JP2005127938A - Method for obtaining cut face information of sample - Google Patents

Method for obtaining cut face information of sample Download PDF

Info

Publication number
JP2005127938A
JP2005127938A JP2003365590A JP2003365590A JP2005127938A JP 2005127938 A JP2005127938 A JP 2005127938A JP 2003365590 A JP2003365590 A JP 2003365590A JP 2003365590 A JP2003365590 A JP 2003365590A JP 2005127938 A JP2005127938 A JP 2005127938A
Authority
JP
Japan
Prior art keywords
cutting
sample
image
cut
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003365590A
Other languages
Japanese (ja)
Inventor
Naoko Fujisawa
直子 藤澤
Tokuyuki Morikawa
徳幸 森川
Eiji Kawamura
英司 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Printing Bureau
Original Assignee
National Printing Bureau
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Printing Bureau filed Critical National Printing Bureau
Priority to JP2003365590A priority Critical patent/JP2005127938A/en
Publication of JP2005127938A publication Critical patent/JP2005127938A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a chemical reaction on cut faces of a sample and a cut piece while a sample is cut, and conveniently, accurately and rapidly observe and evaluate data about a continuous or gradual periphery in depth from a surface layer to an inner layer of the sample in a bulk state of a composition structure and a composition frame different from the surface layer. <P>SOLUTION: The cutting apparatus has a cutting blade and is used for cutting the sample in a taper form from a surface to an inner face at an arbitrary angle under cutting conditions of the sample. Cut face information in three axes directions of X, Y and Z axes about coating states, distribution states and infiltration states in depth of a coating liquid and an additional chemical of coated paper on the cut faces of sample and the cut piece formed by cutting, a transition state, a distribution state and an infiltration state in depth of ink on a printed material and an interface state between a substrate, is observed by a means for two-dimensionally developing and displaying the information. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、試料の切削位置を指定して切削面を形成し、形成した切削面を表示または出力する方法に関するものである。さらに詳しくは試料を切削し切削面、あるいは切削にともなう切削片の切削面に対して、試料の表面層から内部層にいたる深さ方向とその周辺に関するデータを簡便に、連続的にあるいは段階的に長距離にわたって正確かつ迅速に得ることができる画像情報取得方法に関するものである。   The present invention relates to a method for forming a cut surface by designating a cutting position of a sample and displaying or outputting the formed cut surface. More specifically, the data on the depth direction from the surface layer to the inner layer of the sample and its surroundings is simply, continuously, or stepwise with respect to the cut surface of the cut piece or the cut surface that accompanies cutting. The present invention relates to an image information acquisition method that can be obtained accurately and quickly over a long distance.

従来の、試料の深さ方向とその周辺の情報を得る分析方法として、2次イオン質量分析装置(SIMS)やオージェ電子分光装置(AES)、X線光電子分光法(XPS)などが挙げられる。これらの分析方法は、いずれもイオンや電子、X線などのビームを用い、試料をスパッタリングしながら測定することによって、試料の深さ方法の情報を取り出している。これらの方法では、試料の組成や結合フラグメントの情報を得ることができる(例えば、非特許文献1参照)。   Conventional analysis methods for obtaining information about the depth direction of the sample and its periphery include a secondary ion mass spectrometer (SIMS), an Auger electron spectrometer (AES), and an X-ray photoelectron spectrometer (XPS). Each of these analysis methods uses a beam of ions, electrons, X-rays or the like, and takes information on the depth method of the sample by measuring the sample while sputtering. In these methods, information on the composition of the sample and the binding fragment can be obtained (for example, see Non-Patent Document 1).

また、厚さ数μmの局所加工に利用されていた集束イオンビーム(FIB)装置を用い、厚さ100μm前後の紙または印刷物の断面を切り出すことで、刃物による切断法、樹脂包埋法、凍結包埋法、凍結割断法、イオンエッチング法等といった断面作製法と比べ、比較にならない程の精度で、紙または印刷物の断面を作製することが可能となり、また、硬さや脆さの異なる材料、すなわち、紙または印刷物の断面作製に必要な量の集束イオンビームを照射することにより、シャープな断面を作製することが可能となった。さらに、インキ転移層とともに基材である用紙も切断できることから、これまで観察できなかった印刷インキの用紙に転移したインキ層の直接断面観察方法及び、インキ転移に及ぼす紙層構造の影響を解析する方法として提案されている(例えば、特許文献1参照)。   In addition, using a focused ion beam (FIB) device, which has been used for local processing of several μm thick, cuts out a cross section of paper or printed matter with a thickness of around 100 μm, cutting with a blade, resin embedding, freezing Compared to cross-section preparation methods such as embedding method, freeze cleaving method, ion etching method, etc., it becomes possible to produce cross-sections of paper or printed matter with incomparable accuracy, and materials with different hardness and brittleness, That is, it has become possible to produce a sharp cross-section by irradiating a focused ion beam in an amount necessary for producing a cross-section of paper or printed matter. In addition, since the paper as the base material can be cut together with the ink transfer layer, the method for directly observing the cross section of the ink layer transferred to the paper of printing ink that could not be observed so far, and the influence of the paper layer structure on the ink transfer are analyzed. It has been proposed as a method (for example, see Patent Document 1).

また、紙に転移したインキ転移物における、インキのバインダー成分の分布状態を観察する方法として、バインダー成分の不飽和二重結合部分に四酸化オスミウムまたは臭素を選択的に付加反応させ、次に集束イオンビーム装置によりイオンビームを照射することにより、紙の構造を破壊することなく作製し、付加反応させたバインダーを含んだインキ転移物に電子線を照射し、発生する信号を電子線マイクロアナリシス(EPMA)により、それぞれの元素マッピングをする方法が提案されている(例えば、特許文献2参照)。   In addition, as a method of observing the distribution of the binder component of the ink in the ink transfer product transferred to paper, osmium tetroxide or bromine is selectively added to the unsaturated double bond portion of the binder component, and then focused. By irradiating the ion beam with an ion beam device, the structure of the paper is produced without breaking, and the ink transfer material containing the binder subjected to the addition reaction is irradiated with an electron beam, and the generated signal is converted into an electron beam microanalysis ( EPMA) proposes a method for mapping each element (for example, see Patent Document 2).

