JP2008070225A - Element concentration analysis method of electroless nickel plating - Google Patents

Element concentration analysis method of electroless nickel plating Download PDF

Info

Publication number
JP2008070225A
JP2008070225A JP2006249092A JP2006249092A JP2008070225A JP 2008070225 A JP2008070225 A JP 2008070225A JP 2006249092 A JP2006249092 A JP 2006249092A JP 2006249092 A JP2006249092 A JP 2006249092A JP 2008070225 A JP2008070225 A JP 2008070225A
Authority
JP
Japan
Prior art keywords
nickel plating
electroless nickel
concentration analysis
sample
plate material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006249092A
Other languages
Japanese (ja)
Inventor
Tetsuji Soeda
哲司 添田
Kazunori Kitagaki
和紀 北垣
Seizaburo Ezaki
清三郎 江崎
Kazunori Wakamatsu
一則 若松
Kazuo Yatani
和夫 八谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006249092A priority Critical patent/JP2008070225A/en
Publication of JP2008070225A publication Critical patent/JP2008070225A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an element concentration analysis method of electroless nickel plating capable of performing accurate concentration analysis of a prescribed element such as lead or cadmium included in the electroless nickel plating by using a conventional device, which has been difficult hitherto. <P>SOLUTION: The electroless nickel plating 2 is applied to a plate material 1, and part of the electroless nickel plating 2 is exfoliated by generating a crack thereon, and a sample for element concentration analysis is collected from the exfoliated part. The collected sample is dissolved into an acid solvent to generate sample solution 4, and the sample solution 4 is introduced into an inductively coupled plasma emission spectrometer 10 or an inductively coupled plasma mass spectrometer, to thereby perform concentration analysis of the sample in the sample solution 4, namely, a prescribed element such as lead or cadmium included in the electroless nickel plating 2. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電気電子機器の構成部品の表面等に施された無電解ニッケルめっきに含まれる鉛及びカドミウム等の所定元素濃度分析方法に関するものである。   The present invention relates to a method for analyzing the concentration of a predetermined element such as lead and cadmium contained in electroless nickel plating applied to the surface of a component of an electric / electronic device.

無電解ニッケルめっきは防錆・耐食性・耐摩耗性等に優れためっきであり、複雑な形状の部品にも均一に施すことができることから、電気電子機器をはじめとする種々の工業製品に使用されている。例えば、電気電子機器では、プリンタや複写機における帯電部分に生じたイオンが鋼材を腐食させるおそれがあるため、帯電部分の近傍における鋼材の表面には無電解ニッケルめっきが施されることが多い。   Electroless nickel plating is excellent in rust prevention, corrosion resistance, wear resistance, etc. and can be applied even to parts with complex shapes, so it is used in various industrial products such as electrical and electronic equipment. ing. For example, in an electric / electronic device, since ions generated in a charged portion in a printer or copying machine may corrode a steel material, electroless nickel plating is often applied to the surface of the steel material in the vicinity of the charged portion.

一方、近年、有害物質による環境汚染に対する世界規模での取り組みが進んでおり、その一環として、欧州連合(EU)より「電気電子機器における特定有害物質の使用制限に関する指令」、通称「RoHS(Restriction Of the use of certain Hazardous Substances in electrical and electronic equipment)指令」が出されるに至っている。このRoHS指令によれば、鉛、水銀、カドミウム、六価クロム等の特定有害物質を一定濃度以上含んだ電気電子機器はEU諸国内において販売することができなくなるが、無電解ニッケルめっきにはRoHS指令に指定された有害物質である鉛及びカドミウム等が含まれていることから、RoHS指令を遵守するためには、無電解ニッケルめっきに含まれるこれらの元素の濃度分析を高精度で行う方法の確立が急務である。   On the other hand, in recent years, worldwide efforts against environmental pollution caused by harmful substances have progressed, and as part of this, the European Union (EU) has issued a “Directive on the Restriction of Use of Specific Hazardous Substances in Electrical and Electronic Equipment”, commonly known as “RoHS (Restriction). Of the use of certain Hazardous Substitutes in electrical and electrical equipment) command has been issued. According to the RoHS Directive, electrical and electronic equipment containing certain concentrations of certain hazardous substances such as lead, mercury, cadmium and hexavalent chromium cannot be sold in EU countries. Since lead and cadmium, etc., which are specified in the directive, are included, in order to comply with the RoHS directive, the concentration analysis of these elements contained in electroless nickel plating is highly accurate. Establishment is urgent.

また従来、或る被検物質に含まれる元素の濃度を分析する装置としては、蛍光X線を利用した蛍光X線分析装置、誘導結合プラズマ(ICP:Inductively Coupled Plasma)放電を利用した誘導結合プラズマ発光分析装置(ICP−AES:Inductively Coupled Plasma Atomic Emission Spectrometry)、誘導結合プラズマ質量分析装置(ICP−MS:Inductively Coupled Plasma Mass Spectrometry)などが知られている。   Conventionally, as a device for analyzing the concentration of an element contained in a certain test substance, a fluorescent X-ray analysis device using fluorescent X-rays, or an inductively coupled plasma (ICP) discharge using inductively coupled plasma (ICP) discharge is used. An emission analysis apparatus (ICP-AES: Inductively Coupled Plasma Atomic Emission Spectrometer) and an inductively coupled plasma mass spectrometer (ICP-MS: Inductively Coupled Plasma Mass Spectrometry) are known.

蛍光X線分析装置は、被検物質にX線を照射したときに発生する蛍光X線のエネルギー分布を分析することによって被検物質に含まれる元素の同定・定量を行うものであり、誘導結合プラズマ発光分析装置は、酸の溶剤に溶解させた被検物質の溶液を霧化して高温の誘導結合プラズマ(以下、ICPと称する)中に導入し、熱励起された元素が基底状態に戻るときに発光する光を分光器によって分光して得られた発光スペクトルを分析することによって被検物質に含まれる元素の同定・定量を行うものである。また、誘導結合プラズマ質量分析装置は、溶剤に溶解させた被検物質の溶液を霧化して高温のICP中に導入し、イオン化された原子を質量分析計で質量走査を行って得られた質量スペクトルを分析することによって被検物質に含まれる元素の同定・定量を行うものである。これら3つの分析装置のうち、誘導結合プラズマ発光分析装置及び誘導結合プラズマ質量分析装置では、プラズマが高温であるためにほとんどの元素の最適測定条件がほぼ同じとなり、極めて高感度で精度の高い分析結果を得ることができる。
特開平5−52775号公報 特開平8−62140号公報 特開平8−304286号公報
An X-ray fluorescence analyzer identifies and quantifies the elements contained in a test substance by analyzing the energy distribution of the fluorescent X-rays generated when the test substance is irradiated with X-rays. When the plasma emission analysis apparatus atomizes a solution of a test substance dissolved in an acid solvent and introduces it into a high-temperature inductively coupled plasma (hereinafter referred to as ICP), the thermally excited element returns to the ground state. The element contained in the test substance is identified and quantified by analyzing the emission spectrum obtained by spectroscopically analyzing the emitted light. The inductively coupled plasma mass spectrometer is a mass obtained by atomizing a solution of a test substance dissolved in a solvent and introducing the solution into a high-temperature ICP, and performing mass scanning of the ionized atoms with a mass spectrometer. By analyzing the spectrum, the elements contained in the test substance are identified and quantified. Of these three analyzers, the inductively coupled plasma emission spectrometer and the inductively coupled plasma mass spectrometer have the same optimum measurement conditions for most elements because of the high temperature of the plasma, and are extremely sensitive and accurate. The result can be obtained.
JP-A-5-52775 JP-A-8-62140 JP-A-8-304286

前述のように、電気電子機器等において多用されている無電解ニッケルめっきにはRoHS指令において指定された有害物質である鉛及びカドミウム等が含まれており、これらの元素の正確な濃度分析を行う必要があるが、その濃度分析を蛍光X線分析装置によって行った場合には、照射されたX線は薄いめっきの層を通過して下地の基材にまで達してしまうことから、無電解ニッケルめっきのみの正確な元素濃度分析ができないという問題点があった。   As mentioned above, electroless nickel plating, which is frequently used in electrical and electronic equipment, contains lead and cadmium, etc., which are harmful substances specified in the RoHS Directive, and performs accurate concentration analysis of these elements It is necessary, but when the concentration analysis is performed by a fluorescent X-ray analyzer, the irradiated X-rays pass through a thin plating layer and reach the base material, so electroless nickel There was a problem that accurate element concentration analysis of only plating was not possible.

一方、誘導結合プラズマ発光分析装置や誘導結合プラズマ質量分析装置で無電解ニッケルめっきの元素濃度分析を行うには、めっきの一部を電気電子機器の構成部品の表面から剥ぎ取ってこれを溶剤に溶かさなければならないが、めっきが施される面にはめっきが馴染むような表面処理が予めなされているため、めっきの一部を電気電子機器の構成部品の表面から剥ぎ取ることは容易ではなく、実際上、誘導結合プラズマ発光分析装置や誘導結合プラズマ質量分析装置を用いて無電解ニッケルめっきの元素濃度分析を行うことは困難であった。   On the other hand, in order to perform elemental concentration analysis of electroless nickel plating with an inductively coupled plasma emission spectrometer or inductively coupled plasma mass spectrometer, a part of the plating is stripped from the surface of the component parts of the electrical and electronic equipment and used as a solvent. Although it must be melted, the surface to be plated is pre-treated with a surface treatment that allows the plating to become familiar, so it is not easy to strip a part of the plating from the surface of the components of the electrical and electronic equipment. In practice, it has been difficult to perform element concentration analysis of electroless nickel plating using an inductively coupled plasma emission spectrometer or an inductively coupled plasma mass spectrometer.

そこで本発明は、従来困難であった、無電解ニッケルめっきに含まれる鉛及びカドミウム等の所定元素の精度のよい濃度分析を従来の装置を用いて行うことができる無電解ニッケルめっきの元素濃度分析方法を提供することを目的としている。   Thus, the present invention is an elemental concentration analysis of electroless nickel plating, which can be performed with a conventional apparatus, with high accuracy in the concentration analysis of predetermined elements such as lead and cadmium contained in electroless nickel plating, which has been difficult in the past. It aims to provide a method.

請求項1に記載の無電解ニッケルめっきの元素濃度分析方法は、板材に無電解ニッケルめっきを施す工程と、板材に施された無電解ニッケルめっきの一部に亀裂を生じさせて板材から剥離させ、その剥離させた部分から試料を採取する工程と、採取した試料を酸の溶剤に溶解させて試料溶液を生成する工程と、試料溶液を誘導結合プラズマ発光分析装置若しくは誘導結合プラズマ質量分析装置に導入して試料溶液に含まれる所定元素の濃度分析を行う工程とを含む。   The elemental concentration analysis method for electroless nickel plating according to claim 1 includes a step of applying electroless nickel plating to a plate material, and causing cracks to occur in a portion of the electroless nickel plating applied to the plate material so as to be peeled off from the plate material. Collecting the sample from the peeled portion, dissolving the collected sample in an acid solvent to generate a sample solution, and applying the sample solution to an inductively coupled plasma emission spectrometer or inductively coupled plasma mass spectrometer. And introducing a concentration analysis of a predetermined element contained in the sample solution.

請求項2に記載の無電解ニッケルめっきの元素濃度分析方法は、請求項1に記載の無電解ニッケルめっきの元素濃度分析方法において、前記所定元素が鉛及びカドミウムである。   The element concentration analysis method for electroless nickel plating according to claim 2 is the element concentration analysis method for electroless nickel plating according to claim 1, wherein the predetermined elements are lead and cadmium.

請求項3に記載の無電解ニッケルめっきの元素濃度分析方法は、請求項1又は2に記載の無電解ニッケルめっきの元素濃度分析方法において、板材の材質がステンレス鋼である。   The element concentration analysis method of electroless nickel plating according to claim 3 is the element concentration analysis method of electroless nickel plating according to claim 1 or 2, wherein the material of the plate material is stainless steel.

請求項4に記載の無電解ニッケルめっきの元素濃度分析方法は、請求項1又は2に記載の無電解ニッケルめっきの元素濃度分析方法において、板材の材質がステンレス鋼であり、その厚みが0.05mm〜0.6mmである。   The element concentration analysis method for electroless nickel plating according to claim 4 is the element concentration analysis method for electroless nickel plating according to claim 1 or 2, wherein the material of the plate is stainless steel and the thickness thereof is 0.00. It is 05 mm to 0.6 mm.

請求項5に記載の無電解ニッケルめっきの元素濃度分析方法は、請求項1又は2に記載の無電解ニッケルめっきの元素濃度分析方法において、板材の材質がセラミックである。   The element concentration analysis method for electroless nickel plating according to claim 5 is the element concentration analysis method for electroless nickel plating according to claim 1 or 2, wherein the material of the plate material is ceramic.

本発明の無電解ニッケルめっきの元素濃度分析方法では、鉛及びカドミウム等の所定元素の濃度分析を行おうとする無電解ニッケルめっきを板材に施した後、その無電解ニッケルめっきの一部に亀裂を生じさせて板材から剥離させ、その剥離させた部分から元素濃度分析用の試料を採取する。そして、その試料を酸の溶剤に溶解させて生成した試料溶液を誘導結合プラズマ発光分析装置若しくは誘導結合プラズマ質量分析装置に導入し、試料、すなわち無電解ニッケルめっきの元素濃度分析を行う。このため本発明によれば、従来困難であった、無電解ニッケルめっきに含まれる鉛及びカドミウム等の所定元素の精度のよい濃度分析を従来の装置を用いて行うことができる。   In the elemental concentration analysis method for electroless nickel plating according to the present invention, after applying electroless nickel plating on a plate material to analyze the concentration of a predetermined element such as lead and cadmium, a crack is formed in a part of the electroless nickel plating. A sample for element concentration analysis is collected from the peeled portion. Then, a sample solution generated by dissolving the sample in an acid solvent is introduced into an inductively coupled plasma emission spectrometer or inductively coupled plasma mass spectrometer, and element concentration analysis of the sample, that is, electroless nickel plating is performed. For this reason, according to the present invention, it is possible to perform an accurate concentration analysis of predetermined elements such as lead and cadmium contained in electroless nickel plating, which has been difficult in the past, using a conventional apparatus.

以下、図面を参照して本発明の実施の形態について説明する。図1は本発明の一実施の形態における無電解ニッケルめっきの元素濃度分析方法の手順を示すフローチャート、図2は本発明の一実施の形態における無電解ニッケルめっきが施されたステンレス鋼から試料を採取する手順を(a),(b),(c)の順で説明する説明図、図3は本発明の一実施の形態における無電解ニッケルめっきが施されたセラミックから試料を採取する手順を(a),(b),(c)の順で説明する説明図、図4は本発明の一実施の形態における誘導結合プラズマ発光分析装置の概略構成図である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a flow chart showing the procedure of an element concentration analysis method for electroless nickel plating in one embodiment of the present invention, and FIG. 2 shows a sample from stainless steel plated with electroless nickel plating in one embodiment of the present invention. Explanatory drawing explaining the procedure to extract | collect in order of (a), (b), (c), FIG. 3 is the procedure which extract | collects a sample from the ceramic in which electroless nickel plating in one embodiment of this invention was given. (A), (b), (c) explanatory drawing demonstrated in order, FIG. 4 is a schematic block diagram of the inductively coupled plasma emission spectrometer in one embodiment of this invention.

本発明の無電解ニッケルめっきの元素濃度分析方法では、先ず、試料作成用の板材1に無電解ニッケルめっき(以下、単にめっきと称する)2を施す(図1のステップS1)。この無電解ニッケルめっき2は元素濃度分析の対象となっている実際のめっき、すなわち電気電子機器の構成部品の表面等に施されためっきと同じ組成となるようにするのは勿論であるが、無電解ニッケルめっき2の厚さは実際のめっきの厚さよりも厚めにするとよい。例えば、実際のめっきの厚さが3〜5μmであれば、板材1には10μm程度の厚さの無電解ニッケルめっき2を施すとよい。無電解ニッケルめっき2の厚さはやや厚くしておいた方が、後述の試料の採取時において板材1を繰り返し撓ませるなどして屈曲させたときに無電解ニッケルめっき2の表面に亀裂が入り易く、無電解ニッケルめっき2の一部を板材1の表面から剥離させ易いからである。   In the elemental concentration analysis method for electroless nickel plating according to the present invention, first, electroless nickel plating (hereinafter simply referred to as plating) 2 is applied to a plate material 1 for sample preparation (step S1 in FIG. 1). Of course, this electroless nickel plating 2 has the same composition as the actual plating that is the subject of element concentration analysis, that is, the plating applied to the surface of the component parts of the electrical and electronic equipment. The thickness of the electroless nickel plating 2 is preferably larger than the actual plating thickness. For example, if the actual plating thickness is 3 to 5 μm, the electroless nickel plating 2 having a thickness of about 10 μm may be applied to the plate 1. If the thickness of the electroless nickel plating 2 is slightly increased, the surface of the electroless nickel plating 2 is cracked when the plate material 1 is bent by repeatedly bending it when collecting a sample to be described later. This is because part of the electroless nickel plating 2 is easily peeled off from the surface of the plate 1.

また、ここで使用する板材1としては、人の力で容易に屈曲させることができる材質及び寸法であることが好ましく、材質はステンレス鋼(例えばSUS304)が特に好ましい。ステンレス鋼の表面には耐食性向上のための薄い不動態膜が施されており、板材1の表面に施した無電解ニッケルめっき2を後述の試料の採取時において容易に剥離させることができるからである。したがって、ステンレス鋼以外の金属板でも無電解ニッケルめっき膜と密着し難い素材であれば、ステンレス鋼以外の板材でもよい。実際のめっきの厚さが3〜5μm程度であるのであれば、板材1の厚さは0.15mm程度とし、大きさは20mm×230mm程度とするとよい。尚、この板材1の厚さは0.05mm〜0.6mmの範囲で人の力で容易に屈曲させることができる程度の厚さであればよい。   Further, the plate material 1 used here is preferably a material and a dimension that can be easily bent by human power, and the material is particularly preferably stainless steel (for example, SUS304). A thin passive film for improving corrosion resistance is applied to the surface of the stainless steel, and the electroless nickel plating 2 applied to the surface of the plate 1 can be easily separated at the time of collecting a sample to be described later. is there. Therefore, a metal plate other than stainless steel may be used as long as it is a material that is difficult to adhere to the electroless nickel plating film. If the actual plating thickness is about 3 to 5 μm, the thickness of the plate 1 is preferably about 0.15 mm and the size is about 20 mm × 230 mm. In addition, the thickness of this board | plate material 1 should just be a thickness of the grade which can be easily bent by human power in the range of 0.05 mm-0.6 mm.

試料作成用の板材1の表面に無電解ニッケルめっき2を施したら、その板材1を屈曲させるなどして無電解ニッケルめっき2の一部に亀裂を生じさせて板材1から剥離させ、その剥離させた部分から、元素濃度分析用の試料を採取する(図1のステップS2)。具体的には、板材1の表面に無電解ニッケルめっき2を施した後(図2(a))、無電解ニッケルめっき2が施された面を下に向けた板材1の両端部を両手の指先fで摘んで上下に(図2(b)の矢印A)繰り返し屈曲させて(撓ませて)無電解ニッケルめっき2の一部に亀裂Cを生じさせ(図2(b))、その亀裂Cが生じた部分の無電解ニッケルめっき2の一部をピンセットPでつかみ、板材1の表面から剥離させる(図2(c))。そして、その板材1の表面から剥離させた部分2a(無電解ニッケルめっき2の一部)を元素濃度分析用の試料とする。この試料は質量にして0.2〜1.0g程度あれば十分である。   After the electroless nickel plating 2 is applied to the surface of the plate material 1 for sample preparation, the plate material 1 is bent to cause a part of the electroless nickel plating 2 to be cracked and peeled off from the plate material 1 and then peeled off. A sample for element concentration analysis is taken from the portion (step S2 in FIG. 1). Specifically, after electroless nickel plating 2 is applied to the surface of the plate material 1 (FIG. 2A), both ends of the plate material 1 with the electroless nickel plating 2 surface facing downward are held in both hands. It is picked with the fingertip f and vertically bent (arrow A in FIG. 2 (b)) and repeatedly bent (flexed) to form a crack C in a part of the electroless nickel plating 2 (FIG. 2 (b)). A part of electroless nickel plating 2 where C is generated is grasped with tweezers P and peeled off from the surface of the plate 1 (FIG. 2C). Then, a portion 2a (a part of electroless nickel plating 2) peeled off from the surface of the plate material 1 is used as a sample for element concentration analysis. It is sufficient that this sample has a mass of about 0.2 to 1.0 g.

また、板材1の材質はセラミックであってもよい。セラミックを用いる場合はセラミックの板材1に2mm角程度のポリイミド等のテープ3を予め貼付しておき(図3(a))、その後無電解ニッケルめっき2を施す。無電解ニッケルめっき2を施した後、ポリイミドのテープ3を剥がすと無電解ニッケルめっき2の一部に亀裂Cが入るので(図3(b))、その亀裂Cの入った部分の無電解ニッケルめっき2の一部をピンセットPでつかんで板材1の表面から剥離させる(図3(c))。そして、その板材1の表面から剥離させた部分2a(無電解ニッケルめっき2の一部)を元素濃度分析用の試料とする。なお、この方法では、ポリイミドのテープ3は、無電解ニッケルめっき2の膜厚よりも大きい厚さのものを用いる必要がある。   Further, the material of the plate 1 may be ceramic. When ceramic is used, a tape 3 made of polyimide or the like of about 2 mm square is attached in advance to the ceramic plate material 1 (FIG. 3A), and then electroless nickel plating 2 is applied. When the polyimide tape 3 is peeled off after the electroless nickel plating 2 is applied, cracks C are formed in a part of the electroless nickel plating 2 (FIG. 3B). A part of the plating 2 is grasped by the tweezers P and peeled off from the surface of the plate 1 (FIG. 3C). Then, a portion 2a (a part of electroless nickel plating 2) peeled off from the surface of the plate material 1 is used as a sample for element concentration analysis. In this method, it is necessary to use a polyimide tape 3 having a thickness larger than that of the electroless nickel plating 2.

上記のようにして試料の採取が終わったら、次いでその試料を酸の溶剤に溶解させて試料溶液4を生成する(図1のステップS3)。酸の溶剤としては、硝酸溶液や塩酸溶液が好ましい。   When the sample has been collected as described above, the sample is then dissolved in an acid solvent to produce a sample solution 4 (step S3 in FIG. 1). The acid solvent is preferably a nitric acid solution or a hydrochloric acid solution.

試料溶液4を生成したら、その試料溶液4を誘導結合プラズマ発光分析装置(以下、ICP−AESと称する)10若しくは誘導結合プラズマ質量分析装置(以下、ICP−MSと称する)に導入し、鉛及びカドミウム等の所定元素(RoHS指令により指定された有害物質)の濃度分析を行う(図1のステップS4)。   When the sample solution 4 is generated, the sample solution 4 is introduced into an inductively coupled plasma emission spectrometer (hereinafter referred to as ICP-AES) 10 or an inductively coupled plasma mass spectrometer (hereinafter referred to as ICP-MS). Concentration analysis of a predetermined element such as cadmium (a harmful substance specified by the RoHS directive) is performed (step S4 in FIG. 1).

図4において、ICP−AES10は公知のものであって、ネブライザー11、スプレーチャンバー12、ICPトーチ13、分光器14及び処理装置15を主要構成部品としており、ネブライザー11には試料溶液4が入った試料溶液容器5に繋がる試料溶液導入路11aとキャリヤガスを導入するためのガス導入路11bが接続されている。ガス導入路11bからキャリヤガス(通常はアルゴンガス)をネブライザー11に導入すると(図4の矢印B)、霧吹きの原理によって試料溶液容器5からネブライザー11内に試料溶液4が吸い出され、試料溶液4は霧化されてスプレーチャンバー12内に噴霧される。スプレーチャンバー12はICPトーチ13に繋がっており、ICPトーチ13に高周波電力を導いて誘導コイル13aで放電させると、スプレーチャンバー12を介してICPトーチ13内に導入されたアルゴンガスは電離してプラズマ状態となり、同じくスプレーチャンバー12を介してICPトーチ13内に噴霧された試料溶液4中の元素は解離・原子化されて多くはイオン化される。   In FIG. 4, the ICP-AES 10 is a known one, and includes a nebulizer 11, a spray chamber 12, an ICP torch 13, a spectroscope 14, and a processing device 15, and the nebulizer 11 contains a sample solution 4. A sample solution introduction path 11a connected to the sample solution container 5 and a gas introduction path 11b for introducing a carrier gas are connected. When a carrier gas (usually argon gas) is introduced into the nebulizer 11 from the gas introduction path 11b (arrow B in FIG. 4), the sample solution 4 is sucked into the nebulizer 11 from the sample solution container 5 by the principle of spraying. 4 is atomized and sprayed into the spray chamber 12. The spray chamber 12 is connected to the ICP torch 13, and when high frequency power is guided to the ICP torch 13 and discharged by the induction coil 13a, the argon gas introduced into the ICP torch 13 through the spray chamber 12 is ionized and plasma. Similarly, the elements in the sample solution 4 sprayed into the ICP torch 13 through the spray chamber 12 are dissociated and atomized, and most of them are ionized.

ICPトーチ13において解離・原子化された試料溶液4中の(すなわち試料中の)元素はその元素固有の波長の光を放出するが、その放出した光は分光器14において分光され、発光スペクトルが生成される。処理装置15はその発光スペクトルに示される波長から定性分析を、発光強度から定量分析を行い、その結果をディスプレイ15aに表示する。これにより試料、すなわち無電解ニッケルめっき2に含まれる鉛及びカドミウム等の所定元素の濃度が求められる。   The element in the sample solution 4 dissociated and atomized in the ICP torch 13 (that is, in the sample) emits light having a wavelength unique to the element, but the emitted light is dispersed in the spectroscope 14 and the emission spectrum is Generated. The processing device 15 performs qualitative analysis from the wavelength indicated in the emission spectrum and quantitative analysis from the emission intensity, and displays the result on the display 15a. Accordingly, the concentration of a predetermined element such as lead and cadmium contained in the sample, that is, the electroless nickel plating 2 is obtained.

一方、ICP−MSも公知のものであって、上記ICP−AES10における分光器14を質量分析計に置き換えた他はICP−AES10とほぼ同じ構成を有しており、ICPトーチ13において解離・原子化された試料溶液4中の元素は質量分析計において質量操作されて質量スペクトルが生成される。処理装置15はその質量スペクトルに示される質量と電荷の比から定性分析を、イオン電流強度から定量分析を行い、その結果をディスプレイ15aに表示する。これによりICP−AES10を用いたときと同様、無電解ニッケルめっき2に含まれる鉛及びカドミウム等の所定元素の濃度が求められる。   On the other hand, ICP-MS is also known and has substantially the same configuration as ICP-AES10 except that the spectrometer 14 in the ICP-AES10 is replaced with a mass spectrometer. The massed element in the sample solution 4 is subjected to mass manipulation in a mass spectrometer to generate a mass spectrum. The processing device 15 performs qualitative analysis from the mass-to-charge ratio shown in the mass spectrum and quantitative analysis from the ionic current intensity, and displays the result on the display 15a. Thereby, the concentration of a predetermined element such as lead and cadmium contained in the electroless nickel plating 2 is obtained as in the case of using the ICP-AES10.

以上説明したように、本実施の形態における無電解ニッケルめっきの元素濃度分析方法では、鉛及びカドミウム等の所定元素の濃度分析を行おうとする無電解ニッケルめっき2を板材1に施した後、その無電解ニッケルめっき2の一部に亀裂を生じさせて剥離させ、その剥離させた部分から元素濃度分析用の試料を採取する。そして、その試料を酸の溶剤に溶解させて生成した試料溶液4を誘導結合プラズマ発光分析装置(ICP−AES)10若しくは誘導結合プラズマ質量分析装置(ICP−MS)に導入し、試料、すなわち無電解ニッケルめっき2の元素濃度分析を行う。このため本実施の形態における無電解ニッケルめっきの元素濃度分析方法によれば、従来困難であった、無電解ニッケルめっきに含まれる鉛及びカドミウム等の所定元素の精度のよい濃度分析を従来の装置を用いて行うことができる。なお、上述の実施の形態では、無電解ニッケルめっき2の試料を採取する際に、表面に無電解ニッケルめっき2が施された板材1を人が両手の指先fで摘んで繰り返し屈曲させる例を示したが、この板材1の屈曲作業は人が行わなければならないわけではなく、板材1を繰り返し屈曲させることができる機能を備えた機械に行わせるようにしても勿論構わない。   As described above, in the element concentration analysis method of electroless nickel plating in the present embodiment, after applying electroless nickel plating 2 to be subjected to concentration analysis of a predetermined element such as lead and cadmium to the plate material 1, A portion of the electroless nickel plating 2 is cracked and peeled off, and a sample for element concentration analysis is taken from the peeled portion. Then, the sample solution 4 formed by dissolving the sample in an acid solvent is introduced into the inductively coupled plasma emission spectrometer (ICP-AES) 10 or the inductively coupled plasma mass spectrometer (ICP-MS), and the sample, that is, the sample solution. Element concentration analysis of the electrolytic nickel plating 2 is performed. For this reason, according to the element concentration analysis method of electroless nickel plating in the present embodiment, it is difficult to perform conventional concentration analysis of a predetermined element such as lead and cadmium contained in electroless nickel plating with high accuracy. Can be used. In the above-described embodiment, when a sample of electroless nickel plating 2 is collected, an example in which a person grips the plate 1 having the electroless nickel plating 2 on the surface with the fingertips f of both hands and repeatedly bends it. Although shown, the bending work of the plate material 1 does not necessarily have to be performed by a person, and it is of course possible to have a machine equipped with a function capable of repeatedly bending the plate material 1.

本発明によれば、従来困難であった、無電解ニッケルめっきに含まれる鉛及びカドミウム等の所定元素の精度のよい濃度分析を従来の装置を用いて行うことができる。   According to the present invention, it is possible to perform an accurate concentration analysis of a predetermined element such as lead and cadmium contained in electroless nickel plating, which has been difficult in the past, using a conventional apparatus.

本発明の一実施の形態における無電解ニッケルめっきの元素濃度分析方法の手順を示すフローチャートThe flowchart which shows the procedure of the element concentration analysis method of the electroless nickel plating in one embodiment of this invention 本発明の一実施の形態における無電解ニッケルめっきが施されたステンレス鋼から試料を採取する手順を(a),(b),(c)の順で説明する説明図Explanatory drawing explaining the procedure which extract | collects a sample from the stainless steel in which electroless nickel plating was given in one embodiment of this invention in order of (a), (b), (c) 本発明の一実施の形態における無電解ニッケルめっきが施されたセラミックから試料を採取する手順を(a),(b),(c)の順で説明する説明図Explanatory drawing explaining the procedure which extract | collects a sample from the ceramic in which electroless nickel plating was given in one embodiment of this invention in order of (a), (b), (c) 本発明の一実施の形態における誘導結合プラズマ発光分析装置の概略構成図1 is a schematic configuration diagram of an inductively coupled plasma optical emission spectrometer according to an embodiment of the present invention.

符号の説明Explanation of symbols

1 板材
2 無電解ニッケルめっき
4 試料溶液
10 誘導結合プラズマ発光分析装置
11 ネブライザー
11a 試料溶液導入路
11b ガス導入路
12 スプレーチャンバー
13 ICPトーチ
14 分光器
15 処理装置
DESCRIPTION OF SYMBOLS 1 Board | plate material 2 Electroless nickel plating 4 Sample solution 10 Inductively coupled plasma emission spectrometer 11 Nebulizer 11a Sample solution introduction path 11b Gas introduction path 12 Spray chamber 13 ICP torch 14 Spectrometer 15 Processing apparatus

Claims (5)

板材に無電解ニッケルめっきを施す工程と、板材に施された無電解ニッケルめっきの一部に亀裂を生じさせて板材から剥離させ、その剥離させた部分から試料を採取する工程と、採取した試料を酸の溶剤に溶解させて試料溶液を生成する工程と、試料溶液を誘導結合プラズマ発光分析装置若しくは誘導結合プラズマ質量分析装置に導入して試料溶液に含まれる所定元素の濃度分析を行う工程とを含むことを特徴とする無電解ニッケルめっきの元素濃度分析方法。 A step of applying electroless nickel plating to the plate material, a step of causing a part of the electroless nickel plating applied to the plate material to crack and peeling from the plate material, and collecting a sample from the peeled portion, and a sample collected A sample solution by dissolving the sample solution in an acid solvent, and a step of analyzing the concentration of a predetermined element contained in the sample solution by introducing the sample solution into an inductively coupled plasma emission spectrometer or inductively coupled plasma mass spectrometer. An elemental concentration analysis method for electroless nickel plating, comprising: 前記所定元素が鉛及びカドミウムであることを特徴とする請求項1に記載の無電解ニッケルめっきの元素濃度分析方法。 2. The element concentration analysis method for electroless nickel plating according to claim 1, wherein the predetermined elements are lead and cadmium. 板材の材質がステンレス鋼であることを特徴とする請求項1又は2に記載の無電解ニッケルめっきの元素濃度分析方法。 3. The element concentration analysis method for electroless nickel plating according to claim 1, wherein the material of the plate material is stainless steel. 板材の材質がステンレス鋼であり、その厚みが0.05mm〜0.6mmであることを特徴とする請求項1又は2に記載の無電解ニッケルめっきの元素濃度分析方法。 3. The element concentration analysis method for electroless nickel plating according to claim 1 or 2, wherein the material of the plate material is stainless steel, and the thickness thereof is 0.05 mm to 0.6 mm. 板材の材質がセラミックであることを特徴とする請求項1又は2に記載の無電解ニッケルめっきの元素濃度分析方法。 3. The element concentration analysis method for electroless nickel plating according to claim 1, wherein the plate material is ceramic.
JP2006249092A 2006-09-14 2006-09-14 Element concentration analysis method of electroless nickel plating Pending JP2008070225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006249092A JP2008070225A (en) 2006-09-14 2006-09-14 Element concentration analysis method of electroless nickel plating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006249092A JP2008070225A (en) 2006-09-14 2006-09-14 Element concentration analysis method of electroless nickel plating

Publications (1)

Publication Number Publication Date
JP2008070225A true JP2008070225A (en) 2008-03-27

Family

ID=39291933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006249092A Pending JP2008070225A (en) 2006-09-14 2006-09-14 Element concentration analysis method of electroless nickel plating

Country Status (1)

Country Link
JP (1) JP2008070225A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101865848A (en) * 2010-05-21 2010-10-20 北京泰科诺科技有限公司 Method and device for measuring monobromethane concentration in fumigation tank by plasma emission spectroscopy
CN102998301A (en) * 2011-09-15 2013-03-27 上海宝钢工业检测公司 Test method of sulfate radicals in industrial hydrochloric acid
CN103134792A (en) * 2011-11-25 2013-06-05 中国石油天然气股份有限公司 Method for determining manganese element in ethanol gasoline
CN103163118A (en) * 2013-04-02 2013-06-19 天津虹炎科技有限公司 Method for measuring cadmium element content in environment by adopting ICP method
CN103604801A (en) * 2013-10-29 2014-02-26 中国科学院东北地理与农业生态研究所 Method for measuring boron content of low-grade boron ore by inductively coupled plasma atomic emission spectrometer
CN104007099A (en) * 2014-06-04 2014-08-27 傅科杰 Testing method for cadmium in children clothing
CN104237207A (en) * 2013-06-21 2014-12-24 北京服装学院 Method for detecting content of arsenic (III) in textile
CN104677886A (en) * 2013-11-27 2015-06-03 上海宝钢工业技术服务有限公司 Analysis method of sulfate radicals in hydrazine hydrate
CN111077267A (en) * 2020-01-14 2020-04-28 东莞东阳光科研发有限公司 Method for measuring lead content in electronic optical foil
CN111948159A (en) * 2020-08-17 2020-11-17 沈阳飞机工业(集团)有限公司 Method for testing nickel content of zinc-nickel alloy coating

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101865848A (en) * 2010-05-21 2010-10-20 北京泰科诺科技有限公司 Method and device for measuring monobromethane concentration in fumigation tank by plasma emission spectroscopy
CN102998301A (en) * 2011-09-15 2013-03-27 上海宝钢工业检测公司 Test method of sulfate radicals in industrial hydrochloric acid
CN103134792A (en) * 2011-11-25 2013-06-05 中国石油天然气股份有限公司 Method for determining manganese element in ethanol gasoline
CN103163118A (en) * 2013-04-02 2013-06-19 天津虹炎科技有限公司 Method for measuring cadmium element content in environment by adopting ICP method
CN104237207A (en) * 2013-06-21 2014-12-24 北京服装学院 Method for detecting content of arsenic (III) in textile
CN103604801A (en) * 2013-10-29 2014-02-26 中国科学院东北地理与农业生态研究所 Method for measuring boron content of low-grade boron ore by inductively coupled plasma atomic emission spectrometer
CN104677886A (en) * 2013-11-27 2015-06-03 上海宝钢工业技术服务有限公司 Analysis method of sulfate radicals in hydrazine hydrate
CN104007099A (en) * 2014-06-04 2014-08-27 傅科杰 Testing method for cadmium in children clothing
CN111077267A (en) * 2020-01-14 2020-04-28 东莞东阳光科研发有限公司 Method for measuring lead content in electronic optical foil
CN111948159A (en) * 2020-08-17 2020-11-17 沈阳飞机工业(集团)有限公司 Method for testing nickel content of zinc-nickel alloy coating

Similar Documents

Publication Publication Date Title
JP2008070225A (en) Element concentration analysis method of electroless nickel plating
Pisonero et al. Critical revision of GD-MS, LA-ICP-MS and SIMS as inorganic mass spectrometric techniques for direct solid analysis
Pisonero et al. Femtosecond laser ablation inductively coupled plasma mass spectrometry: fundamentals and capabilities for depth profiling analysis
US8237928B2 (en) Method and apparatus for identifying the chemical composition of a gas
JP4237803B2 (en) Direct ICP emission spectroscopy analysis of solid samples
Fang et al. Detection of mercury in water by laser-induced breakdown spectroscopy with sample pre-concentration
Evans-Nguyen et al. Towards universal ambient ionization: direct elemental analysis of solid substrates using microwave plasma ionization
Zheng et al. Rapid elemental analysis of aerosols using atmospheric glow discharge optical emission spectroscopy
Holá et al. Feasibility of nanoparticle-enhanced laser ablation inductively coupled plasma mass spectrometry
Poggialini et al. Graphene thin film microextraction and nanoparticle enhancement for fast LIBS metal trace analysis in liquids
Ghanthimathi et al. Comparison of microwave assisted acid digestion methods for ICP-MS determination of total arsenic in fish tissue
JP5581477B2 (en) Sampling method and sampling apparatus using plasma
Iqbal et al. Elemental study of Devarda’s alloy using calibration free-laser induced breakdown spectroscopy (CF‒LIBS)
Gazeli et al. Experimental investigation of a ns-pulsed argon plasma jet for the fast desorption of weakly volatile organic compounds deposited on glass substrates at variable electric potential
Kumai et al. Excitation temperature measurement in liquid electrode plasma
JP4185066B2 (en) Sample pretreatment method and method for measuring mercury content in sample
JP5367036B2 (en) Method for measuring organic or polymer solid samples by discharge optical emission spectrometry
Duan et al. Experimental study of atmospheric-pressure micro-plasmas for the ambient sampling of conductive materials
Paing et al. Parametric evaluation of ambient desorption optical emission spectroscopy utilizing a liquid sampling-atmospheric pressure glow discharge microplasma
Tian et al. Optical characterization of miniature flexible micro-tube plasma (FμTP) ionization source: A dielectric guided discharge
JP3977761B2 (en) Quality control method for electronic component materials
Shimazu et al. Spectral characteristics of laser-induced plasma generated on porous silicon produced by metal-assisted etching
Ido et al. Quantitative Analysis of Major and Minor Elements in Lead-free Solder Chip by LA-ICP-MS
JP2001033389A (en) Method and apparatus for evaluating corrosion resistance of steel product
WO2023248273A1 (en) Method for quantitatively analyzing elements