JP5998801B2 - Method for quantitative analysis of alumina in steel - Google Patents

Method for quantitative analysis of alumina in steel Download PDF

Info

Publication number
JP5998801B2
JP5998801B2 JP2012213314A JP2012213314A JP5998801B2 JP 5998801 B2 JP5998801 B2 JP 5998801B2 JP 2012213314 A JP2012213314 A JP 2012213314A JP 2012213314 A JP2012213314 A JP 2012213314A JP 5998801 B2 JP5998801 B2 JP 5998801B2
Authority
JP
Japan
Prior art keywords
alumina
intensity ratio
emission intensity
value
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012213314A
Other languages
Japanese (ja)
Other versions
JP2014066652A (en
Inventor
臼井 幸夫
幸夫 臼井
哲史 城代
哲史 城代
智治 石田
智治 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012213314A priority Critical patent/JP5998801B2/en
Publication of JP2014066652A publication Critical patent/JP2014066652A/en
Application granted granted Critical
Publication of JP5998801B2 publication Critical patent/JP5998801B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、スパーク放電式発光分光分析法を用いて、迅速に且つ正確に鉄鋼材料中のアルミナを定量する分析方法に関するものである。   The present invention relates to an analysis method for quickly and accurately quantifying alumina in a steel material using a spark discharge type emission spectroscopic analysis method.

製鋼精錬工程で溶鋼に添加されたアルミニウム(以下、Alと称す。)は、その一部は鋼中の酸素と反応しアルミナ(Al)となって浮上して溶鋼から取り除かれ、未反応のAlは溶鋼中に溶解している。鋼の凝固後、浮上除去されなかったアルミナはそのままの状態で鋼中に残り、未反応のAlは主として固溶Alとして鋼中に存在する。 A part of the aluminum (hereinafter referred to as Al) added to the molten steel in the steelmaking refining process reacts with oxygen in the steel and floats as alumina (Al 2 O 3 ) and is removed from the molten steel. The reaction Al is dissolved in the molten steel. After the solidification of the steel, the alumina that has not been levitated and removed remains in the steel as it is, and the unreacted Al is present in the steel mainly as solute Al.

近年の鉄鋼製品の高強度化、高品質化に伴い、介在物の量や組成の制御が必要となっている。軸受材料等に適用される高清浄鋼では、残存するわずかなアルミナが製品の疲労特性を低下させることから、アルミナを減ずることに努力が払われ、アルミナ量は数ppm程度に抑えられている。また、高強度ラインパイプ材などでは、割れ起点となる介在物の生成を抑制すべく、精錬の最終工程でCaを添加して、SをCaSとして固定化させたり、Caとアルミナの複合介在物を形成させている。前者の場合、アルミナ量が材料特性の指標となり、後者の場合、Ca添加量は、溶鋼中S濃度および複合介在物を形成するアルミナ量に応じて適正化が必要となる。   With the recent increase in strength and quality of steel products, it is necessary to control the amount and composition of inclusions. In high clean steel applied to bearing materials and the like, a slight amount of remaining alumina deteriorates the fatigue characteristics of the product, so efforts are made to reduce alumina, and the amount of alumina is suppressed to about several ppm. In addition, in high-strength line pipe materials and the like, in order to suppress the formation of inclusions that become crack initiation points, Ca is added in the final process of refining to fix S as CaS, or a composite inclusion of Ca and alumina. Is formed. In the former case, the amount of alumina is an indicator of material properties, and in the latter case, the Ca addition amount needs to be optimized according to the S concentration in the molten steel and the amount of alumina forming the composite inclusions.

上述したように、凝固した鋼中では、Alはアルミナとして存在する他に、未反応のAlは主として固溶Alとして鋼中に存在する。固溶Alは鋼試料を酸で溶解する際に一緒に溶解するが、アルミナは溶解しにくいので、酸溶解により互いに分離される。すなわち、溶解液を濾別し残渣に含まれるAlの量を化学分析によって求め、換算することにより、鋼試料中のアルミナ量を求めることができる。しかし、この化学分析法では分析結果を得るまでに数時間を要し、工程管理分析としては迅速性に欠けるという問題がある。そこで、分析時間が短く迅速に結果が得られるスパーク放電式発光分光分析法を応用した迅速分析法が開発され広く普及している。   As described above, in solidified steel, Al is present as alumina, and unreacted Al is present in the steel mainly as solute Al. The solid solution Al dissolves together when the steel sample is dissolved with an acid, but the alumina is difficult to dissolve, so that they are separated from each other by acid dissolution. That is, the amount of alumina in the steel sample can be determined by filtering the solution and determining the amount of Al contained in the residue by chemical analysis and converting it. However, this chemical analysis method takes several hours to obtain an analysis result, and there is a problem that the process management analysis is not quick. Therefore, a rapid analysis method using a spark discharge emission spectroscopic analysis method that can quickly obtain a result with a short analysis time has been developed and widely spread.

例えば、非特許文献1では、固体試料に多数回のスパーク放電を与えて生じるAl発光のスペクトル強度の頻度分布図において、低強度側の正規分布部を固溶Al、高強度側の分布をアルミナとして、それぞれを分別定量できることが開示されている。また、特許文献1においては、非特許文献1で用いるスペクトル強度の頻度分布図を用いずに、固体試料に多数回のスパーク放電を与えて生じるFe及びAlのスペクトル発光強度を二軸とした発光パルス分布図を用いて、Al強度の下限を示す下方境界直線を求め、さらにFeのパルス発光強度の平均値と前記下方境界直線の係数から求めた上方境界直線よりもAlの発光強度が大きい発光パルスの頻度から鋼中アルミナの濃度を求める方法が開示されている。また、特許文献2では、Al発光のスペクトル強度を昇順に並び替えた図を用いて、50%順位値に放電数を乗じたものを全Al、全スペクトル強度積算値から全Alを差し引いたものをアルミナとした上で、両者の差から固溶Alを求め、Alを形態別に定量する方法が開示されている。   For example, in Non-Patent Document 1, in the frequency distribution diagram of the spectrum intensity of Al emission generated by applying a spark discharge to a solid sample many times, the normal distribution part on the low intensity side is solid solution Al, and the distribution on the high intensity side is alumina. It is disclosed that each can be separately quantified. Further, in Patent Document 1, without using the frequency distribution diagram of the spectrum intensity used in Non-Patent Document 1, light emission with biaxial spectral emission intensity of Fe and Al generated by applying a multiple number of spark discharges to a solid sample. Using a pulse distribution chart, a lower boundary line indicating the lower limit of the Al intensity is obtained, and light emission with a higher Al emission intensity than the upper boundary line obtained from the average value of the pulse emission intensity of Fe and the coefficient of the lower boundary line A method for obtaining the concentration of alumina in steel from the frequency of pulses is disclosed. Further, in Patent Document 2, using a diagram in which the spectrum intensity of Al emission is rearranged in ascending order, all Al is obtained by multiplying the 50% rank value by the number of discharges, and all Al is subtracted from the total spectrum intensity integrated value. A method for obtaining solid solution Al from the difference between the two and determining the amount of Al by form is disclosed.

特開平08−29349号公報Japanese Patent Laid-Open No. 08-29349 特開2005−345127号公報JP 2005-345127 A 特開2012−26745号公報(後述)JP 2012-26745 A (described later)

鎌田仁/編、「最新の鉄鋼状態分析」、アグネ、P111〜114KAMADA Hitoshi / Hen, “Latest steel state analysis”, Agne, P111-114

しかし、非特許文献1に記載の方法では、試料に含まれるアルミナの大きさが小さいと固溶Alとアルミナの区分点が不明確になるなどの問題点があり、十分な分析精度が得られない。また、特許文献1に記載の方法では、アルミナ形態のAl含有量が50質量ppm以下の微量濃度域の試料では、上方境界直線よりもAlの発光強度が大きい発光パルスの頻度が極めて少なくなるために、十分な精度を得るためには放電回数を多くしなければならず、分析時間が長くなるという問題があった。さらに、特許文献2に記載の方法では、全スペクトル強度積算値と50%順位値を基準とした積算値の差からアルミナ量を算出しているが、固溶Alとアルミナの量や比率が大きく変動した場合、50%順位値の発光強度に対する固溶Alとアルミナの影響度は一定でなくばらつきの要因になるという問題があった。   However, in the method described in Non-Patent Document 1, there is a problem that if the alumina contained in the sample is small, the distinction point between solid solution Al and alumina becomes unclear, and sufficient analysis accuracy can be obtained. Absent. Further, in the method described in Patent Document 1, the frequency of emission pulses having a higher Al emission intensity than the upper boundary straight line is extremely low in a sample in a trace concentration range where the Al content in the form of alumina is 50 mass ppm or less. In addition, in order to obtain sufficient accuracy, the number of discharges has to be increased, and there is a problem that analysis time becomes long. Furthermore, in the method described in Patent Document 2, the amount of alumina is calculated from the difference between the total spectral intensity integrated value and the integrated value based on the 50% rank value, but the amount and ratio of solute Al and alumina are large. When it fluctuates, there is a problem that the degree of influence of solid solution Al and alumina on the emission intensity of the 50% rank value is not constant but causes variation.

本発明は、かかる事情に鑑み、スパーク放電式発光分光分析方法を用い、固溶Alとアルミナの比率が一定でなく、かつ、アルミナ形態のAl含有量が50質量ppm以下の微量な試料においても、迅速かつ正確に測定する鉄鋼中のアルミナの定量分析方法を提供することを目的とする。   In view of such circumstances, the present invention uses a spark discharge emission spectroscopic analysis method, and the ratio of the solid solution Al to alumina is not constant, and even in a trace amount sample in which the Al content in the alumina form is 50 mass ppm or less. An object of the present invention is to provide a method for quantitative analysis of alumina in steel, which can be measured quickly and accurately.

本発明者らは、スパーク放電式発光分光分析法における放電パルスを詳細に解析して鋼中の固溶Alを高精度に分析できる方法として、特許文献3に記載の技術を開発した。特許文献3においては、横軸を放電パルス毎のAl/Fe発光強度比、縦軸を頻度とした度数分布図を用いてAl/Fe発光強度比の最頻値を求め、最頻値の2倍以内の範囲に含まれるパルス数の全パルス数に占める割合を補正係数とすることで、固溶Al(sol.Al)量を分析している。本発明者らは、前記固溶Al定量分析手法では、固溶Alとアルミナの比率が一定でない種々の試料においても、高精度に固溶Alを定量できることから、さらに、Al/Fe発光強度比と固溶Al量とアルミナ量との関係に着目し、詳細に検討を重ね、本発明を見出すに至った。   The present inventors have developed the technique described in Patent Document 3 as a method capable of analyzing in detail the discharge pulse in the spark discharge emission spectroscopic analysis method and analyzing the solute Al in the steel with high accuracy. In Patent Document 3, the mode value of the Al / Fe emission intensity ratio is obtained using a frequency distribution diagram with the horizontal axis representing the Al / Fe emission intensity ratio for each discharge pulse and the vertical axis representing the frequency. The amount of solid solution Al (sol. Al) is analyzed by using, as a correction coefficient, the ratio of the number of pulses included in the range within double to the total number of pulses. In the solid solution Al quantitative analysis method, since the solid solution Al can be quantified with high accuracy even in various samples in which the ratio of the solid solution Al and alumina is not constant, the Al / Fe emission intensity ratio is further increased. In particular, the inventors have focused on the relationship between the amount of solute Al and the amount of alumina, and have studied in detail to find the present invention.

本発明は、以上の知見に基づきなされたものであり、その要旨は以下の通りである。
[1]不活性ガス雰囲気中で、鉄鋼試料と対電極との間で多数回のスパーク放電を行い、得られた元素の固有スペクトル強度に基づいて鉄鋼試料中のアルミナの含有率を求める方法であって、以下のステップを有することを特徴とする鉄鋼中のアルミナ定量分析方法。
ア)多数回の放電パルスによるアルミニウムと鉄の発光強度比を放電パルス毎に求める強度比計算ステップ
イ)横軸を発光強度比、縦軸を頻度とした度数分布図を作図し、該度数分布図から発光強度比の最頻値を計算し、該最頻値と該最頻値より小さい発光強度比の標準偏差を基準として定められる閾値αを用いて、下記式によりアルミナ分率を求めるアルミナ分率算出ステップ
アルミナ分率=発光強度比が閾値αより大きいパルス数/全パルス数
ウ)前記強度比計算ステップにより得られた放電パルス毎の発光強度比を小さい方から配列し、一定位置の発光強度比を代表Al強度比とし、次いで、前記アルミナ分率算出ステップで得られたアルミナ分率と代表Al強度比の積からアルミナ強度比を求めるアルミナ強度比算出ステップ
ェ)前記アルミナ強度比算出ステップにおいて算出したアルミナ強度比を用いて、鉄鋼試料中のアルミナ量を算出するアルミナ定量ステップ
[2]前記アルミナ分率算出ステップにおいて、閾値αを、下記式により求めることを特徴とする[1]に記載の鉄鋼中のアルミナ定量分析方法。
閾値α=発光強度比の最頻値+最頻値より小さい発光強度比の標準偏差×f
なお、10≦f≦22とする。
[3]前記アルミナ強度比算出ステップにおいて、放電パルス毎の発光強度比を小さい方から配列するにあたり、発光強度比の小さい方から全パルス数の30%以内のいずれかの位置の発光強度比を代表アルミ強度比として抽出することを特徴とする[1]または[2]に記載の鉄鋼中のアルミナ定量分析方法。
[4]前記鉄鋼試料が精錬工程におけるアルミニウム脱酸後の溶鋼から採取した試料であることを特徴とする[1]〜[3]のいずれか1項に記載の鉄鋼中のアルミナ定量分析方法。
[5]前記鉄鋼試料中のアルミナ形態のAl含有率が50質量ppm以下であることを特徴とする[1]〜[4]のいずれか1項に記載の鉄鋼中のアルミナ定量分析方法。
[6]前記アルミナ分率算出ステップにおいて、度数分布図を作図するにあたり、横軸の区分値を放電パルスの発光強度比の中央値の2〜5%の範囲のいずれかの値とし、各度数値を結ぶ折れ線を平滑曲線化して最頻値を求めることを特徴とする[1]〜[5]のいずれか1項に記載の鉄鋼中のアルミナ定量分析方法。
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] In a method of performing spark discharge a number of times between a steel sample and a counter electrode in an inert gas atmosphere, and determining the content of alumina in the steel sample based on the intrinsic spectral intensity of the obtained element A method for quantitative analysis of alumina in steel, comprising the following steps.
A) Intensity ratio calculation step for obtaining the emission intensity ratio of aluminum and iron for each discharge pulse by a number of discharge pulses Step a) A frequency distribution diagram is drawn with the horizontal axis as the emission intensity ratio and the vertical axis as the frequency. Alumina for calculating the mode value of the emission intensity ratio from the figure and obtaining the alumina fraction by the following formula using the threshold value α defined with reference to the standard deviation of the mode and the emission intensity ratio smaller than the mode value Fraction calculation step Alumina fraction = number of pulses whose emission intensity ratio is greater than threshold α / number of total pulses c) The emission intensity ratio for each discharge pulse obtained by the intensity ratio calculation step is arranged in ascending order, The emission intensity ratio is set as the representative Al intensity ratio, and then the alumina intensity ratio is calculated from the product of the alumina fraction obtained in the alumina fraction calculation step and the representative Al intensity ratio. Using the alumina strength ratio calculated in the alumina strength ratio calculating step, an alumina quantitative step for calculating the amount of alumina in the steel sample [2] In the alumina fraction calculating step, the threshold α is obtained by the following equation: The method for quantitative analysis of alumina in steel according to [1].
Threshold value α = mode value of emission intensity ratio + standard deviation of emission intensity ratio smaller than the mode value × f
Note that 10 ≦ f ≦ 22.
[3] In the alumina intensity ratio calculation step, when arranging the emission intensity ratio for each discharge pulse from the smaller one, the emission intensity ratio at any position within 30% of the total number of pulses is calculated from the smaller emission intensity ratio. The method for quantitative analysis of alumina in steel according to [1] or [2], wherein the aluminum is extracted as a representative aluminum strength ratio.
[4] The method for quantitative analysis of alumina in steel according to any one of [1] to [3], wherein the steel sample is a sample collected from molten steel after aluminum deoxidation in a refining process.
[5] The method for quantitative analysis of alumina in steel according to any one of [1] to [4], wherein the aluminum content of alumina in the steel sample is 50 ppm by mass or less.
[6] In plotting the frequency distribution chart in the alumina fraction calculation step, the horizontal axis is set to any value in the range of 2 to 5% of the median value of the emission intensity ratio of the discharge pulse. The method for quantitative analysis of alumina in steel according to any one of [1] to [5], wherein a mode value is obtained by smoothing a broken line connecting numerical values.

本発明によれば、固溶Alとアルミナの比率が一定でなく、かつ、アルミナ形態のAl含有量が50質量ppm以下の微量な試料においても、鉄鋼材料中の微量なアルミナ量を迅速かつ正確に測定することができる。   According to the present invention, the amount of alumina in a steel material can be quickly and accurately detected even in a minute sample in which the ratio of solute Al to alumina is not constant and the Al content in the form of alumina is 50 ppm by mass or less. Can be measured.

アルミナ量が多い鉄鋼試料の放電パルス毎のAl/Fe発光強度比を放電の時系列順に示す図である。It is a figure which shows Al / Fe luminescence intensity ratio for every discharge pulse of the steel sample with many amounts of aluminas in order of time series of discharge. アルミナ量が少ない鉄鋼試料の放電パルス毎のAl/Fe発光強度比を放電の時系列順に示す図である。It is a figure which shows Al / Fe luminescence intensity ratio for every discharge pulse of the steel sample with few alumina amounts in order of time series of discharge. アルミナ量の異なる二つの試料のAl/Fe発光強度比の度数分布図である。It is a frequency distribution diagram of the Al / Fe emission intensity ratio of two samples having different amounts of alumina. スパーク放電式発光分光分析装置を示す模式図である。It is a schematic diagram which shows a spark discharge type | mold emission-spectral-analysis apparatus. f値と分析正確さ(σd)との関係を示す図である。It is a figure which shows the relationship between f value and analysis accuracy ((sigma) d). 本発明の方法により求められるアルミナ分析値と化学分析値との相関関係を示す図である。It is a figure which shows the correlation of the alumina analysis value calculated | required by the method of this invention, and a chemical analysis value. 従来の方法により求められるアルミナ分析値と化学分析値との相関関係を示す図である。It is a figure which shows the correlation of the alumina analysis value calculated | required by the conventional method, and a chemical analysis value.

本発明の鉄鋼中のアルミナ定量分析方法は、スパーク放電式発光分光分析法において、不活性ガス雰囲気中で、鉄鋼試料と対電極との間で多数回のスパーク放電を行い、鉄鋼試料中に含まれるアルミナ量を正確かつ迅速に定量することを特徴とする。特に、横軸を放電パルス毎のアルミニウムと鉄の発光強度比、縦軸を頻度とした度数分布図を用いて求めた最頻値を基準としてアルミナに帰属されるパルス数の全パルス数に対する比率、すなわちアルミナ分率を求め、さらに、アルミニウムと鉄の発光強度比を小さい順に配列し、アルミナの影響が少ない発光強度比を代表Al強度比として、この代表Al強度比とアルミナに帰属されるパルス数の比率を用いることで、高精度にアルミナ量を求めることができる。   The method for quantitative analysis of alumina in steel according to the present invention is a spark discharge emission spectroscopic analysis method, in which a spark discharge is carried out many times between a steel sample and a counter electrode in an inert gas atmosphere, and is contained in the steel sample. It is characterized by accurately and quickly quantifying the amount of alumina to be produced. In particular, the ratio of the number of pulses attributed to alumina to the total number of pulses based on the mode value obtained using the frequency distribution diagram with the horizontal axis representing the emission intensity ratio of aluminum and iron for each discharge pulse and the vertical axis representing the frequency. That is, the alumina fraction is obtained, and the emission intensity ratio between aluminum and iron is arranged in ascending order, and the emission intensity ratio that is less affected by alumina is used as the representative Al intensity ratio. By using the ratio of numbers, the amount of alumina can be obtained with high accuracy.

以下、本発明を完成するに至った経緯について説明する。
製鋼精錬工程において、脱酸後の精錬処理中に採取した試料と、精錬処理終了時に採取した試料をそれぞれスパーク放電により発光させ、放電パルス毎にアルミニウムの発光強度と鉄の発光強度の比(アルミニウムの発光強度を鉄の発光強度で除した値であり、以下、発光強度比と称す。)を求めた。スパーク放電による発光はそれぞれ2000回行い、すべてにつき、発光強度比を求めた。得られた結果を放電パルス(スパーク放電)の時系列順に図1および図2に示す。それぞれ、図1は精錬処理中に採取した試料であり、アルミナ形態のAl含有量は43ppmである。図2は精錬処理終了時の試料であり、アルミナ形態のAl含有量は23ppmである。なお、アルミナ形態のAl含有量は、予め試料中の酸化物がアルミナ単体(複合酸化物ではなくAlからなるアルミナ)であることを抽出残渣で確認し、鋼中酸素分析値から換算して求めた。アルミナ形態のAl含有量が多い図1の精錬処理中に採取した試料では、スパイク状の発光データが不規則に多く観測されており、これが鋼中に不均一に存在するアルミナを含んだ放電に由来すると考えられている。一方で、アルミナ形態のAl含有量の少ない図2の精錬処理終了時に採取した試料では、スパイク状の発光の頻度が図1に比べ少ないことから、スパイク状の発光は、鋼中に不均一に存在するアルミナを含んだ放電によって生成されたと考えられる。
Hereinafter, the background to the completion of the present invention will be described.
In the steelmaking refining process, the sample collected during the refining process after deoxidation and the sample collected at the end of the refining process were each made to emit light by spark discharge, and the ratio of the aluminum emission intensity to the iron emission intensity for each discharge pulse (aluminum Obtained by dividing the emission intensity by the emission intensity of iron, hereinafter referred to as the emission intensity ratio). Light emission by spark discharge was performed 2000 times, and the light emission intensity ratio was determined for each. The obtained results are shown in FIG. 1 and FIG. 2 in the order of time series of discharge pulses (spark discharge). FIG. 1 is a sample collected during the refining process, and the Al content in the alumina form is 43 ppm. FIG. 2 shows a sample at the end of the refining process, and the Al content in the alumina form is 23 ppm. In addition, the Al content in the form of alumina is converted from the oxygen analysis value in steel after confirming in advance that the oxide in the sample is a simple substance of alumina (alumina made of Al 2 O 3 instead of a complex oxide). And asked. In the sample collected during the refining process of FIG. 1 with a high amount of Al in the form of alumina, a lot of spike-like luminescence data is observed irregularly, and this is a discharge that contains alumina that is unevenly present in the steel. It is thought to come from. On the other hand, in the sample collected at the end of the refining process in FIG. 2 with a low Al content in the form of alumina, the frequency of spike-like light emission is less than that in FIG. It is thought that it was generated by a discharge containing alumina present.

図3は、図1および図2の結果をもとに作成した発光強度比の度数分布図である。図3から、アルミナ量の多い試料の方が、分布が高発光強度比側にシフトしている。すなわち、高発光強度比側では、アルミナに由来する信号が支配的であると考えられる。一方、発光強度比の頻度分布図の低発光強度比側に行くほど、アルミナに由来する信号量は少なくなり、固溶Alに由来する信号が支配的であると考えられる。発明者らは、様々なアルゴリズムでアルミナに由来する信号量を算出する試みを行ってきた。その結果、発明者らは、アルミナのみが励起発光することは極めてまれであり、高発光強度比側のデータであっても、固溶Alを励起発光した成分が含まれていると考え、その分を補正することでアルミナ量を高精度に定量できると考えた。そして発光強度比の度数分布図の最頻値を基準とし、その2倍以内の範囲に含まれる放電パルスは固溶Alに由来するもの、つまり、最頻値の2倍を超える放電パルスはアルミナに由来するものであると考え、特許文献3に記載の方法を完成した。   FIG. 3 is a frequency distribution diagram of the emission intensity ratio created based on the results of FIGS. 1 and 2. From FIG. 3, the sample with a larger amount of alumina has a distribution shifted to the higher emission intensity ratio side. That is, it is considered that the signal derived from alumina is dominant on the high emission intensity ratio side. On the other hand, it is considered that the signal amount derived from alumina decreases as it goes to the low emission intensity ratio side of the frequency distribution diagram of the emission intensity ratio, and the signal derived from solute Al is dominant. The inventors have tried to calculate the signal amount derived from alumina by various algorithms. As a result, the inventors considered that it is extremely rare that only alumina emits excitation light, and even in the data on the high emission intensity ratio side, it is considered that a component that excited and emitted solute Al was included. It was thought that the amount of alumina could be quantified with high accuracy by correcting the minute. Based on the mode value of the frequency distribution diagram of the emission intensity ratio, the discharge pulse included in the range within twice that is derived from solute Al, that is, the discharge pulse exceeding twice the mode value is alumina. The method described in Patent Document 3 was completed.

スパーク放電式発光分光分析法では、試料表面の研磨状態の微妙な違いや、長期間にわたる多数回の分析による放電対電極の磨耗状態などの変化で、放電状態の変化がおこり、分析値に変動をもたらす。特許文献3の方法は、他の方法に比較して格段に優れる方法ではあるが、このような場合には、まだ、充分な精度が得られているとは言いきれない。   In spark discharge optical emission spectrometry, changes in the discharge state occur due to subtle differences in the polishing state of the sample surface and changes in the wear state of the discharge counter electrode due to numerous analyzes over a long period of time, resulting in fluctuations in the analytical value. Bring. The method of Patent Document 3 is a method that is remarkably superior to other methods, but in such a case, it cannot be said that sufficient accuracy is still obtained.

そこで、本発明者らは、分析精度をさらに向上させるために鋭意検討した結果、特許文献3では閾値αを単純に最頻値の2倍としているために充分な精度が得られないと考えた。   Therefore, as a result of intensive studies to further improve the analysis accuracy, the present inventors thought that in Patent Document 3, the threshold value α is simply set to twice the mode value, so that sufficient accuracy cannot be obtained. .

固溶Alに由来するAl/Fe発光強度比の度数分布は、処理条件および測定条件が同一である限り、同程度の組成の試料であれば、どの測定試料であっても同様の分布状態になり、固溶Alに由来する発光強度比の標準偏差と最頻値の比は同じになると考えられる。しかしながら、実際の測定においては、試料表面の研磨状態、放電対電極の磨耗状態などによって、固溶Alに由来する発光強度比の標準偏差は測定試料ごとにわずかに変化すると考えられる。このため、最頻値のみを考慮し、標準偏差の大きさを考慮せずに閾値を設定する特許文献3の方法では、固溶Al由来の放電パルスとアルミナ由来の放電パルスの分離の程度が測定毎に異なるものになり、精度が低下すると考えた。   As long as the processing conditions and measurement conditions are the same, the frequency distribution of the Al / Fe emission intensity ratio derived from solute Al is the same distribution state for any measurement sample as long as the sample has the same composition. Thus, it is considered that the standard deviation and the mode value ratio of the emission intensity ratio derived from the solute Al are the same. However, in the actual measurement, it is considered that the standard deviation of the emission intensity ratio derived from the solute Al slightly varies depending on the measurement sample depending on the polishing state of the sample surface, the wear state of the discharge counter electrode, and the like. For this reason, in the method of Patent Document 3 in which only the mode value is considered and the threshold value is set without considering the standard deviation, the degree of separation between the solute Al-derived discharge pulse and the alumina-derived discharge pulse is low. It became different for each measurement, and the accuracy was thought to be reduced.

そこで、閾値αを決定する際に、固溶Al由来の発光強度比の標準偏差の影響も考慮に入れればよいと考え、さらに、発光強度比の度数分布図の最頻値より発光強度比が小さい放電パルスは、固溶Al由来の発光が主であることからこれらにおける発光強度比の標準偏差は、固溶Alに由来する発光強度比の標準偏差と相関があると考え、本発明を完成した。すなわち、アルミナ分率を求める際の閾値αは、下記式のように最頻値より小さい発光強度比の標準偏差の定数倍と最頻値の和とすることで固溶Alの発光強度比の標準偏差を考慮して、アルミナ由来の放電パルスを分離できると考えた。
閾値α=発光強度比の最頻値+最頻値より小さい発光強度比の標準偏差×f
ここで、fの値は、10≦f≦22、より好ましくは15≦f≦20とすることが好ましい。fの値が10より小さい場合、固溶Alに由来するデータが多くなるため、アルミナ量との相関が悪くなる。一方、fの値が22より大きい場合、抽出されるアルミナ由来の信号を含むパルス数が少なくなりすぎるため、分析値のバラツキが大きくなる。図5に後述するように、このような場合には、分析正確さが4ppmを超えてしまい、あまり精度のよいものではなくなる。
Therefore, when determining the threshold value α, it is considered that the influence of the standard deviation of the emission intensity ratio derived from the solute Al should be taken into consideration, and the emission intensity ratio is more than the mode value of the frequency distribution diagram of the emission intensity ratio. Since small discharge pulses are mainly emitted from solute Al, the standard deviation of the luminescence intensity ratio is correlated with the standard deviation of the luminescence intensity ratio derived from solute Al, and the present invention is completed. did. That is, the threshold value α when determining the alumina fraction is the sum of the constant value of the standard deviation of the emission intensity ratio smaller than the mode value and the mode value as shown in the following formula, so that the emission intensity ratio of the solute Al is Considering the standard deviation, it was considered that the discharge pulse derived from alumina could be separated.
Threshold value α = mode value of emission intensity ratio + standard deviation of emission intensity ratio smaller than the mode value × f
Here, the value of f is preferably 10 ≦ f ≦ 22, more preferably 15 ≦ f ≦ 20. When the value of f is smaller than 10, since data derived from solute Al increases, the correlation with the amount of alumina becomes worse. On the other hand, when the value of f is larger than 22, the number of pulses including the signal derived from alumina to be extracted becomes too small, and the variation of the analysis value becomes large. As will be described later with reference to FIG. 5, in such a case, the analysis accuracy exceeds 4 ppm, which is not very accurate.

本発明の方法により上記の誤差要因が少なくなる結果、さらに測定精度が向上しアルミナ形態のAl含有量が50質量ppm以下の微量な試料でも精度よく定量することができるようになった。   As a result of reducing the above error factors by the method of the present invention, the measurement accuracy is further improved, and it is possible to accurately quantify even a very small amount of sample having an alumina Al content of 50 mass ppm or less.

以下に、本発明の鉄鋼中のアルミナの定量分析方法の手順について、詳細に説明する。図4は、本発明におけるスパーク放電式発光分光分析装置を示す模式図である。スパーク放電式発光分光分析装置は、放電装置1、分析試料2(電極でもある)、対電極3とからなる発光部10と、発光スペクトル線を各元素の固有スペクトル線に分光する回折格子7、それぞれの元素毎に固有スペクトル線を検出する検出器(フォトマルチプライア)6等からなる分光器11と、スパーク放電毎に発光したスペクトル線のアナログ量をディジタル変換して、データ処理を行う測光装置4や、スペクトル線強度を元素の含有量に変換する演算処理装置5と結果を表示する表示部9で構成されている。   Below, the procedure of the quantitative analysis method of the alumina in the steel of this invention is demonstrated in detail. FIG. 4 is a schematic diagram showing a spark discharge type emission spectroscopic analyzer according to the present invention. The spark discharge emission spectroscopic analysis apparatus includes a light emitting unit 10 including a discharge device 1, an analysis sample 2 (also an electrode), and a counter electrode 3, and a diffraction grating 7 that splits emission spectrum lines into eigenspectral lines of each element, A spectroscope 11 comprising a detector (photomultiplier) 6 and the like for detecting a unique spectral line for each element, and a photometric device for digitally converting the analog amount of the spectral line emitted for each spark discharge and performing data processing 4 and an arithmetic processing unit 5 for converting the spectral line intensity into the element content and a display unit 9 for displaying the result.

ア)強度比計算ステップ
まず、分析試料2と対電極3との間にて通常慣用の方法でスパーク放電を行い、アルミニウムと鉄の放電パルス毎の発光強度値をそれぞれ測定し、放電パルス毎にAlとFeの発光強度比(以下、発光強度比と称する事もある。)を計算する。ここで、放電が過度に繰り返されると鋼中のアルミナが微細分散し固溶Alとの判別が困難となるので、放電数は2000パルス以内とすることが望ましい。
A) Intensity ratio calculation step First, spark discharge is performed between the analytical sample 2 and the counter electrode 3 by a usual method, and the emission intensity values for each discharge pulse of aluminum and iron are measured, and each discharge pulse is measured. The emission intensity ratio between Al and Fe (hereinafter sometimes referred to as emission intensity ratio) is calculated. Here, if the discharge is repeated excessively, alumina in the steel is finely dispersed and it becomes difficult to distinguish it from solute Al. Therefore, the number of discharges is preferably within 2000 pulses.

イ)アルミナ分率算出ステップ
横軸を前記発光強度比、縦軸を頻度とした度数分布図を作図し、該度数分布図から発光強度比の最頻値を計算する。次いで、この最頻値を基準として定められる閾値αを用いて、下記式によりアルミナ分率を求める。
アルミナ分率=発光強度比が閾値αより大きいパルス数/全パルス数
まず、以下の手順で発光強度比の最頻値を算出する。
1)全放電パルスの発光強度比の中央値を求める。
2)1)で求めた中央値の2〜5%の値を求める。
3)2)の値を一区分として、横軸が発光強度比、縦軸が度数となる、放電パルスの発光強度比の度数分布図を作成する。
4)各度数値を結ぶ折れ線をデータ処理によって平滑曲線化して、得られた曲線の最大値
を与える発光強度比を最頻値とする。
B) Alumina fraction calculation step A frequency distribution chart is drawn with the horizontal axis representing the emission intensity ratio and the vertical axis representing frequency, and the mode value of the emission intensity ratio is calculated from the frequency distribution chart. Next, the alumina fraction is obtained by the following equation using the threshold value α determined based on the mode value.
Alumina fraction = number of pulses with emission intensity ratio greater than threshold α / number of total pulses First, the mode of emission intensity ratio is calculated by the following procedure.
1) Obtain the median value of the emission intensity ratio of all discharge pulses.
2) Obtain a value of 2 to 5% of the median value obtained in 1).
3) Create a frequency distribution diagram of the emission intensity ratio of the discharge pulse, with the horizontal axis representing the emission intensity ratio and the vertical axis representing the frequency.
4) A polygonal line connecting each frequency value is smoothed by data processing, and the emission intensity ratio giving the maximum value of the obtained curve is set as the mode value.

度数分布図は横軸の設定如何で全く異なる形様を呈し、最頻値決定に問題が生じる。例えば、区分値が小さすぎると分布の凹凸が著しくなり最頻値の決定が困難となり、反対に区分値が大きすぎると分布の凹凸が減り最頻値は明確になるが、最頻値の精度が低下する。そこで、発明者らは幾つかの鉄鋼試料を用いて検討を行った結果、それぞれの中央値の2〜5%で区分し、各度数値を結ぶ折れ線を平滑曲線化することが適当であるという結論に至った。平滑曲線化の方法は移動平均法や数値微分法などのような一般的な方法でよい。   The frequency distribution diagram has a completely different form depending on the setting of the horizontal axis, and a problem occurs in determining the mode value. For example, if the categorical value is too small, the unevenness of the distribution becomes significant and it becomes difficult to determine the mode value. Conversely, if the categorical value is too large, the unevenness of the distribution is reduced and the mode value becomes clear. Decreases. Therefore, as a result of investigations using several steel samples, the inventors categorized it by 2 to 5% of the median value of each, and said that it is appropriate to smooth the polygonal line connecting the numerical values. I came to a conclusion. The smoothing curve may be obtained by a general method such as a moving average method or a numerical differentiation method.

ウ)アルミナ強度比算出ステップ
前記強度比計算ステップで得られた放電パルス毎の発光強度比を小さい順に並び替えて、一定位置の発光強度比を代表Al強度比として抽出する。特に、アルミナの影響が少ない発光強度比の小さい方から全パルス数の30%以内、より好ましくは5〜25%のいずれかの位置の発光強度比を代表Al強度比とすることが好ましい。分析波長としてはアルミニウムの場合には、396.1nm、394.4nm、308.2nmが適当であり、鉄の場合には、187.7nm、271.4nm、281.3nm、287.5nmが適当である。
次いで、アルミナ分率算出ステップで求めたアルミナ分率と代表Al強度比との積をアルミナ強度比とする。
C) Alumina intensity ratio calculation step The emission intensity ratio for each discharge pulse obtained in the intensity ratio calculation step is sorted in ascending order, and the emission intensity ratio at a fixed position is extracted as the representative Al intensity ratio. In particular, it is preferable that the emission intensity ratio at a position within 30% of the total number of pulses, more preferably 5 to 25%, is set as the representative Al intensity ratio from the smaller emission intensity ratio that is less influenced by alumina. In the case of aluminum, 396.1 nm, 394.4 nm, and 308.2 nm are appropriate as analysis wavelengths, and in the case of iron, 187.7 nm, 271.4 nm, 281.3 nm, and 287.5 nm are appropriate. is there.
Next, the product of the alumina fraction obtained in the alumina fraction calculating step and the representative Al intensity ratio is defined as the alumina intensity ratio.

エ)アルミナ定量ステップ
算出したアルミナ強度比を、予め作成してあるアルミナ強度比と鋼中アルミナ濃度との関係式(検量線)に代入することにより、試料中のアルミナ濃度を直接導出することができる。
アルミナ強度比と鋼中アルミナ濃度との関係式(検量線)は、例えば、同様の精錬工程から採取した複数の試料について、JIS G1257などの方法によって、アルミナ濃度(酸不溶性アルミ)を定量し、一方で、本発明によるアルミナ強度比を求め、それらの相関を求めることにより得られる。
D) Alumina determination step The alumina concentration ratio calculated can be derived directly by substituting the calculated alumina strength ratio into the relational expression (calibration curve) between the alumina strength ratio and the alumina concentration in steel. it can.
The relational expression (calibration curve) between the alumina strength ratio and the alumina concentration in steel, for example, quantifies the alumina concentration (acid-insoluble aluminum) by a method such as JIS G1257 for a plurality of samples collected from the same refining process, On the other hand, it can be obtained by determining the alumina strength ratio according to the present invention and determining their correlation.

以下、実施例により本発明をさらに詳細に説明するが、本発明は下記の実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to the following Example at all.

精錬工程においてアルミニウム脱酸後の溶鋼から採取、冷却した鉄鋼試料を用いた。鉄鋼試料は表1に示す濃度の固溶Alと、アルミナとを含有するものである。表1に示す固溶Alとアルミナ形態のAl、アルミナは、JISG1257(1994)の付属書14または付属書16に従って化学分析により求めたものである(以下、化学分析値と称する)。鉄鋼試料を適切な大きさに切断して、表面を研磨した後、以下に示す方法より分析を行った。   A steel sample collected and cooled from molten steel after deoxidation of aluminum in the refining process was used. The steel sample contains solute Al having the concentrations shown in Table 1 and alumina. The solid solution Al, alumina in the form of alumina, and alumina shown in Table 1 were obtained by chemical analysis according to Appendix 14 or Appendix 16 of JIS G1257 (1994) (hereinafter referred to as chemical analysis values). The steel sample was cut into an appropriate size and the surface was polished, and then analyzed by the following method.

Figure 0005998801
Figure 0005998801

発明例
表1に示す鉄鋼試料を研磨したのち、図4に示すスパーク放電式発光分光分析装置を用いて、各試料につき2000パルスの放電測定を4回行った。1回のパルスによる放電エネルギーは0.2Jであった。スパーク放電式発光分光分析装置としてはARL4460型(サーモフィッシャーサイエンティフィック社製)を使用した。得られた2000パルスの測定データを用いて、発光強度比の度数分布図を作成し最頻値を求めた。次に、発光強度比の度数分布図の最頻値と、最頻値より小さい発光強度比の標準偏差のf倍との和を閾値として、アルミナ分率を求めた。
代表Al強度比は、得られた放電パルス毎の発光強度比を小さい順から配列し、発光強度比の小さい方より全パルス数の20%に相当する400番目の発光強度比を用いた。これらのアルミナ分率と代表Al強度比との積をアルミナ強度比とし、予めアルミナ濃度が既知の鉄鋼試料で作製した検量線に代入して、アルミナ濃度に換算した。これを2000パルスの放電測定ごとに求め、4回分の平均値をその試料のアルミナ濃度とした。
Invention Example After polishing the steel sample shown in Table 1, 2000 pulses of discharge measurement were performed four times for each sample using the spark discharge emission spectroscopic analyzer shown in FIG. The discharge energy by one pulse was 0.2J. ARL4460 type (manufactured by Thermo Fisher Scientific Co.) was used as a spark discharge emission spectroscopic analyzer. Using the obtained 2000-pulse measurement data, a frequency distribution diagram of the emission intensity ratio was created to determine the mode value. Next, the alumina fraction was determined using the sum of the mode value of the frequency distribution diagram of the light emission intensity ratio and f times the standard deviation of the light emission intensity ratio smaller than the mode value as a threshold value.
As the representative Al intensity ratio, the emission intensity ratios of the obtained discharge pulses were arranged in ascending order, and the 400th emission intensity ratio corresponding to 20% of the total number of pulses was used from the smaller emission intensity ratio. The product of the alumina fraction and the representative Al intensity ratio was used as the alumina intensity ratio, and was substituted into a calibration curve prepared in advance with a steel sample having a known alumina concentration, and converted to the alumina concentration. This was obtained for every 2000 pulses of discharge measurement, and the average value for 4 times was taken as the alumina concentration of the sample.

このようにして、f=6〜30の種々の値を用いて、表1記載の試料番号1〜12に関してスパーク放電式発光分光分析法によるアルミナ濃度(以下、アルミナ分析値と称する。)をそれぞれ求めた。また、f値を用いて求めたアルミナ分析値に対する分析正確さをそれぞれ導出した。図5に、f値と分析正確さの関係を示す。また、図6に、f=10、18、22として本発明の方法により求めたアルミナ分析値と化学分析値との相関および分析正確さを示す。   In this way, using various values of f = 6 to 30, the alumina concentrations (hereinafter referred to as alumina analysis values) by the spark discharge type emission spectroscopic analysis method for sample numbers 1 to 12 shown in Table 1 are respectively used. Asked. Moreover, the analytical accuracy with respect to the alumina analytical value calculated | required using f value was each derived | led-out. FIG. 5 shows the relationship between the f value and the analysis accuracy. FIG. 6 shows the correlation and analytical accuracy between the alumina analysis value and the chemical analysis value obtained by the method of the present invention when f = 10, 18, and 22.

なお、分析正確さ(σd)は、アルミナ分析値と化学分析値との差の二乗平均平方根であり、一般に下記式で表される。   The analysis accuracy (σd) is the root mean square of the difference between the alumina analysis value and the chemical analysis value, and is generally represented by the following formula.

Figure 0005998801
Figure 0005998801

ここで、
σd:分析正確さ
N:表1の試料数(N=12)
:表1の試料番号iについての、化学分析値に対する得られた分析値の差(アルミナ分析値−化学分析値)
とする。
here,
σd: analysis accuracy N: number of samples in Table 1 (N = 12)
x i : difference of the obtained analytical value with respect to the chemical analytical value for the sample number i in Table 1 (alumina analytical value−chemical analytical value)
And

比較例
比較例として、特許文献1、2および3に記載の従来の方法により、アルミナ分析値を求めた。表1に示す鉄鋼試料を研磨したのち、発明例と同じ装置を用いて同様の方法にて2000パルスの放電測定を4回行った。得られた2000パルスの測定データを特許文献1、2および3の方法に従いデータ処理し、予めアルミナ濃度が既知の鉄鋼試料で作製した検量線に代入してアルミナ濃度に換算した。これを2000パルスの放電測定ごとに求め、4回分の平均値をその試料のアルミナ濃度とした。図7に特許文献1、2および3の従来の方法により求めたアルミナ分析値と化学分析値との相関および分析正確さを示す。
Comparative Example As a comparative example, the alumina analysis value was determined by the conventional methods described in Patent Documents 1, 2, and 3. After polishing the steel sample shown in Table 1, 2000 pulses of discharge measurement were performed four times by the same method using the same apparatus as the invention example. The obtained measurement data of 2000 pulses were processed according to the methods of Patent Documents 1, 2, and 3, and converted into an alumina concentration by substituting into a calibration curve prepared in advance with a steel sample having a known alumina concentration. This was obtained for every 2000 pulses of discharge measurement, and the average value for 4 times was taken as the alumina concentration of the sample. FIG. 7 shows the correlation between the analytical value of alumina and the chemical analysis value obtained by the conventional methods of Patent Documents 1, 2, and 3, and the analytical accuracy.

また、表1の試料番号1〜12について、アルミナの化学分析値、特許文献1、2および3の方法によるアルミナ分析値、本発明の方法によるアルミナ分析値(f=18)、分析正確さ(σd)の値を表2に示す。   Moreover, about the sample numbers 1-12 of Table 1, the chemical analysis value of alumina, the alumina analysis value by the method of patent documents 1, 2, and 3, the alumina analysis value by the method of this invention (f = 18), analysis accuracy ( Table 2 shows values of σd).

Figure 0005998801
Figure 0005998801

図5〜7および表2から、本発明の方法および特許文献3では、特許文献1、2に比べ、固溶Alとアルミナの比率が一定でなく、かつ、アルミナ形態のAl含有量が50ppm以下と微量な試料においても、精度の良い分析値が得られていることがわかる。   5-7 and Table 2, in the method of this invention and patent document 3, compared with patent document 1, 2, the ratio of solute Al and alumina is not constant, and Al content of an alumina form is 50 ppm or less It can be seen that an accurate analytical value is obtained even for a very small amount of sample.

次に、放電状態が変動した場合の影響について、本発明の方法と特許文献3の方法とを比較した。上述したように、試料表面の研磨状態、放電対電極の磨耗状態などの変化により、放電が起きる試料表面の微小表面積当たりの放電エネルギーが変動するため、分析値のバラツキの原因になる。これらの変動を定量的に再現することは容易でないので、それを模擬する方法として、放電エネルギー(定常条件:0.2J)を±5%変動させてパルス放電を起こし、その結果を比較した。   Next, the method of the present invention was compared with the method of Patent Document 3 with respect to the effect when the discharge state fluctuated. As described above, the discharge energy per minute surface area of the sample surface where discharge occurs due to changes in the polishing state of the sample surface, the wear state of the discharge counter electrode, and the like causes variation in analysis values. Since it is not easy to reproduce these fluctuations quantitatively, as a method for simulating them, pulse discharge was caused by changing the discharge energy (steady condition: 0.2 J) by ± 5%, and the results were compared.

表1に記載の試料について、パルス当たりの放電エネルギーを5%増加させた場合と、放電エネルギーを5%減少させた場合の分析値を求めた。なお、放電エネルギー以外の測定条件は実施例1の測定条件で行い、f=18とした。また、分析正確さについても導出した。さらに、下記式にて表される誤差平均値(Δave)も算出した。   With respect to the samples shown in Table 1, analytical values were obtained when the discharge energy per pulse was increased by 5% and when the discharge energy was decreased by 5%. The measurement conditions other than the discharge energy were the same as those in Example 1, and f = 18. The analytical accuracy was also derived. Furthermore, an error average value (Δave) represented by the following formula was also calculated.

Figure 0005998801
Figure 0005998801

ここで、
Δave:誤差平均値
N:表1の試料数(N=12)
:表1の試料番号iについての、化学分析値に対する得られた分析値の差(アルミナ分析値−化学分析値)
とする。
here,
Δave: error average value N: number of samples in Table 1 (N = 12)
x i : difference of the obtained analytical value with respect to the chemical analytical value for the sample number i in Table 1 (alumina analytical value−chemical analytical value)
And

分析値、分析正確さ、および誤差平均値の結果について、表3に示す。   Table 3 shows the results of analysis values, analysis accuracy, and error mean values.

Figure 0005998801
Figure 0005998801

表3に示すように、特許文献3の方法では、±5%の放電エネルギー変動に対し、分析正確さは定常条件の場合に比べて大きくなり、精度が劣る。これに対して、本発明の方法では、定常条件の場合の値とそれほど変わらない。したがって、本発明の方法では鋼中アルミナ濃度を精度よく定量することが可能である。そして、本発明の分析方法では、放電状態の変動に対して安定的にアルミナ濃度を定量することができることがわかる。さらに、誤差平均値の結果からも、本発明の分析方法では誤差が少ないとわかる。   As shown in Table 3, in the method of Patent Document 3, the accuracy of analysis becomes larger and the accuracy is inferior with respect to the discharge energy fluctuation of ± 5% as compared with the steady state. On the other hand, in the method of the present invention, it is not so different from the value in the steady state. Therefore, the method of the present invention can accurately determine the alumina concentration in steel. And it turns out that the alumina concentration can be quantified stably with respect to the fluctuation | variation of a discharge state in the analysis method of this invention. Furthermore, it can be seen from the result of the average error value that the analysis method of the present invention has a small error.

1 放電装置
2 分析試料
3 対電極
4 測光装置
5 演算処理装置
6 検出器
7 回折格子
8 スリット
9 表示部
10 発光部
11 分光器
DESCRIPTION OF SYMBOLS 1 Discharge apparatus 2 Analytical sample 3 Counter electrode 4 Photometry apparatus 5 Arithmetic processing apparatus 6 Detector 7 Diffraction grating 8 Slit 9 Display part 10 Light emission part 11 Spectrometer

Claims (6)

不活性ガス雰囲気中で、鉄鋼試料と対電極との間で多数回のスパーク放電を行い、得られた元素の固有スペクトル強度に基づいて鉄鋼試料中のアルミナの含有率を求める方法であって、以下のステップを有することを特徴とする鉄鋼中のアルミナ定量分析方法。
ア)多数回の放電パルスによるアルミニウムと鉄の発光強度比を放電パルス毎に求める強度比計算ステップ
イ)横軸を発光強度比、縦軸を頻度とした度数分布図を作図し、該度数分布図から発光強度比の最頻値を計算し、該最頻値と該最頻値より小さい発光強度比の標準偏差を基準として定められる閾値αを用いて、下記式によりアルミナ分率を求めるアルミナ分率算出ステップ
アルミナ分率=発光強度比が閾値αより大きいパルス数/全パルス数
ウ)前記強度比計算ステップにより得られた放電パルス毎の発光強度比を小さい方から配列し、一定位置の発光強度比を代表Al強度比とし、次いで、前記アルミナ分率算出ステップで得られたアルミナ分率と代表Al強度比の積からアルミナ強度比を求めるアルミナ強度比算出ステップ
ェ)前記アルミナ強度比算出ステップにおいて算出したアルミナ強度比を用いて、鉄鋼試料中のアルミナ量を算出するアルミナ定量ステップ
In an inert gas atmosphere, a spark discharge is performed many times between a steel sample and a counter electrode, and the content of alumina in the steel sample is obtained based on the intrinsic spectral intensity of the obtained element, A method for quantitative analysis of alumina in steel, comprising the following steps.
A) Intensity ratio calculation step for obtaining the emission intensity ratio of aluminum and iron for each discharge pulse by a number of discharge pulses Step a) A frequency distribution diagram is drawn with the horizontal axis as the emission intensity ratio and the vertical axis as the frequency. Alumina for calculating the mode value of the emission intensity ratio from the figure and obtaining the alumina fraction by the following formula using the threshold value α defined with reference to the standard deviation of the mode and the emission intensity ratio smaller than the mode value Fraction calculation step Alumina fraction = number of pulses whose emission intensity ratio is greater than threshold α / number of total pulses c) The emission intensity ratio for each discharge pulse obtained by the intensity ratio calculation step is arranged in ascending order, The emission intensity ratio is set as the representative Al intensity ratio, and then the alumina intensity ratio is calculated from the product of the alumina fraction obtained in the alumina fraction calculation step and the representative Al intensity ratio. Using the alumina strength ratio calculated in the alumina strength ratio calculating step, the alumina quantitative step for calculating the amount of alumina in the steel sample
前記アルミナ分率算出ステップにおいて、閾値αを、下記式により求めることを特徴とする請求項1に記載の鉄鋼中のアルミナ定量分析方法。
閾値α=発光強度比の最頻値+最頻値より小さい発光強度比の標準偏差×f
なお、10≦f≦22とする。
2. The method for quantitative analysis of alumina in steel according to claim 1, wherein in the alumina fraction calculation step, the threshold value α is obtained by the following equation.
Threshold value α = mode value of emission intensity ratio + standard deviation of emission intensity ratio smaller than the mode value × f
Note that 10 ≦ f ≦ 22.
前記アルミナ強度比算出ステップにおいて、放電パルス毎の発光強度比を小さい方から配列するにあたり、発光強度比の小さい方から全パルス数の30%以内のいずれかの位置の発光強度比を代表アルミ強度比として抽出することを特徴とする請求項1または2に記載の鉄鋼中のアルミナ定量分析方法。 In the alumina intensity ratio calculation step, when arranging the emission intensity ratio for each discharge pulse from the smaller one, the emission intensity ratio at any position within 30% of the total number of pulses from the smaller emission intensity ratio is represented as the representative aluminum intensity. The method for quantitative analysis of alumina in steel according to claim 1 or 2, wherein extraction is performed as a ratio. 前記鉄鋼試料が精錬工程におけるアルミニウム脱酸後の溶鋼から採取した試料であることを特徴とする請求項1〜3のいずれか1項に記載の鉄鋼中のアルミナ定量分析方法。 The method for quantitative analysis of alumina in steel according to any one of claims 1 to 3, wherein the steel sample is a sample collected from molten steel after aluminum deoxidation in a refining process. 前記鉄鋼試料中のアルミナ形態のAl含有率が50質量ppm以下であることを特徴とする請求項1〜4のいずれか1項に記載の鉄鋼中のアルミナ定量分析方法。 The method for quantitative analysis of alumina in steel according to any one of claims 1 to 4, wherein the aluminum content in the form of alumina in the steel sample is 50 ppm by mass or less. 前記アルミナ分率算出ステップにおいて、度数分布図を作図するにあたり、横軸の区分値を放電パルス毎の発光強度比の中央値の2〜5%の範囲のいずれかの値とし、各度数値を結ぶ折れ線を平滑曲線化して最頻値を求めることを特徴とする請求項1〜5のいずれか1項に記載の鉄鋼中のアルミナ定量分析方法。 In drawing the frequency distribution chart in the alumina fraction calculation step, the horizontal axis segment value is set to any value in the range of 2 to 5% of the median value of the emission intensity ratio for each discharge pulse, and each frequency value is 6. The method for quantitative analysis of alumina in steel according to any one of claims 1 to 5, wherein the mode value is obtained by smoothing the connecting line to form a curved line.
JP2012213314A 2012-09-27 2012-09-27 Method for quantitative analysis of alumina in steel Active JP5998801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012213314A JP5998801B2 (en) 2012-09-27 2012-09-27 Method for quantitative analysis of alumina in steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012213314A JP5998801B2 (en) 2012-09-27 2012-09-27 Method for quantitative analysis of alumina in steel

Publications (2)

Publication Number Publication Date
JP2014066652A JP2014066652A (en) 2014-04-17
JP5998801B2 true JP5998801B2 (en) 2016-09-28

Family

ID=50743200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012213314A Active JP5998801B2 (en) 2012-09-27 2012-09-27 Method for quantitative analysis of alumina in steel

Country Status (1)

Country Link
JP (1) JP5998801B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110346353B (en) * 2018-04-03 2022-12-27 东莞东阳光科研发有限公司 Method for testing content of aluminum oxide in electrode foil of aluminum electrolytic capacitor
CN112268890A (en) * 2020-09-07 2021-01-26 西宁特殊钢股份有限公司 Spark discharge atomic emission spectrometer analysis method for acid-soluble aluminum in steel

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5377582A (en) * 1976-12-20 1978-07-10 Shimadzu Corp Leght emission analyzing method
FR2581192B1 (en) * 1985-04-25 1988-10-07 Siderurgie Fse Inst Rech METHOD FOR DETERMINING BY OPTICAL EMISSION SPECTROMETRY THE CONTENT OF A STEEL IN AN ELEMENT, SUCH AS ALUMINUM, DISSOLVED AND PRECIPITED.
JP5454403B2 (en) * 2010-07-20 2014-03-26 Jfeスチール株式会社 Sol. A method for highly accurate determination of Al and sol. Process operation method of high-precision determination method of Al

Also Published As

Publication number Publication date
JP2014066652A (en) 2014-04-17

Similar Documents

Publication Publication Date Title
JP5433517B2 (en) Analysis apparatus and analysis method
JP5998801B2 (en) Method for quantitative analysis of alumina in steel
US20190162665A1 (en) Analysis method and system for analyzing a nucleic acid amplification reaction
JP2008157843A (en) Method for removing noise component
JP5454403B2 (en) Sol. A method for highly accurate determination of Al and sol. Process operation method of high-precision determination method of Al
JP4637643B2 (en) Spectroscopic analyzer
CN107179312A (en) The method for determining sour molten Boron contents in steel
JP4537253B2 (en) Determination of nonmetallic inclusion composition by emission spectroscopy
JPH11160239A (en) Quantitative determination method for very small inclusion in iron and steel
JP6507898B2 (en) Resin discrimination device
SE0900051A1 (en) Spectrometry procedure for examining samples containing at least two elements
US20120300204A1 (en) Method for determining carbon in cast iron
JP2005164271A (en) Method and device for monitoring fermentation condition of beverage accompanied by fermentation
JPH0943151A (en) Particle size distribution measuring method for metal inclusion
JPH1183744A (en) Emission spectral analysis of ni and cr in stainless steel
JP4631413B2 (en) Spark discharge emission spectroscopic analysis method of S element in stainless steel
JP3323768B2 (en) Analysis of trace amounts of lead in stainless steel by emission spectroscopy
JPH06242003A (en) Grain size measuring method for alumina in steel
JPH0961356A (en) Emission spectrometric analyzing method
JPH0961357A (en) Method for quantitatively determining minute nonmetal inclusion by emission spectro analysis
JP4430460B2 (en) Method for quantification of specific components contained in base metal by emission spectrophotometry
JPH11160240A (en) Quantitative determination method for shape of positive element in metal by emission spectrochemical analysis
JP2017049098A (en) Fluorescence x-ray analysis device, fluorescence x-ray analysis method and computer program
JP2006266949A (en) Emission spectrophotometry and emission spectrophotometer
Zh et al. Types and methods of reinforced steel control analysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20160525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160815

R150 Certificate of patent or registration of utility model

Ref document number: 5998801

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250