is a diagram showing the relationship between the mode value of the normal distribution-like distribution on the low intensity side of the PDA diagram and the total Ti amount.
FIG. 12 is an equivalent graph of the total amount (Total Ti), the solid solution component (Sol.Ti), and the insoluble component (Insol.Ti) values obtained from the chemical analysis values and the new PDA method.
[Explanation of symbols]
1 ... Analytical sample
2 ... Electrode
3. Discharge device
4 ... Condensing lens
5 ... Slit
6 ... Diffraction grating
7 ... Spectral spectrum
8 ... Detector
9 ... Photometric device
10: Arithmetic processing device
20 ... Light emitting part
30: Spectrometer
40: Data processing unit

Claims (10)

発光分光分析法を用いて、母材金属中に含有される特定成分を形態別に定量する方法において、
試料を採取、切断、切削した後、試料表面を研削および/または研磨して平面状に仕上げてから、発光分光分析装置にセットして、該試料表面と電極との間に電圧を印加してスパーク放電を発生させ、1から数千パルスまで測定を行い、
得られた発光スペクトルを分光器によって分光し、1パルスごとの特定成分スペクトル線発光強度をデジタル信号値に変換し、
該データを基に、横軸に前記特定成分のスペクトル線発光強度、縦軸に出現頻度をとった度数分布の形に並びかえたパルス強度分布図を作成し、
該パルス強度分布図における、低強度側に出現する正規分布様の分布を前記特定成分の全量と帰属し、高強度側に出現する分布を前記特定成分の酸不溶成分量であると帰属し、前記特定成分の全量と酸不溶成分量との差から固溶成分量を求めることを特徴とする、
発光分光分析法による母材金属中に含有される特定成分の形態別定量方法。
In the method of quantifying specific components contained in the base metal by form using emission spectroscopy,
After collecting, cutting, and cutting the sample, the sample surface is ground and / or polished to a flat surface, set in an emission spectroscopic analyzer, and a voltage is applied between the sample surface and the electrode. Generate spark discharge, measure from 1 to thousands of pulses,
The obtained emission spectrum is spectrally separated by a spectroscope, the specific component spectral line emission intensity for each pulse is converted into a digital signal value,
Based on the data, create a pulse intensity distribution chart in which the horizontal axis represents the spectral line emission intensity of the specific component and the vertical axis represents the frequency distribution,
In the pulse intensity distribution diagram, a distribution like a normal distribution appearing on the low intensity side is attributed to the total amount of the specific component, and a distribution appearing on the high intensity side is attributed to be the amount of the acid-insoluble component of the specific component, The solid solution amount is determined from the difference between the total amount of the specific component and the acid insoluble component amount,
A quantitative determination method for specific components contained in a base metal by emission spectroscopy.
前記パルス強度分布図における、低強度側に出現する正規分布様の分布のモード値を用いて、母材金属中に含有される特定成分の全量を定量することを特徴とする請求項1に記載の発光分光分析法による母材金属中に含有される特定成分の形態別定量方法。The total amount of the specific component contained in the base metal is quantified using a mode value of a normal distribution-like distribution that appears on the low intensity side in the pulse intensity distribution diagram. A method for quantitative determination of specific components contained in a base metal by the emission spectroscopic analysis method according to the form. 前記パルス強度分布図における、低強度側に出現する正規分布様の分布の面積を求め、該面積から母材金属中に含有される特定成分の全量を定量することを特徴とする請求項1に記載の発光分光分析法による母材金属中に含有される特定成分の形態別定量方法。The area of a normal distribution-like distribution appearing on the low intensity side in the pulse intensity distribution diagram is obtained, and the total amount of the specific component contained in the base metal is quantified from the area. The quantitative determination method according to form of the specific component contained in the base metal by the described emission spectrometry. 発光分光分析法を用いて、母材金属中に含有される特定成分を形態別に定量する方法において、
試料を採取、切断、切削した後、試料表面を研削および/または研磨して平面状に仕上げてから、発光分光分析装置にセットして、該試料表面と電極との間に電圧を印加してスパーク放電を発生させ、1から数千パルスまで測定を行い、
得られた発光スペクトルを分光器によって分光し、1パルスごとの特定成分スペクトル線発光強度をデジタル信号値に変換し、1から数千パルスのスペクトル線発光強度を積算した後、
該データを基に、前記母材金属中に含有される特定成分の全量を下式(1)に基づいて求め、酸不溶成分量を下式(2)に基づいて求め、
特定成分全量(Total X)=k1×∫a b[I(Total X)]dt +k2 (1)
酸不溶成分量(Insol.X)=k3×∫c d[I(Insol.X)]dt−k4×(特定成分全量)(2)
ここで、Xは特定成分、k1、k2は特定成分発光強度と特定成分全量の実測値から求めた定数、またk3、k4は、特定成分発光強度と特定成分の酸不溶成分量との関係より求めた定数、∫a b[I(Total X)]dtは放電が安定してきたaパルスからbパルスまでの積分強度であって、a=1〜4000パルス、b=1〜5000パルス(a<b)であり、∫c d[I(Insol.X)]dtは放電初期のcパルスからdパルスまでの積分強度であって、c=1〜500パルス、d=1〜1000パルス(c<d)であり、