日本表面化学会「表面科学基礎講座 表面・界面分析の基礎と応用」、1998年、p.219−376Surface Chemistry Society of Japan “Surface Science Fundamentals and Basics and Applications of Surface / Interface Analysis”, 1998, p. 219-376 特許第3044298号公報Japanese Patent No. 3044298 特開2000−171420号公報JP 2000-171420 A

従来から使用されている、2次イオン質量分析装置(SIMS)やオージェ電子分光装置(AES)、X線光電子分光法(XPS)では、深さ方向のデータはスパッタリング速度の影響を受けるため測定効率が低く、かつ試料深部のデータは得にくいという欠点があった。また、得られたデータは表層数〜数百nm領域に限られるため、一般的には表面分析法として広く認知されており、具体的に試料を切削しながら該試料の切削面のデータを測定することによって、試料の深さ方向のデータを正確に測定する方法として提案されているが、用紙の内部構造、添加薬品等の厚さ方向の分布状態、さらには塗工紙の顔料やバインダーの分布状態、並びにインキの浸透状態及びインキ転移が紙層構造の影響を切削しながら解析する目的のものではない。さらに、2次イオン質量分析装置(SIMS)やオージェ電子分光装置(AES)、X線光電子分光法(XPS)では、高真空中に試料をおいてスパッタリングしなければならないため、試料の加工や真空排気など前準備に多くの時間と手間が必要である。   In the conventional secondary ion mass spectrometer (SIMS), Auger electron spectrometer (AES), and X-ray photoelectron spectroscopy (XPS), the data in the depth direction is affected by the sputtering rate, so the measurement efficiency Is low, and it is difficult to obtain data in the deep part of the sample. In addition, since the obtained data is limited to the number of surface layers to several hundreds of nanometers, it is generally widely recognized as a surface analysis method. Specifically, the data of the cut surface of the sample is measured while cutting the sample. Has been proposed as a method for accurately measuring the data in the depth direction of the sample, but the internal structure of the paper, the distribution state in the thickness direction of the additive chemicals, and the pigments and binders of the coated paper The distribution state, the ink penetration state, and the ink transfer are not intended to analyze the effect of the paper layer structure while cutting. Furthermore, in the secondary ion mass spectrometer (SIMS), Auger electron spectrometer (AES), and X-ray photoelectron spectroscopy (XPS), the sample must be sputtered in a high vacuum. It takes a lot of time and effort to prepare for exhaust.

また、集束イオンビーム(FIB)装置は試料作製用装置としては極めて高価であることから、一般的に広く利用されている段階ではなく、また、断面作製処理時間は数時間を必要とする。深さ方向(Z方向)は面状であるが、平面方向(XY方向)は線状となるため平面方向(XY方向)で状態あるいは組成等が異なる微小領域部分が分布している試料においては、幅方向に対して250μm程度までしか一度に切削面ができないため、平面方向(XY方向)で状態あるいは組成等が異なる微小領域部分ごとに多くの試料断面を作製して観察する必要がある。   In addition, since a focused ion beam (FIB) apparatus is extremely expensive as an apparatus for preparing a sample, it is not a stage where it is generally widely used, and the cross-section preparation processing time requires several hours. In the sample where the depth direction (Z direction) is planar, but the planar direction (XY direction) is linear, so in the sample in which minute regions with different states or compositions are distributed in the planar direction (XY direction) Since a cutting surface can be formed only up to about 250 μm at a time in the width direction, it is necessary to prepare and observe a large number of sample cross sections for each minute region portion having a different state or composition in the plane direction (XY direction).

また、紙に転移したインキ転移物におけるインキのバインダー成分の分布状態を観察する方法として、バインダー成分の不飽和二重結合部分に四酸化オスミウムまたは臭素を選択的に付加反応させ、FIB装置により紙の断面を作製し、EPMAによりそれぞれの元素マッピングをする方法においては、厚さ100μm前後の紙の断面におけるインキのバインダー成分が、表面から30数μmほどまでしか浸透しない場合、バインダー成分の浸透深度が浅く、30数μmほどの狭い範囲での分析を行わなければいけないため、有効な画像情報取得部位が狭くなる。   In addition, as a method of observing the distribution state of the binder component of the ink in the ink transfer product transferred to the paper, osmium tetroxide or bromine is selectively added to the unsaturated double bond portion of the binder component, and the paper is fed by the FIB apparatus. When the binder component of the ink in the section of the paper having a thickness of about 100 μm penetrates only about 30 μm from the surface, the penetration depth of the binder component However, since the analysis must be performed in a narrow range of about 30 μm or so, an effective image information acquisition site is narrowed.

本発明は、上記課題の解決を目的とするものであり、具体的には試料の切削面、並びに切削にともなう切削片の切削面における化学変化を防ぎ、組成構造及び組成骨格が表面層とは異なるバルク状態で、試料の表面層から内部層にいたる深さ方向にわたり連続的なあるいは段階的な周辺に関するデータを簡便に、正確かつ迅速に観察し評価することを目的とする。   The present invention aims to solve the above-described problems. Specifically, it prevents chemical changes in the cutting surface of the sample and the cutting surface of the cutting piece that accompanies cutting, and the composition structure and composition skeleton are the surface layer. The purpose is to easily and accurately observe and evaluate data on continuous or stepwise surroundings in the depth direction from the surface layer to the inner layer of the sample in different bulk states.

本発明の試料の切削面情報取得方法は、試料の表面から内部に向けて切刃によって所定の角度でテーパ状に切削し、切削によって形成される試料の切削面、並びに切削にともなう切削片の切削面におけるZ軸方向、X軸方向及びY軸方向の三次元の画像情報を、画像取得手段によって切削前の試料の表面方向から見て二次元的に取得し、画像情報を用いて画像表示、及び/又は画像出力することを特徴とする。   The method for acquiring cutting surface information of a sample according to the present invention is a method of cutting a taper at a predetermined angle by a cutting blade from the surface of the sample toward the inside, and the cutting surface of the sample formed by the cutting, and the cutting piece accompanying the cutting. Three-dimensional image information in the Z-axis direction, X-axis direction, and Y-axis direction on the cutting surface is acquired two-dimensionally when viewed from the surface direction of the sample before cutting by the image acquisition means, and an image is displayed using the image information. And / or outputting an image.