前記特定成分の全量と酸不溶成分量との差から固溶成分量を求めることを特徴とする、
発光分光分析法による母材金属中に含有される特定成分の形態別定量方法。
In the method of quantifying specific components contained in the base metal by form using emission spectroscopy,
After collecting, cutting, and cutting the sample, the sample surface is ground and / or polished to a flat surface, set in an emission spectroscopic analyzer, and a voltage is applied between the sample surface and the electrode. Generate spark discharge, measure from 1 to thousands of pulses,
The obtained emission spectrum is dispersed by a spectroscope, the specific component spectral line emission intensity for each pulse is converted into a digital signal value, and the spectral line emission intensity of 1 to several thousand pulses is integrated,
Based on the data, the total amount of the specific component contained in the base metal is determined based on the following formula (1), the acid-insoluble component amount is determined based on the following formula (2),
Total amount of specific components (Total X) = k1 x ∫ a b [I (Total X)] dt + k2 (1)
Acid insoluble component amount (Insol.X) = k3 × ∫ c d [I (Insol.X)] dt-k4 × ( specific component total) (2)
Here, X is a specific component, k1 and k2 are constants obtained from the measured values of the specific component emission intensity and the total amount of the specific component, and k3 and k4 are based on the relationship between the specific component emission intensity and the amount of the acid-insoluble component of the specific component. determined constants, ∫ a b [I (Total X)] dt discharge is a integrated intensity from a pulse that has been stable until b pulse, a = 1 to 4000 pulses, b = 1 to 5000 pulses (a < b), and ∫ c d [I (Insol.X)] dt is an integrated intensity from the c pulse to the d pulse at the initial stage of discharge, where c = 1 to 500 pulses and d = 1 to 1000 pulses (c < d)
The solid solution amount is determined from the difference between the total amount of the specific component and the acid insoluble component amount,
A quantitative determination method for specific components contained in a base metal by emission spectroscopy.
前記母材金属が鋼材であり、前記特定成分がS、Pb、Ca、Si、Ti、Al、B及びMgから選ばれる1種以上であり、鉄鋼の精錬工程における前記特定成分の形態別定量を行うことを特徴とする請求項1〜4のいずれか1項に記載の発光分光分析法による母材金属中に含有される特定成分の形態別定量方法。The base metal is a steel material, and the specific component is one or more selected from S, Pb, Ca, Si, Ti, Al, B and Mg, and quantification of the specific component by form in the steel refining process is performed. The quantitative determination method according to the form of the specific component contained in the base metal by the emission spectroscopic analysis according to any one of claims 1 to 4, wherein the determination is performed. 発光分光分析法を用いて、母材金属中に含有される特定成分を形態別に定量するためのコンピュータプログラムであって、
試料表面と電極との間に電圧を印加してスパーク放電を発生させ、1から数千パルスまで測定を行い、
得られた発光スペクトルを分光器によって分光し、1パルスごとの特定成分スペクトル線発光強度をデジタル信号値に変換し、
該データを基に、横軸に前記特定成分のスペクトル線発光強度、縦軸に出現頻度をとった度数分布の形に並びかえたパルス強度分布図を作成し、
該パルス強度分布図における、低強度側に出現する正規分布様の分布を前記特定成分の全量と帰属し、高強度側に出現する分布を前記特定成分の酸不溶成分量であると帰属し、前記特定成分の全量と酸不溶成分量との差から固溶成分量を求める処理を実行させることを特徴とするコンピュータプログラム。
A computer program for quantifying specific components contained in a base metal by form using emission spectroscopy,
Apply a voltage between the sample surface and the electrode to generate a spark discharge, measure from 1 to several thousand pulses,
The obtained emission spectrum is spectrally separated by a spectroscope, the specific component spectral line emission intensity for each pulse is converted into a digital signal value,
Based on the data, create a pulse intensity distribution chart in which the horizontal axis represents the spectral line emission intensity of the specific component and the vertical axis represents the frequency distribution,
In the pulse intensity distribution diagram, a distribution like a normal distribution appearing on the low intensity side is attributed to the total amount of the specific component, and a distribution appearing on the high intensity side is attributed to be the amount of the acid-insoluble component of the specific component, A computer program for executing a process for obtaining a solid solution component amount from a difference between a total amount of the specific component and an acid insoluble component amount.
前記パルス強度分布図において、低強度側に出現する正規分布様の分布のモード値を用いて、母材金属中に含有される特定成分の全量を定量する処理を実行させることを特徴とする請求項6に記載のコンピュータプログラム。In the pulse intensity distribution diagram, a process for quantifying the total amount of a specific component contained in a base metal is executed using a mode value of a distribution like a normal distribution appearing on a low intensity side. Item 7. The computer program according to Item 6. 前記パルス強度分布図において、低強度側に出現する正規分布様の分布の面積を求め、該面積から母材金属中に含有される特定成分の全量を定量する処理を実行させることを特徴とする請求項6に記載のコンピュータプログラム。In the pulse intensity distribution diagram, a normal distribution-like distribution area appearing on the low intensity side is obtained, and a process for quantifying the total amount of the specific component contained in the base metal is executed from the area. The computer program according to claim 6. 発光分光分析法を用いて、母材金属中に含有される特定成分を形態別に定量するためのコンピュータプログラムであって、
試料表面と電極との間に電圧を印加してスパーク放電を発生させ、1から数千パルスまで測定を行い、
得られた発光スペクトルを分光器によって分光し、1から数千パルスの特定成分スペクトル線発光強度を積算した後、
該データを基に、前記母材金属中に含有される特定成分の全量を下式(1)に基づいて求め、酸不溶成分量を下式(2)に基づいて求め、
特定成分全量(Total X)=k1×∫a b[I(Total X)]dt +k2 (1)
酸不溶成分量(Insol.X)=k3×∫c d[I(Insol.X)]dt−k4×(特定成分全量)(2)
ここで、Xは特定成分、k1、k2は特定成分発光強度と特定成分全量の実測値から求めた定数、またk3、k4は、特定成分発光強度と特定成分の酸不溶成分量との関係より求めた定数、∫a b[I(Total X)]dtは放電が安定してきたaパルスからbパルスまでの積分強度であって、a=1〜4000パルス、b=1〜5000パルス(a<b)であり、∫c d[I(Insol.X)]dtは放電初期のcパルスからdパルスまでの積分強度であって、c=1〜500パルス、d=1〜1000パルス(c<d)であり、
前記特定成分の全量と酸不溶成分量との差から固溶成分量を求める処理を実行させることを特徴とするコンピュータプログラム。
A computer program for quantifying specific components contained in a base metal by form using emission spectroscopy,
Apply a voltage between the sample surface and the electrode to generate a spark discharge, measure from 1 to several thousand pulses,
After the obtained emission spectrum is spectrally separated by a spectroscope, the specific component spectral line emission intensity of 1 to several thousand pulses is integrated,
Based on the data, the total amount of the specific component contained in the base metal is determined based on the following formula (1), the acid-insoluble component amount is determined based on the following formula (2),
Total amount of specific components (Total X) = k1 x ∫ a b [I (Total X)] dt + k2 (1)
Acid insoluble component amount (Insol.X) = k3 × ∫ c d [I (Insol.X)] dt-k4 × ( specific component total) (2)
Here, X is a specific component, k1 and k2 are constants obtained from the measured values of the specific component emission intensity and the total amount of the specific component, and k3 and k4 are based on the relationship between the specific component emission intensity and the amount of the acid-insoluble component of the specific component. determined constants, ∫ a b [I (Total X)] dt discharge is a integrated intensity from a pulse that has been stable until b pulse, a = 1 to 4000 pulses, b = 1 to 5000 pulses (a < b), and ∫ c d [I (Insol.X)] dt is an integrated intensity from the c pulse to the d pulse at the initial stage of discharge, where c = 1 to 500 pulses and d = 1 to 1000 pulses (c < d)
A computer program for executing a process for obtaining a solid solution component amount from a difference between a total amount of the specific component and an acid insoluble component amount.
請求項6〜9のいずれか1項に記載のコンピュータプログラムを格納したことを特徴とするコンピュータ読み取り可能な記憶媒体。A computer-readable storage medium storing the computer program according to any one of claims 6 to 9.
JP2003158309A 2002-06-07 2003-06-03 Method for quantifying specific components contained in base metal by form by emission spectroscopic analysis, computer program, and computer-readable storage medium Expired - Fee Related JP3968055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003158309A JP3968055B2 (en) 2002-06-07 2003-06-03 Method for quantifying specific components contained in base metal by form by emission spectroscopic analysis, computer program, and computer-readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002167376 2002-06-07
JP2003158309A JP3968055B2 (en) 2002-06-07 2003-06-03 Method for quantifying specific components contained in base metal by form by emission spectroscopic analysis, computer program, and computer-readable storage medium