本発明の試料の切削面情報取得方法は、試料の表面から内部に向けて切刃によって所定の角度でテーパ状に切削し、切刃が予め設定した切削深度に到達した後、切刃を試料表面に対して平行方向に移動させ切削することによって切削面を形成し、更に切削深度の設定条件を変えて、所定の角度で切削深度に到達するまで切削し、切削を段階的に行うことによって形成される試料の切削面、並びに切削にともなう切削片の切削面におけるZ軸方向、X軸方向及びY軸方向の三次元の画像情報を、画像取得手段によって切削前の試料の表面方向から見て二次元的に取し、前記画像情報を用いて画像表示、及び/又は画像出力することを特徴とする。   The cutting surface information acquisition method for a sample of the present invention is a method in which the cutting edge is cut into a tapered shape at a predetermined angle from the surface of the sample toward the inside by the cutting edge, and after the cutting edge reaches a preset cutting depth, the cutting edge is moved to the sample. By moving in parallel to the surface and cutting to form a cutting surface, further changing the setting conditions of the cutting depth, cutting at a predetermined angle until the cutting depth is reached, and performing cutting step by step The three-dimensional image information in the Z-axis direction, X-axis direction, and Y-axis direction on the cutting surface of the sample to be formed and the cutting surface of the cutting piece accompanying cutting is viewed from the surface direction of the sample before cutting by the image acquisition means. The image information is displayed and / or output using the image information.

本発明の試料の切削面情報取得方法は、試料の切削面、並びに切削にともなう切削片の切削面を前記画像取得手段によって拡大することを特徴とする。   The cutting surface information acquisition method of the sample of the present invention is characterized in that the cutting surface of the sample and the cutting surface of the cutting piece accompanying the cutting are enlarged by the image acquisition means.

本発明の試料の切削面情報取得方法は、試料の切削面、並びに切削にともなう切削片の切削面を元素分析装置によって元素マッピングを行うことを特徴とする。   The cutting surface information acquisition method for a sample according to the present invention is characterized in that element mapping is performed by an element analyzer on the cutting surface of the sample and the cutting surface of a cutting piece accompanying cutting.

本発明により、試料の材質及び大きさ等にも関係するが、切刃を試料の表面層から内部層に向けて切削する際の角度設定により、試料の表面層から内面層にいたる試料の深さ方向とその周辺に関するデータを一つの観察試料で、所望の範囲の切削面情報を取得可能である。そのことにより、切削面情報として取得した紙層構造及び塗工層構造、並びにインキ等の転移、分布状態及び浸透状態を、組成構造及び組成骨格が表面層とは異なるバルク状態で観察でき、評価できるため、その利便性、並びに応用性は大きい。   According to the present invention, although related to the material and size of the sample, the depth of the sample from the surface layer of the sample to the inner surface layer is determined by setting the angle when cutting the cutting edge from the surface layer of the sample to the inner layer. It is possible to acquire cutting surface information in a desired range with respect to the length direction and its surroundings with one observation sample. As a result, the paper layer structure and coating layer structure acquired as cutting surface information, and the transfer, distribution state and penetration state of ink, etc. can be observed in a bulk state in which the composition structure and composition skeleton are different from those of the surface layer. Therefore, its convenience and applicability are great.

紙へのインキの浸透状態については、低粘度のインキを使用したインキジェットプリンタなどで、印字または画像品質を左右する大きな因子であり、短時間で効率的に広範囲のインキの転移状態を深さ方向に分割して画像情報として取得できることは大きなメリットであり、用紙開発及びインキ開発に大きく貢献するものである。   Ink penetration into paper is a major factor that affects printing or image quality in ink jet printers that use low-viscosity inks. The fact that it can be acquired as image information by dividing it in the direction is a great merit and greatly contributes to paper development and ink development.

図1に切削装置の全体の構成を示す。切削条件設定手段と、変位、圧を検出する手段、試料固定手段、試料の切削手段及び該切削手段の試料への切刃の押圧手段とで構成される切削装置に、試料(1)を固定し、切削手段である切刃(2)の移動により試料の表面から内部に向けて切削を行う。その切削の状態をカメラ(3)で撮り、カメラからの映像をモニタ(4)でリアルタイムに確認する。試料の固定方法としては、直接試料台に被測定試料をおいて試料端を締め付金具で固定する方法、あらかじめ両面テープ等で板に固着する方法、あるいは試料裏面から真空で試料を固定する方法などが考えられ、試料の形態に応じて適宜選択すればよい。   FIG. 1 shows the overall configuration of the cutting apparatus. The sample (1) is fixed to a cutting apparatus including cutting condition setting means, means for detecting displacement and pressure, sample fixing means, sample cutting means, and means for pressing the cutting blade of the cutting means to the sample. Then, cutting is performed from the surface of the sample toward the inside by the movement of the cutting blade (2) which is a cutting means. The cutting state is taken by the camera (3), and the image from the camera is confirmed in real time by the monitor (4). The sample can be fixed by placing the sample directly on the sample stage and fixing the sample end with a clamp, fixing the sample to the plate with double-sided tape in advance, or fixing the sample in vacuum from the back of the sample. These may be considered, and may be appropriately selected according to the form of the sample.

本発明による試料の連続的な切削面形成法は、まず、試料の切削面を形成するために必要な切削幅、切刃形状については刃角、すくい角、にげ角を有する切刃(2)を選定し試料の切削位置を指定する。次に、試料の切削面を形成するために必要な切刃垂直移動速度、切削深度(5)及び切刃水平移動速度の切削条件を予め設定する。次に、図2に示すように予め設定した切削距離(6)を前提条件とし、予め設定した切刃水平移動速度と切刃垂直移動速度をもとに、切刃(2)によって試料の表面(1)から内部に向けて斜めに切削を開始し、切刃(2)が予め設定した切削距離(6)に到達するまで切削を続けることで試料の切削面(7)並びに切削にともなう切削片の切削面(11)を形成する。   The method for forming a continuous cutting surface of a sample according to the present invention is as follows. First, a cutting width (2) for forming a cutting surface of a sample and a cutting edge shape having a cutting angle (2) ) And specify the cutting position of the sample. Next, cutting conditions such as the cutting edge vertical movement speed, the cutting depth (5), and the cutting edge horizontal movement speed necessary for forming the cutting surface of the sample are set in advance. Next, as shown in FIG. 2, the cutting surface (6) is set as a precondition, and based on the cutting edge horizontal movement speed and cutting edge vertical movement speed, the surface of the sample is cut by the cutting edge (2). Cutting is started diagonally from (1) to the inside, and cutting is continued until the cutting edge (2) reaches a preset cutting distance (6), thereby cutting along the cutting surface (7) of the sample and cutting. A cut surface (11) of the piece is formed.

本発明による試料の段階的な切削面形成法は、まず、試料の切削面を形成するために必要な切削幅、切刃形状については刃角、すくい角、にげ角を有する切刃(2)を選定し試料の切削位置を指定する。次に、図3に示すように予め設定した切削距離(12)を前提条件とし、予め設定した切刃水平移動速度と切刃垂直移動速度をもとに、切刃(2)によって試料の表面(1)から内部に向けて切削を開始し、切刃(2)が予め設定した切削距離(12)に到達した後、設定した切削水平速度をもとに、試料の表面(1)に対して平行方向に切削する。更に、切刃水平移動速度、切刃垂直移動速度及び切削距離を設定し直し、設定し直した条件をもとに、切刃(2)によって更に所望の深度まで切削を繰り返すことで試料の段階的な切削面(7)並びに切削にともなう段階的な切削片の切削面(11)を形成する。   The stepwise cutting surface forming method of a sample according to the present invention is a cutting blade (2) having a blade angle, a rake angle, and a burr angle for a cutting width and a cutting edge shape necessary for forming a cutting surface of a sample. ) And specify the cutting position of the sample. Next, as shown in FIG. 3, the cutting surface (12) is set as a precondition, and the surface of the sample is cut by the cutting edge (2) based on the preset cutting edge horizontal movement speed and cutting edge vertical movement speed. Cutting is started from (1) to the inside, and after the cutting edge (2) reaches a preset cutting distance (12), based on the set horizontal cutting speed, the surface (1) of the sample is And cut in parallel. Furthermore, the cutting edge horizontal movement speed, the cutting edge vertical movement speed, and the cutting distance are reset, and based on the reset conditions, the cutting edge (2) further repeats cutting to a desired depth to obtain a sample stage. The cutting surface (7) as well as the stepwise cutting surface (11) of the cut piece accompanying the cutting are formed.

本発明で用いる試料とは、紙、印刷物、プラスチック、ゴム及びシート等をはじめとした物であるが、材質及び形状を限定するものではない。また、蒸着膜及び積層された薄膜試料についても切削面の画像情報を表示し、さらに画像情報を出力することができる。   The sample used in the present invention is a material such as paper, printed matter, plastic, rubber, and sheet, but the material and shape are not limited. Further, the image information of the cut surface can be displayed and the image information can be output for the deposited film and the laminated thin film sample.

切刃によって試料の切削面を形成する際、切刃として、例えば、ナイフ及び金属性カッターなどの公知の切刃を用いることもできるが、願わしくは特公平7−26908号公報にみられるような精密切削装置を用いて切削面を形成することが望ましい。また、精密切削装置の切刃については、鋭利かつ硬度の高い切刃であることが条件となることから高い硬度を有し、耐摩耗性、耐久性及び耐熱性に優れ、刃こぼれが少ない材質として単結晶ダイアモンド刃が特に好ましいが、切刃の材質及び表面処理を限定するものではない。   When the cutting surface of the sample is formed by the cutting blade, for example, a known cutting blade such as a knife or a metallic cutter can be used as the cutting blade, but hopefully it is found in Japanese Patent Publication No. 7-26908. It is desirable to form the cutting surface using a precise cutting device. In addition, the cutting blade of precision cutting equipment is required to be a sharp and hard cutting blade, so it has a high hardness, excellent wear resistance, durability and heat resistance, and a material with little spillage. Although a single crystal diamond blade is particularly preferable, the material and surface treatment of the cutting blade are not limited.

また、試料の連続的な切削面を形成する際の切削条件としては、切刃の刃幅0.3〜4mm、切削加工時間10〜3600sec、切刃垂直移動速度0.002〜5μm/sec、切削深度0〜1000μm、切刃水平移動速度0.02〜50μm/sec、切刃が試料の表面から内部に向けて連続的な斜め切削断面を形成する場合には、切削する切削速度比(切刃垂直移動速度/切刃水平移動速度)が1/5から1/20であることが好ましく、試料の種類や硬さや弾性によって調整が行えるものであるが、これに限定されるものではない。   Further, as cutting conditions when forming a continuous cutting surface of the sample, the cutting edge width 0.3 to 4 mm, the cutting time 10 to 3600 sec, the cutting edge vertical moving speed 0.002 to 5 μm / sec, When the cutting depth is 0 to 1000 μm, the horizontal movement speed of the cutting edge is 0.02 to 50 μm / sec, and the cutting edge forms a continuous oblique cutting section from the surface of the sample to the inside, the cutting speed ratio (cutting) The blade vertical movement speed / cutting blade horizontal movement speed) is preferably 1/5 to 1/20, and can be adjusted by the type, hardness, and elasticity of the sample, but is not limited thereto.

また、試料の段階的な切削面を形成する際の切削条件としては、切刃の刃幅0.3〜4mm、切削加工時間10〜3600sec、切刃垂直移動速度0.002〜5μm/sec、切削深度0〜1000μm、切刃水平移動速度0.02〜50μm/sec、切刃が試料の表面から内部に向けて連続的な斜め切削断面を形成する場合には、切削する切削速度比(切刃垂直移動速度/切刃水平移動速度)が1/5から1/20であることが好ましく、試料の種類や硬さや弾性によって調整が行えるものであるが、これに限定されるものではない。また、切削速度比については、切削途中に切刃を試料表面に対して平行方向に移動させ切削することによって切削面を形成する場合は、この条件比に限定されない。   Moreover, as cutting conditions when forming the stepped cutting surface of the sample, the cutting edge width 0.3 to 4 mm, the cutting time 10 to 3600 sec, the cutting edge vertical moving speed 0.002 to 5 μm / sec, When the cutting depth is 0 to 1000 μm, the horizontal movement speed of the cutting edge is 0.02 to 50 μm / sec, and the cutting edge forms a continuous oblique cutting section from the surface of the sample to the inside, the cutting speed ratio (cutting) The blade vertical movement speed / cutting blade horizontal movement speed) is preferably 1/5 to 1/20, and can be adjusted by the type, hardness, and elasticity of the sample, but is not limited thereto. In addition, the cutting speed ratio is not limited to this condition ratio when the cutting surface is formed by moving the cutting blade in the direction parallel to the sample surface during cutting and cutting.

更に、試料の材質等によって、試料を切削するための最適な条件を変更し、切削することができる。   Furthermore, the optimum conditions for cutting the sample can be changed and cut according to the material of the sample.

本発明でいうテーパ状に切削するとは、円錐等のような先細りになっている状態、勾配状に切削することである。   The term “tapered” as used in the present invention means that the taper is cut in a tapered state such as a cone or the like.

本発明でいうZ軸方向、X軸方向及びY軸方向の三次元の画像情報を、画像取得手段によって切削前の試料の表面から見て二次元的に取得するとは、Z軸方向(深さ方向)及びXY軸方向(縦横方向)の三次元の切削面画像情報を、平面的な二次元の切削面画像情報として、切削前の試料の表面方向から電子顕微鏡等の画像取得手段によって取得することである。   The three-dimensional image information in the Z-axis direction, X-axis direction, and Y-axis direction referred to in the present invention is acquired two-dimensionally when viewed from the surface of the sample before cutting by the image acquisition means. Direction) and XY axis direction (longitudinal and lateral directions), three-dimensional cutting surface image information is acquired as planar two-dimensional cutting surface image information from the surface direction of the sample before cutting by an image acquisition means such as an electron microscope. That is.

形成した試料の切削面、並びに切削にともなう切削片の切削面の、インキ皮膜内部の深度方向の状態、紙の深度方向へのインキ及び添加薬品の転移状態、基材との界面の状態、浸透状態及び分布状態、並びに試料の切削面、並びに切削にともなう切削片の切削面の紙層構造及び塗工層構造の観察時間には多少のズレがあっても良いが、その中でも試料への浸透性や表面への拡散性の高いインキなどの分散状態及び浸透状態を観察する場合には、切削面において化学変化を少なくし、形態が異なったりしないように切削環境から温湿度の影響を極力削減し、組成構造及び組成骨格が表面層とは異なるバルク状態であることが好ましいことから、切削加工後、すみやかに画像情報を取得するか、あるいは四酸化オスミウムまたは臭素等による化学的処理を施すことが望ましい。   The cutting surface of the formed sample, and the cutting surface of the cut piece accompanying cutting, the depth direction inside the ink film, the transfer state of ink and additive chemicals in the depth direction of the paper, the interface state with the substrate, and the penetration There may be some deviation in the observation time of the paper layer structure and the coating layer structure of the state and distribution state, the cut surface of the sample, and the cut surface of the cut piece accompanying the cutting, but among them, the penetration into the sample When observing the state of dispersion and penetration of ink, etc., which has high diffusibility and diffusibility to the surface, reduce the chemical change on the cutting surface and reduce the influence of temperature and humidity from the cutting environment as much as possible so that the form does not differ However, since it is preferable that the composition structure and the composition skeleton are in a bulk state different from that of the surface layer, image information is acquired immediately after cutting, or chemistry with osmium tetroxide or bromine is used. It is desirable to perform the processing.

化学的処理の一例として、試料の切削面または切削片に含まれる被観察物質において、二重結合が含まれる場合には、四酸化オスミウムまたは臭素を選択的に付加反応させる方法が簡便でかつ有効である。試料が多孔質の場合には切削前に気相処理によって試料内部まで付加させてもよいし、切削後に前記化学物質を付加させた後、試料を一旦真空中に放置し、物理吸着した化学物質を取り除いてもよい。   As an example of chemical treatment, when the observed substance contained in the cut surface or cut piece of the sample contains double bonds, the method of selectively adding osmium tetroxide or bromine is simple and effective. It is. When the sample is porous, it may be added to the inside of the sample by gas phase treatment before cutting, or after the chemical substance is added after cutting, the sample is left in vacuum and physically adsorbed. May be removed.

形成した試料の切削面、並びに切削にともなう切削片の切削面の画像情報取得手段において、光学顕微鏡、電子顕微鏡あるいは元素分析装置を用い、場合によっては化学処理を行い、紙への塗工液の浸透及び分布状態、インキ皮膜内部の深度方向の状態、紙の紙層構造及び塗工層構造を観察または可視化する。   In the image information acquisition means of the cut surface of the formed sample and the cut surface of the cutting piece accompanying the cutting, an optical microscope, an electron microscope or an elemental analysis device is used. Observe or visualize the penetration and distribution state, the depth direction inside the ink film, the paper layer structure of the paper, and the coating layer structure.

紙における、形成した試料の切削面、並びに切削にともなう切削片の切削面の観察法に関して、表面から斜め方向に内部に切削し切削面を形成し、場合によっては化学処理を行い、光学顕微鏡またはSEM(電子顕微鏡)で拡大観察し、並びにEDX(エネルギー分散型蛍光X線分析)やEPMA(電子線マイクロアナライザ)等による元素分析装置による元素マッピングをし、塗工液、内添薬品等の浸透状態及び分布状態をモニタに映し、さらにはモニタの画像をプリンタ等の出力装置で出力することで可視化画像を得て解析に供する。   Regarding the method of observing the cut surface of the formed sample and the cut surface of the cutting piece that accompanies the cutting, a cutting surface is formed in an oblique direction from the surface to form a cut surface, and in some cases a chemical treatment is performed, and an optical microscope or Enlarged observation with SEM (electron microscope), element mapping with elemental analyzers such as EDX (energy dispersive X-ray fluorescence analysis) and EPMA (electron beam microanalyzer), and penetration of coating liquids and internal chemicals The state and distribution state are displayed on a monitor, and the monitor image is output by an output device such as a printer to obtain a visualized image for analysis.

印刷物における、形成した試料の切削面、並びに切削にともなう切削片の切削面の観察法に関して、表面から斜め方向に内部に切削し切削面を形成し、インキ成分が不飽和二重結合または末端二重結合を持つバインダー成分を含む場合によっては化学的な修飾処理を行い、光学顕微鏡またはSEM(電子顕微鏡)で拡大観察し、並びにEDX(エネルギー分散型蛍光X線分析)やEPMA(電子線マイクロアナライザ)等による元素分析装置による元素マッピングをし、印刷物の表面状態、インキ皮膜内の状態及び印刷基材に内部の深度位置におけるワニス成分、顔料成分等のインキ構成成分の分布をはじめとしバインダー成分の反応状態をもモニタに映し、さらにはモニタの画像をプリンタ等の出力装置で出力することで可視化画像を得て解析に供する。   As for the observation method of the cut surface of the formed sample and the cut surface of the cut piece in the printed material, the cut surface is cut inwardly from the surface to form the cut surface, and the ink component is unsaturated double bond or terminal double. In some cases, it contains a binder component with a heavy bond, and is subjected to chemical modification treatment, magnified observation with an optical microscope or SEM (electron microscope), EDX (energy dispersive X-ray fluorescence analysis) and EPMA (electron beam microanalyzer). ) Etc. by elemental analysis with an elemental analyzer, the surface state of the printed matter, the state in the ink film and the distribution of the ink constituents such as the varnish component and the pigment component at the depth position inside the printing substrate. The reaction state is also displayed on the monitor, and the monitor image is output by an output device such as a printer to obtain a visualized image. Subjected to analysis.

インキの乾燥においては、熱風乾燥、遠赤外線乾燥等の強制的な加熱乾燥はもちろん常温で架橋効果があるものでも制限はなく、印刷インキのバインダー成分が二次元、あるいは三次元架橋を目的とした強制的な乾燥方法として、電子線、あるいは紫外線を用いた方法があり、形成した切削面の化学的な修飾を含む反応を防ぐために凍結した状態で紙又は印刷物を切削するとさらに望ましい。   In the drying of the ink, there is no restriction even if it has a crosslinking effect at room temperature as well as forced heating drying such as hot air drying, far-infrared drying, etc., and the binder component of the printing ink is intended for two-dimensional or three-dimensional crosslinking As a forced drying method, there is a method using an electron beam or ultraviolet rays, and it is more desirable to cut the paper or printed matter in a frozen state in order to prevent a reaction including chemical modification of the formed cutting surface.

本発明で用いる試料において、極薄い又は柔らかい紙のような材質を切削するにあたっては、被観察物質が溶解せず分布状態等に影響を及ぼさない水等に代表される媒体で、調湿したり、浸漬したりした後、液体窒素等で媒体を凍結した状態で切削し、その後、凍結乾燥等を行うことによって更に切削を容易にし、観察に適した試料の切削面を提供できる。   In the sample used in the present invention, when cutting a material such as ultra-thin or soft paper, humidity is adjusted with a medium such as water that does not dissolve the substance to be observed and does not affect the distribution state, etc. Then, after the immersion, cutting is performed in a state where the medium is frozen with liquid nitrogen or the like, and then lyophilization or the like is performed to further facilitate cutting and provide a cutting surface of a sample suitable for observation.

被印刷体とインキは、印刷物の濃度、均一性等の印刷物品質をはじめ浸透インキのプリントスルー等トラブルに関する重要な要因となっている。これらの情報を簡便にかつ的確に得ることによって、塗工材料の開発、塗工方法の検討、カレンダー条件の検討をはじめ、浸透をコントロールしたインキの開発に大きく寄与できる。特に、用紙内部での目視で判定できない情報を可視化し、さらに拡大画像として取得でき、本発明の利用可能分野は広い。   The material to be printed and ink are important factors relating to troubles such as print-through of penetrating ink as well as quality of printed matter such as density and uniformity of printed matter. Obtaining this information easily and accurately can greatly contribute to the development of inks with controlled penetration, including the development of coating materials, the study of coating methods, and the study of calendar conditions. In particular, information that cannot be determined by visual inspection inside the paper can be visualized and further acquired as an enlarged image, and the fields in which the present invention can be used are wide.

次に、本発明を実施例及び比較例によって具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、本実施例及び比較例では、上質紙及びコート紙を用い、水性グラビアインキ(ディックセーフWH507原色藍:大日本インキ化学工業株式会社製)を使用し、線数250線、版深24μmからなるグラビア版面の画線部にインキを充填し、490N/cmの印刷圧力を加え、上質紙及びコート紙に印刷した。   EXAMPLES Next, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited to a following example. In this example and comparative example, high-quality paper and coated paper were used, water-based gravure ink (Dick Safe WH507 primary color: manufactured by Dainippon Ink & Chemicals, Inc.) was used, and the number of lines was 250 and the plate depth was 24 μm. Ink was filled in the image area of the gravure printing plate, and a printing pressure of 490 N / cm was applied to print on fine paper and coated paper.

上記条件にて印刷を行った後、図2に示すような連続的な切削面形成法によって上質紙及びコート紙の切削面を形成する。その際の切削面形成は、表面・界面物性解析装置(ダイプラ・ウィンティス株式会社製)を用いて、切刃(2)の刃幅1mm、切刃水平移動速度0.5μm/sec及び切刃垂直移動速度0.05μm/secにて、試料表面に対して切削角度約6°で切削深度(5)60μmの深さまで長距離にわたる斜め切削面(7)を600μmに展開して形成し印刷物の切削加工を約2分間の切削時間で行った。   After printing under the above conditions, the cut surfaces of the fine paper and the coated paper are formed by a continuous cutting surface forming method as shown in FIG. In this case, the cutting surface was formed by using a surface / interface physical property analyzer (Daipura Wintis Co., Ltd.), the blade width of the cutting blade (2), the cutting blade horizontal movement speed of 0.5 μm / sec, and the cutting blade. At a vertical moving speed of 0.05 μm / sec, an oblique cutting surface (7) extending over a long distance up to a depth of 60 μm at a cutting angle of about 6 ° with respect to the sample surface is developed to 600 μm and formed on the printed material. Cutting was performed with a cutting time of about 2 minutes.

図4は、上記条件で形成した上質紙の切削面(7)を80倍に拡大した写真である。まず、印刷を行った上質紙の切削面において光学的顕微鏡を用い、印刷物の試料の表面(1)及び切削面(7)の画像をモニタで写し、さらにプリントアウトし観察し評価を行った。その結果、上質紙においては紙の表面の平滑性が劣り、切削面において絡み合う繊維(8)間からなる凹凸が紙の表面及び内部まで存在しており、凹部へのインキの転移状態(10)及びうっすらと観察されるインキの浸透状態(9)が観察できた。   FIG. 4 is a photograph in which the cut surface (7) of the fine paper formed under the above conditions is enlarged 80 times. First, images of the surface (1) and the cut surface (7) of the sample of the printed matter were copied on a monitor using an optical microscope on the cut surface of the fine paper on which printing was performed, and further printed out, observed, and evaluated. As a result, the quality of the high quality paper is inferior in smoothness of the paper surface, and irregularities formed between the fibers (8) intertwined on the cutting surface exist up to the surface and inside of the paper, and the state of ink transfer to the concave portion (10) In addition, the ink permeation state (9), which was observed slightly, could be observed.

図5は、上記条件で形成したコート紙の切削面(7)を80倍に拡大した写真である。まず、印刷を行ったコート紙の切削面において光学的顕微鏡を用い、印刷物の表面(1)及び切削面(7)の画像をモニタで写し、さらにプリントアウトし観察し評価を行った。その結果、コート紙においては、紙の表面には平滑な塗工面があり、表層付近に繊維は観察されなかった。また、表面から内部にかけてインキの浸透状態(9)を示す青い点が観察でき、深くなるにつれて青い点の分布が少なくなった。コート紙は、塗工剤が紙表面を覆っているため、塗工層の細孔部分から内部に毛細管現象によって紙内部に浸透していることが分かる。   FIG. 5 is a photograph in which the cut surface (7) of the coated paper formed under the above conditions is magnified 80 times. First, using an optical microscope on the cut surface of the coated paper on which printing was performed, images of the surface (1) and the cut surface (7) of the printed matter were copied on a monitor, printed out, observed, and evaluated. As a result, in the coated paper, the paper surface had a smooth coated surface, and fibers were not observed near the surface layer. In addition, a blue dot indicating the ink permeation state (9) was observed from the surface to the inside, and the distribution of the blue dot decreased with increasing depth. In the coated paper, since the coating agent covers the paper surface, it can be seen that the inside of the paper penetrates from the pores of the coating layer into the inside by capillary action.

図6は、上記条件で形成したコート紙の切削面(7)を低真空SEMで観察した際の組成像を示している。組成像の中では、主に有機物で構成される繊維と浸透したインキは、塗工層よりも暗く観察された。塗工層の中に、露出した原紙の繊維の絡み合い状態が深さ方向にわたって観察できる。   FIG. 6 shows a composition image when the cut surface (7) of the coated paper formed under the above conditions is observed with a low vacuum SEM. In the composition image, fibers mainly composed of organic substances and permeated ink were observed darker than the coating layer. In the coating layer, the entangled state of the exposed base paper fibers can be observed in the depth direction.

(比較例)
図7は、紙または印刷物の断面形成法を示したものである。実施例で形成した印刷物を集束イオンビーム法で断面を形成したが、平面的に点在する細孔は断面に観察されず、コート層の表面部分に存在するインキ層、コート層及び紙層構造が断面から観察されるのみであり、本発明に係わる観察法が、特に、深さ方向に対して厚さの少ない薄い被観察層部分、及び平面的に散点状に点在する特徴を一つの観察試料で、簡便に観察するのに適していることが分かった。
(Comparative example)
FIG. 7 shows a method for forming a cross section of paper or printed matter. The cross section of the printed matter formed in the example was formed by the focused ion beam method, but the pores scattered in a plane were not observed in the cross section, and the ink layer, the coat layer, and the paper layer structure existing on the surface portion of the coat layer The observation method according to the present invention, in particular, is characterized by a thin layer to be observed having a small thickness in the depth direction, and features scattered in a dotted pattern on a plane. It was found that two observation samples are suitable for simple observation.

切削装置の全体図を示す。An overall view of a cutting device is shown. 試料の連続的な切削面形成状態を示す。The continuous cutting surface formation state of a sample is shown. 試料の断続的な切削面形成状態を示す。The intermittent cutting surface formation state of a sample is shown. 本発明における上質紙の切削面の写真を示す(×80倍)。The photograph of the cutting surface of the quality paper in this invention is shown (x80 times). 本発明におけるコート紙の切削面の写真を示す(×80倍)。The photograph of the cut surface of the coated paper in this invention is shown (x80 times). 本発明におけるコート紙の切削面の低真空SEMによる組成像の写真を示す(×80倍)。The photograph of the composition image by the low vacuum SEM of the cutting surface of the coated paper in this invention is shown (x80 times). 紙または印刷物の断面形成法を示す。The cross-section formation method of paper or printed matter is shown.

符号の説明Explanation of symbols

1 試料の表面
2 切刃
3 カメラ
4 モニタ
5 切削深度
6 切削距離
7 切削面
8 繊維
9 インキの浸透状態
10 インキの転移状態
11 切削片の切削面
12 切削距離
DESCRIPTION OF SYMBOLS 1 Sample surface 2 Cutting edge 3 Camera 4 Monitor 5 Cutting depth 6 Cutting distance 7 Cutting surface 8 Fiber 9 Ink penetration state 10 Ink transfer state 11 Cutting surface 12 Cutting distance

Claims (4)

試料の表面から内部に向けて切刃によって所定の角度でテーパ状に切削し、切削によって形成される試料の切削面、並びに切削にともなう切削片の切削面におけるZ軸方向、X軸方向及びY軸方向の三次元の画像情報を、画像取得手段によって切削前の試料の表面方向から見て二次元的に取得し、画像生成手段によって前記画像情報を画像表示、及び/又は画像出力することを特徴とする試料の切削面情報取得方法。 Cutting from the surface of the sample into a taper at a predetermined angle with a cutting blade from the surface to the inside, the Z-axis direction, the X-axis direction, and the Y-axis on the cutting surface of the sample formed by cutting, and the cutting surface of the cutting piece that accompanies the cutting The three-dimensional image information in the axial direction is acquired two-dimensionally when viewed from the surface direction of the sample before cutting by the image acquisition means, and the image information is displayed and / or output as an image by the image generation means. A method for obtaining cutting surface information of a sample. 試料の表面から内部に向けて切刃によって所定の角度でテーパ状に切削し、該切刃が所定の切削深度に到達した後、切刃を試料表面に対して平行方向に移動させ切削することによって切削面を形成し、更に所定の角度でテーパ状に所定の切削深度に到達するまで切削し、切削を段階的に行うことによって形成される試料の切削面、並びに切削にともなう切削片の切削面におけるZ軸方向、X軸方向及びY軸方向の三次元の画像情報を、画像取得手段によって切削前の試料の表面方向から見て二次元的に取得し、画像生成手段によって前記画像情報を画像表示、及び/又は画像出力することを特徴とする試料の切削面情報取得方法。 Cutting from the surface of the sample to the inside with a cutting edge in a tapered shape at a predetermined angle, and after the cutting blade has reached a predetermined cutting depth, the cutting blade is moved in a direction parallel to the sample surface for cutting. Then, the cutting surface is formed by cutting the tape to a predetermined angle at a predetermined angle until the predetermined cutting depth is reached, and the cutting surface of the sample formed by performing the cutting stepwise, and the cutting of the cutting piece accompanying the cutting. Three-dimensional image information in the Z-axis direction, X-axis direction, and Y-axis direction on the surface is obtained two-dimensionally when viewed from the surface direction of the sample before cutting by the image acquisition means, and the image information is obtained by the image generation means. A method for acquiring cutting surface information of a sample, characterized by displaying an image and / or outputting an image. 前記画像取得手段により取得した前記試料の切削面、並びに切削にともなう切削片の切削面の画像を、前記画像生成手段によって拡大表示及び/又は拡大印字出力することを特徴とする請求項1又は2記載の試料の切削面情報取得方法。 3. The image of the cutting surface of the sample acquired by the image acquisition unit and the cutting surface of the cutting piece resulting from the cutting are enlarged and / or output by the image generation unit. The cutting surface information acquisition method of the sample of description. 前記画像取得手段で取得した前記試料の切削面、並びに切削にともなう切削片の切削面の画像情報を、元素分析装置により元素マッピングを行うことを特徴とする請求項1又は2記載の試料の切削面情報取得方法。

The cutting of the sample according to claim 1 or 2, wherein element mapping is performed on the cutting surface of the sample acquired by the image acquisition means and the cutting surface of the cutting piece accompanying the cutting by an element analyzer. Surface information acquisition method.

JP2003365590A 2003-10-27 2003-10-27 Method for obtaining cut face information of sample Pending JP2005127938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003365590A JP2005127938A (en) 2003-10-27 2003-10-27 Method for obtaining cut face information of sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003365590A JP2005127938A (en) 2003-10-27 2003-10-27 Method for obtaining cut face information of sample

Publications (1)

Publication Number Publication Date
JP2005127938A true JP2005127938A (en) 2005-05-19

Family

ID=34644211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003365590A Pending JP2005127938A (en) 2003-10-27 2003-10-27 Method for obtaining cut face information of sample

Country Status (1)

Country Link
JP (1) JP2005127938A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007256256A (en) * 2006-02-23 2007-10-04 Nippon Steel Corp Method of evaluating thickness-directional component concentration of metal sample by spark discharge emission spectrophotometric analysis
JP2008281528A (en) * 2007-05-14 2008-11-20 Nitto Bunseki Center:Kk Pretreatment method and pretreatment apparatus of thin film laminated material
US9395307B2 (en) 2013-06-24 2016-07-19 Ricoh Company, Ltd. Device and method for measuring infiltration
KR101806486B1 (en) * 2016-04-26 2018-01-10 주식회사 인포웍스 Method and computer readable recording medium for preparing surface and interfacial sample of thin layer materials
CN108458970A (en) * 2018-03-12 2018-08-28 哈尔滨理工大学 A kind of interrupted cut experimental rig for blade weldbonding
JP2018194469A (en) * 2017-05-18 2018-12-06 住友ゴム工業株式会社 Method for observing sample
JP2021508039A (en) * 2018-06-21 2021-02-25 エルジー・ケム・リミテッド A method for quantifying the amine compound constituting the separation membrane active layer before the production of the separation membrane active layer, a method for quantifying the polyamide or unreacted amine compound in the separation membrane active layer, and setting of production conditions for the separation membrane active layer. How to set standards or manufacturing conditions

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007256256A (en) * 2006-02-23 2007-10-04 Nippon Steel Corp Method of evaluating thickness-directional component concentration of metal sample by spark discharge emission spectrophotometric analysis
JP4762852B2 (en) * 2006-02-23 2011-08-31 新日本製鐵株式会社 Method for evaluating the concentration of components in the thickness direction of metal samples by spark discharge emission spectrometry
JP2008281528A (en) * 2007-05-14 2008-11-20 Nitto Bunseki Center:Kk Pretreatment method and pretreatment apparatus of thin film laminated material
US9395307B2 (en) 2013-06-24 2016-07-19 Ricoh Company, Ltd. Device and method for measuring infiltration
KR101806486B1 (en) * 2016-04-26 2018-01-10 주식회사 인포웍스 Method and computer readable recording medium for preparing surface and interfacial sample of thin layer materials
JP2018194469A (en) * 2017-05-18 2018-12-06 住友ゴム工業株式会社 Method for observing sample
CN108458970A (en) * 2018-03-12 2018-08-28 哈尔滨理工大学 A kind of interrupted cut experimental rig for blade weldbonding
JP2021508039A (en) * 2018-06-21 2021-02-25 エルジー・ケム・リミテッド A method for quantifying the amine compound constituting the separation membrane active layer before the production of the separation membrane active layer, a method for quantifying the polyamide or unreacted amine compound in the separation membrane active layer, and setting of production conditions for the separation membrane active layer. How to set standards or manufacturing conditions
JP7318852B2 (en) 2018-06-21 2023-08-01 エルジー・ケム・リミテッド A method for quantifying amine compounds constituting the separation membrane active layer before manufacturing the separation membrane active layer, a method for quantifying polyamide or unreacted amine compounds in the separation membrane active layer, and setting conditions for manufacturing the separation membrane active layer How to set standards or manufacturing conditions

Similar Documents

Publication Publication Date Title
EP1144989B1 (en) Nanotomography
US8366857B2 (en) Methods, apparatus and systems for production, collection, handling, and imaging of tissue sections
TW201015057A (en) Method for manufacturing an electron tomography specimen with fiducial markers and method for constructing 3D image
JP2005127938A (en) Method for obtaining cut face information of sample
JP2007047053A (en) Method for preparing sample for transmission electron microscope observation
Erdman et al. Precise SEM cross section polishing via argon beam milling
Bonse et al. Probing the heat affected zone by chemical modifications in femtosecond pulse laser ablation of titanium nitride films in air
JP2010230518A (en) Thin sample preparing method
JP6876455B2 (en) Observation method and sample preparation method
RU2570093C2 (en) Method of device analysis
JP2008256560A (en) Thin film sample and method of manufacturing the same
Harant et al. Solvent vapor annealed block copolymer films on organosilane self-assembled monolayers
Besserer et al. Specimen preparation by ion beam slope cutting for characterization of ductile damage by scanning electron microscopy
JP6933046B2 (en) Method for preparing analytical sample
JP2005233786A (en) Needle-like sample for local analysis, sample holder assembly, local analyzer and method for manufacturing needle-like sample for local analysis
JP2008014899A (en) Sample preparing method
Tyurina Scanning electron microscope: Transmigration of scientific photography into the domain of art
WO2014041571A1 (en) Element for making replicas in material surface investigations and method suited to carry out such investigations.
JP5879567B2 (en) X-ray diffraction sample rocking device, X-ray diffraction device, and X-ray diffraction pattern measurement method
JP3044298B2 (en) Cross-section preparation method and cross-section observation method for paper or printed matter
JP3210969B2 (en) Cross-section preparation of paper or printed matter
KR101853323B1 (en) Methods of analyzing specimen
JP2017518162A (en) Porous membrane pattern formation technology
DE19932357C2 (en) Process for the preparation of synthetic particle samples
JP2008203001A (en) Preparation method of lamellar powder having coating layer provided to surface of the powder, and thickness measuring method of coating layer using the powder