Publications (2)

Publication Number Publication Date
JP2004061501A JP2004061501A (en) 2004-02-26
JP3968055B2 true JP3968055B2 (en) 2007-08-29

Family

ID=31949438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003158309A Expired - Fee Related JP3968055B2 (en) 2002-06-07 2003-06-03 Method for quantifying specific components contained in base metal by form by emission spectroscopic analysis, computer program, and computer-readable storage medium

Country Status (1)

Country Link
JP (1) JP3968055B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103063589A (en) * 2012-12-25 2013-04-24 内蒙古科技大学 Method for measuring misch metal solid solubility in steel and iron materials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103063589A (en) * 2012-12-25 2013-04-24 内蒙古科技大学 Method for measuring misch metal solid solubility in steel and iron materials

Also Published As

Publication number Publication date
JP2004061501A (en) 2004-02-26

Similar Documents

Publication Publication Date Title
Limbeck et al. Improvements in the direct analysis of advanced materials using ICP-based measurement techniques
Hohl et al. Pulsed rf‐glow‐discharge time‐of‐flight mass spectrometry for fast surface and interface analysis of conductive and non‐conductive materials
Manard et al. Laser ablation–inductively couple plasma–mass spectrometry/laser induced break down spectroscopy: a tandem technique for uranium particle characterization
Resano et al. Laser ablation-inductively coupled plasma-dynamic reaction cell-mass spectrometry for the determination of lead isotope ratios in ancient glazed ceramics for discriminating purposes
JP3968055B2 (en) Method for quantifying specific components contained in base metal by form by emission spectroscopic analysis, computer program, and computer-readable storage medium
Souders et al. Improved in situ measurements of lead isotopes in silicate glasses by LA-MC-ICPMS using multiple ion counters
Kurta et al. Rapid screening of boron isotope ratios in nuclear shielding materials by LA-ICPMS–a comparison of two different instrumental setups
JP4038154B2 (en) Method for evaluating inclusions in metal sample, evaluation apparatus, computer program, and computer-readable storage medium
Menéndez et al. The influence of added hydrogen to an argon direct current glow discharge for time of flight mass spectrometry detection
Baker et al. Analysis of silicon nitride bearings with laser ablation inductively coupled plasma mass spectrometry
Peng et al. Slurry sampling fluorination assisted electrothermal vaporization-inductively coupled plasma-atomic emission spectrometry for the direct determination of metal impurities in aluminium oxide ceramic powders
JP4185001B2 (en) Time-resolved evaluation method for inclusions in metal samples
JP3487108B2 (en) Material management method for spheroidal graphite cast iron
Kurochkin et al. Analysis of impurities in high-purity aluminum oxide by glow discharge mass spectrometry
US6480274B1 (en) Method of analyzing oxygen and oxide in metallic material
WO2023199591A1 (en) Emission spectroscopic analysis method for sb in metal material, method for measuring sb concentration in molten steel during refining, and method for manufacturing steel material
JP2006308347A (en) Inclusion composition quantitative analysis method by emission spectral analysis
JPH04238250A (en) Quick evaluation method for intra-metal inclusion by emission spectral analysis method
Broekaert Innovation in Plasma Atomic Spectrometry from the Direct Current Arc to Plasmas on a Chip: Invited Lecture at the Symposium:“50 Years of SAS: Looking to the Future with Atomic Spectroscopy” at Pittcon 2008, New Orleans, Louisiana
KR20170075937A (en) Method for analyzing inclusion in molten steel and method for manufacturing high clean molten steel for steel wire rod
JP3323768B2 (en) Analysis of trace amounts of lead in stainless steel by emission spectroscopy
JP5304705B2 (en) Inclusion analysis method by emission spectroscopy
JP3572734B2 (en) Emission spectroscopy method
JP2882701B2 (en) Solid sample direct analysis method
Shekhara et al. Determination of elemental composition of Zr-Nb alloys by glow discharge quadrupole mass spectrometry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070601

R151 Written notification of patent or utility model registration

Ref document number: 3968055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees