JP2005233786A - Needle-like sample for local analysis, sample holder assembly, local analyzer and method for manufacturing needle-like sample for local analysis - Google Patents

Needle-like sample for local analysis, sample holder assembly, local analyzer and method for manufacturing needle-like sample for local analysis Download PDF

Info

Publication number
JP2005233786A
JP2005233786A JP2004043389A JP2004043389A JP2005233786A JP 2005233786 A JP2005233786 A JP 2005233786A JP 2004043389 A JP2004043389 A JP 2004043389A JP 2004043389 A JP2004043389 A JP 2004043389A JP 2005233786 A JP2005233786 A JP 2005233786A
Authority
JP
Japan
Prior art keywords
needle
sample
local analysis
main surface
columnar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004043389A
Other languages
Japanese (ja)
Inventor
Teruyuki Konno
晃之 金野
Hideyuki Yamazaki
英之 山崎
Michihiro Ouse
路博 合瀬
Hideki Satake
秀喜 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004043389A priority Critical patent/JP2005233786A/en
Publication of JP2005233786A publication Critical patent/JP2005233786A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a needle-like sample for local analysis capable of being manufactured by extracting a desired position from a membrane state or a planar state, easy to handle when or after the sample is manufactured, easy in the angular control of the sample at the time of introduction of APFIM and enhanced in reproducibility, a sample holder assembly, a local analyzer and a method for manufacturing the needle-like sample for local analysis. <P>SOLUTION: The needle-like sample for local analysis is equipped with a substrate part 2 having a first main surface and the second main surface opposed to the first main surface, the columnar part 3 protruded from the first main surface and a needle-like part 4 sharpened so as to form a cone from the end part on the side opposed to the side connected to the substrate part 2 of the columnar part 3 to the protruding direction of the columnar part 3. A region 74 to be measured for local analysis is added to the leading part of the needle-like part 4. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は,電界イオン顕微鏡又はアトムプローブ電界イオン顕微鏡等の局所分析装置に好適な局所分析用針状試料に係り,特に,局所分析用針状試料,局所分析用針状試料を保持する試料ホルダ組立体,局所分析装置,及び局所分析用針状試料の作製方法に関する。   The present invention relates to a needle sample for local analysis suitable for a local analyzer such as a field ion microscope or an atom probe field ion microscope, and more particularly, a needle sample for local analysis, a sample holder for holding a needle sample for local analysis. The present invention relates to an assembly, a local analyzer, and a method for producing a needle sample for local analysis.

磁気記録の高密度化や電子デバイスの微細化の進展は,材料研究やプロセス技術の進歩に負うところが大きいが,進歩の原動力として分析技術も着実な進歩を続けている。特に,高密度化及び微細化に応じて,より微小な領域の構造や性質を調べる技術が要求されており,求められる空間分解能は,ミクロンレベルからナノメートルレベルないし原子レベルまで達しつつある。   Advances in materials recording and process technology greatly depend on the progress of high-density magnetic recording and miniaturization of electronic devices, but analytical technology continues to make steady progress as the driving force of progress. In particular, as the density and miniaturization increase, a technique for examining the structure and properties of smaller regions is required, and the required spatial resolution is reaching from the micron level to the nanometer level to the atomic level.

原子レベルでの局所分析技術として近年注目を集めているものに,電界イオン顕微鏡(FIM)及びアトムプローブ電界イオン顕微鏡(アトムプローブ)がある。FIM及びアトムプローブは,針状に整形した試料に数kVから10kVオーダーの高電圧を印加し,先端に生じる高電界を利用して試料先端部分の構造を調べる技術である。FIMにおいては,まず真空チャンバー内に導入されたイメージングガスが試料先端近傍でイオン化する。イオン化した物質は,電界に導かれて試料に対向したマイクロチャネルプレートなどの検出器側に移動し,結像する。この結果,試料先端部分の構造が原子分解能で観察できる。一方,アトムプローブは,FIMの機能を拡張した分析装置で,高電界により試料先端部分の原子そのものを電界蒸発させ,電界蒸発により生じたイオンを質量分析することにより試料先端の物質が同定できる。電界蒸発は,試料の先端面から順次起こっていくため,試料先端からの原子の深さ方向分布を原子レベルの分解能で調べることができる。   Recently, field ion microscopes (FIM) and atom probe field ion microscopes (atom probes) are attracting attention as local analysis techniques at the atomic level. FIM and atom probe are techniques for applying a high voltage on the order of several kV to 10 kV to a sample shaped like a needle and examining the structure of the sample tip using a high electric field generated at the tip. In FIM, the imaging gas introduced into the vacuum chamber is first ionized in the vicinity of the sample tip. The ionized substance is guided to an electric field and moves to the detector side such as a microchannel plate facing the sample, and forms an image. As a result, the structure of the sample tip can be observed with atomic resolution. On the other hand, the atom probe is an analyzer that expands the function of the FIM, and the substance at the tip of the sample can be identified by subjecting the atom itself at the tip of the sample to field evaporation with a high electric field and mass analysis of ions generated by the field evaporation. Since field evaporation occurs sequentially from the tip surface of the sample, the depth distribution of atoms from the sample tip can be examined with atomic resolution.

近年,検出器部分の改良により,3次元アトムプローブ(トモグラフィックアトムプローブ又はポジションセンシティブアトムプローブ)と呼ばれる技術が登場している。3次元アトムプローブは,試料先端の原子の位置及び原子種を同時に測定できるため,試料先端の構造を原子分解能で3次元的に再構成できる点で他の局所分析装置にはない特長を有し,注目を集めている。以下,3次元アトムプローブを含むアトムプローブ及びFIMを総称して「APFIM」と呼ぶ。   In recent years, a technique called a three-dimensional atom probe (tomographic atom probe or position sensitive atom probe) has appeared due to improvements in the detector portion. The 3D atom probe can measure the position and species of the atom at the tip of the sample at the same time, so it has a feature not available in other local analyzers in that the structure at the tip of the sample can be reconstructed three-dimensionally with atomic resolution. , Attracting attention. Hereinafter, the atom probe and the FIM including the three-dimensional atom probe are collectively referred to as “APFIM”.

APFIMは高電界を利用するため,分析する試料には金属等の導電性の高い固体を用いる場合が多い。しかも,試料の形状は,一般的には,先端径100nm前後若しくはそれ以下の針状にする必要がある。このため,従来は,ワイヤ形状をもつ均一な材料から電解研磨して針状の試料を作製するのが一般的である。薄膜や多層膜の分析にAPFIMを採用するために,電解研磨で作った針の先端に所望の膜を成膜する手法が試みられた。しかし,薄膜や多層膜の分析として本来要求されるのは,実際に平板な基板または下地層の上に形成された膜そのものを分析することである。このため,APFIM分析用の針の先端に新たな薄膜を成膜する技術では,本来の目的を達成することができなかった。   Since APFIM uses a high electric field, a highly conductive solid such as a metal is often used as a sample to be analyzed. Moreover, the shape of the sample generally needs to be a needle shape with a tip diameter of around 100 nm or less. For this reason, conventionally, a needle-shaped sample is generally produced by electrolytic polishing from a uniform material having a wire shape. In order to employ APFIM for the analysis of thin films and multilayer films, an attempt was made to deposit a desired film on the tip of a needle made by electropolishing. However, what is originally required for the analysis of thin films and multilayer films is to analyze the film itself actually formed on the flat substrate or the underlayer. For this reason, the original purpose cannot be achieved by the technique of forming a new thin film on the tip of the needle for APFIM analysis.

一方,微細加工技術の進歩によって,試料作製上の制約を除去し,従来では不可能だった薄膜のAPFIMによる分析例が報告され始めている。D.J.ラーソン(Larson)らは,リソグラフィ技術によって作った柱状構造体の上に所望の磁性積層膜を形成し,その後柱状構造体を折り取ったものを金属ワイヤの先端に接着し,磁性積層膜を含む先端部分を収束イオンビーム(FIB)で加工することによってAPFIM分析用の針状試料を作製し,3次元アトムプローブで分析することに成功している。さらに,D.J.ラーソンらは,ダイヤモンドの微粒子をマスクとして用いることにより,0.5mm角に切断したSi基板上の薄膜を加工して円錐状の構造を形成し,その先端部分の質量スペクトルを得ている。   On the other hand, with the progress of microfabrication technology, the sample production restrictions have been removed, and thin film APFIM analysis examples that have been impossible in the past have started to be reported. D. J. et al. Larson et al. Formed a desired magnetic layered film on a columnar structure made by lithography technology, and then bonded the folded structure of the columnar structure to the tip of the metal wire to include the magnetic layered film A needle-like sample for APFIM analysis was produced by processing the tip portion with a focused ion beam (FIB), and was successfully analyzed with a three-dimensional atom probe. In addition, D.C. J. et al. Larson et al. Processed a thin film on a Si substrate cut into 0.5 mm square by using diamond fine particles as a mask to form a conical structure, and obtained a mass spectrum at the tip.

また,平面状試料を直接FIBで加工して円錐状の構造を作り,それを折り取って金属ワイヤ先端に接着することで,針状試料を作製する技術も提案されている(例えば,特許文献1参照。)。平面状試料から円錐状の構造を作る手法を用いることにより,原理的には,平面状試料表面の所望の位置を含む針状試料が作製可能である。
特開2001−208659号公報
In addition, a technique has also been proposed in which a flat sample is directly processed by FIB to create a conical structure, which is broken and bonded to the tip of a metal wire (for example, a patent document). 1). In principle, a needle-shaped sample including a desired position on the surface of the planar sample can be produced by using a method of creating a conical structure from the planar sample.
JP 2001-208659 A

上述したAPFIM測定用の試料作製方法は,従来になかったAPFIMの適用可能性を示すものではあるが,いくつかの課題も有している。   The above-described sample preparation method for APFIM measurement shows applicability of APFIM, which has not been heretofore, but has some problems.

リソグラフィによって小さな柱状構造体を作り,柱状構造体の上に分析対象となる膜を成膜し被測定試料とする方法では,実際に基板の平面上に成膜した膜の構造と全く同一になる保証はない。また、成膜は柱状構造体の形成後であるため、基板上に形成された膜の所望の位置を分析する目的には使用することができない。即ち,磁気記録媒体や素子の開発等の分野にAPFIM分析を応用する場合に望まれるのは,記録媒体や素子として既に形成された膜の所望の位置の構造を調べることであるのに,柱状構造体を形成した後に成膜する方法では、本来の目的を達成することができない。   In a method in which a small columnar structure is formed by lithography and a film to be analyzed is formed on the columnar structure and used as a sample to be measured, the structure of the film actually formed on the plane of the substrate is exactly the same. There is no guarantee. Further, since the film formation is after the formation of the columnar structure, it cannot be used for the purpose of analyzing a desired position of the film formed on the substrate. That is, when applying APFIM analysis to the field of magnetic recording medium and element development, etc., it is desirable to investigate the structure of a desired position of a film already formed as a recording medium or element. In the method of forming a film after forming a structure, the original purpose cannot be achieved.

分析対象となる膜を成膜する柱状構造体は,一般に直径がμmオーダーに整形される。柱状構造体を折り取って使用する場合は、極めて小さい棒状となるため取扱いが困難であり,歩留まりが低くなる。さらに,柱状構造体を折り取ってワイヤ先端に接着する方法では,折り取った端面の平坦性が保証されないため,柱状構造体をワイヤに接着するのが困難である。このため、接着時の再現性や歩留まりが低下する。さらに,結果として得られた針状試料の軸方向と,針状試料先端に存在する測定対象膜の法線方向とを再現性良く所望の角度に設定するのは困難である。この結果、膜の結晶方位を正しく把握することをも困難になり,分析技術としては問題である。   A columnar structure for forming a film to be analyzed is generally shaped to have a diameter on the order of μm. When the columnar structure is used after being broken, it is extremely small and is difficult to handle, resulting in a low yield. Further, in the method in which the columnar structure is broken and bonded to the wire tip, the flatness of the broken end surface is not guaranteed, and it is difficult to bond the columnar structure to the wire. For this reason, the reproducibility and yield at the time of adhesion | attachment fall. Furthermore, it is difficult to set the axial direction of the needle-like sample obtained as a result and the normal direction of the measurement target film existing at the tip of the needle-like sample at a desired angle with good reproducibility. As a result, it becomes difficult to correctly grasp the crystal orientation of the film, which is a problem as an analysis technique.

ダイヤモンドの微粒子をマスクとして薄膜上に円錐状の構造を用いる方法は,微粒子の配置が偶然に左右されるため,形成位置の制御が困難である。したがって,薄膜上の所望の位置を分析することは困難である。また,得られた針状試料の固定はワイヤ先端への接着であるため,リソグラフィによる方法と同様に,再現性や歩留まりが低く,出来上がった針状試料の先端方向とワイヤの軸方向との角度の制御も困難である。   The method of using a conical structure on a thin film with diamond fine particles as a mask is difficult to control the formation position because the arrangement of fine particles is affected by chance. Therefore, it is difficult to analyze a desired position on the thin film. In addition, since the obtained needle-like sample is fixed to the wire tip, the reproducibility and yield are low as in the lithography method, and the angle between the tip direction of the finished needle-like sample and the axial direction of the wire is low. It is also difficult to control.

一方,平面状試料を直接FIBで加工して円錐状の針状試料を作る方法は,実際の加工プロセスでは,所望の位置周辺の十分広い範囲に対して十分な深さでFIBのみを用いて削り取らなければならないため,加工に時間がかかる。また,作製できる円錐状の部分は微小なため,取扱いが困難である。さらに,得られた円錐状の針状試料を平面状試料から折り取ってワイヤに接着する際の再現性や歩留まりが低く,更に針状部分の先端の向く方向の制御は困難である。   On the other hand, the method of making a conical needle sample by directly processing a flat sample with FIB is to use only FIB at a sufficient depth for a sufficiently wide range around the desired position in the actual processing process. Since it must be scraped off, processing takes time. In addition, the conical part that can be produced is very small and difficult to handle. Furthermore, the reproducibility and yield when the obtained conical needle-shaped sample is broken from the flat sample and bonded to the wire is low, and it is difficult to control the direction of the tip of the needle-shaped portion.

本発明は、上記した従来技術の欠点を除くためになされたものであって、その目的とするところは、薄膜状又は平面状の試料から所望の位置を抽出して作製することができ,試料作製時及び作製後の取扱いが容易で,APFIM導入時の試料の角度制御が容易且つ再現性が高い局所分析用針状試料,試料ホルダ組立体,局所分析装置,及び局所分析用針状試料の作製方法を提供することにある。   The present invention has been made to eliminate the above-mentioned drawbacks of the prior art, and the object of the present invention is to extract a desired position from a thin-film or planar sample, Easy to handle during and after fabrication, easy to control the angle of the sample when introducing APFIM, and highly reproducible needle sample for local analysis, sample holder assembly, local analyzer, and needle sample for local analysis It is to provide a manufacturing method.

上記目的を達成するために、本発明の第1の特徴は,(イ)第1主面及び第1主面に対向する第2主面を有する基板部と,(ロ)第1主面から突出した柱状部と,(ハ)柱状部の基板部に接続された側とは反対側の端部から柱状部が突出する方向に向かって錐体をなすように先鋭化された針状部とを備え,針状部の先端部に局所分析用の被測定領域を含む局所分析用針状試料であることを要旨とする。   In order to achieve the above object, the first feature of the present invention is that (a) a first main surface and a substrate portion having a second main surface opposite to the first main surface; and (b) from the first main surface. A protruding columnar part, and (c) a needle-shaped part sharpened so as to form a cone in a direction in which the columnar part protrudes from an end opposite to the side connected to the substrate part of the columnar part; And the needle-like sample for local analysis including the measurement region for local analysis at the tip of the needle-like part.

第2の特徴は,(イ)第1主面及び第1主面に対向する第2主面を有する基板部と,(ロ)第1主面から突出した柱状部と,(ハ)柱状部の基板部に接続された側とは反対側の端部から柱状部が突出する方向に向かって錐体をなすように先鋭化され,先鋭化された先端部に局所分析用の被測定領域を含む針状部と,(ニ)基板部の第2主面と接着するための平坦面を有する棒状の導電性ワイヤ部とを備える試料ホルダ組立体であることを要旨とする。   The second feature is (a) a first main surface and a substrate portion having a second main surface opposite to the first main surface, (b) a columnar portion protruding from the first main surface, and (c) a columnar portion. The region to be measured for local analysis is sharpened so as to form a cone from the end opposite to the side connected to the substrate part in the direction in which the columnar part protrudes. The gist of the invention is a sample holder assembly including a needle-like portion including a rod-like conductive wire portion having a flat surface for bonding to the second main surface of the substrate portion.

第3の特徴は,(イ)第1主面及び第1主面に対向する第2主面を有する基板部,第1主面から突出した柱状部,柱状部の基板部に接続された側とは反対側の端部から柱状部が突出する方向に向かって錐体をなすように先鋭化され,先鋭化された先端部に局所分析用の被測定領域を含む針状部,及び基板部の第2主面に接続され,基板部を保持する試料ホルダからなる試料ホルダ組立体を固定する固定部と,(ロ)固定部を介して針状部の被測定領域をイオン化するための電圧を供給する電圧供給部と、(ハ)柱状部の針状部の先端を通る中心軸上において被測定領域の先端に対向し、被測定領域を分析する分析部とを備える局所分析装置であることを要旨とする。   The third feature is (a) a substrate portion having a first principal surface and a second principal surface facing the first principal surface, a columnar portion protruding from the first principal surface, and a side connected to the substrate portion of the columnar portion. A needle-like part that is sharpened so as to form a cone in the direction in which the columnar part protrudes from the end opposite to the side, and includes a measurement region for local analysis at the sharpened tip part, and a substrate part And (b) a voltage for ionizing the measurement area of the needle-like portion via the fixing portion. The fixing portion is connected to the second main surface of the substrate and holds the sample holder assembly including the sample holder that holds the substrate portion. (C) a local analyzer comprising: an analysis unit that analyzes the region to be measured, facing the tip of the region to be measured on the central axis passing through the tip of the needle-like portion of the columnar part This is the gist.

第4の特徴は,(イ)被測定領域を含む構造体を切削し,第1主面及び第1主面に対向する第2主面を有する基板部及び基板部から突出した柱状部を形成するステップと,(ロ)柱状部の基板部に接続された側とは反対側の端部から柱状部が突出する方向に向かって錐体をなすように先鋭化し,先鋭化した先端部に被測定領域を含む針状部を形成するステップとを備える局所分析用針状試料の作製方法であることを要旨とする。   The fourth feature is (a) cutting a structure including a region to be measured to form a first main surface and a substrate portion having a second main surface opposite to the first main surface and a columnar portion protruding from the substrate portion. And (b) sharpening from the end of the columnar portion opposite to the side connected to the substrate portion to form a cone in the direction in which the columnar portion protrudes, and covering the sharpened tip portion The gist of the present invention is a method for producing a needle-like sample for local analysis comprising a step of forming a needle-like part including a measurement region.

本発明によれば、薄膜状又は平面状の試料から所望の位置を抽出して作製することができ,試料作製時及び作製後の取扱いが容易で,APFIM導入時の試料の角度制御が容易且つ再現性が高い局所分析用針状試料,試料ホルダ組立体,局所分析装置,及び局所分析用針状試料の作製方法を提供することができる。   According to the present invention, a desired position can be extracted from a thin-film or planar sample, and the sample can be easily handled during and after the fabrication, and the angle of the sample can be easily controlled when the APFIM is introduced. It is possible to provide a needle sample for local analysis, a sample holder assembly, a local analyzer, and a method for producing a needle sample for local analysis with high reproducibility.

次に、図面を参照して、本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。また、以下に示す実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。この発明の技術的思想は、特許請求の範囲において、種々の変更を加えることができる。   Next, embodiments of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. Further, the embodiments described below exemplify apparatuses and methods for embodying the technical idea of the present invention, and the technical idea of the present invention includes the material, shape, structure, The layout is not specified as follows. The technical idea of the present invention can be variously modified within the scope of the claims.

<局所分析用針状試料構造>
本発明の実施の形態に係る局所分析用針状試料1は,図1に示すように,第1主面及び第1主面に対向する第2主面を有する基板部2と,第1主面から突出した柱状部3と,柱状部3の基板部2に接続された側とは反対側の端部から,柱状部3が突出する方向に向かって錐体をなすように先鋭化され,先鋭化された先端部に局所分析用の被測定領域74を含む針状部4とを備える。
<Needle sample structure for local analysis>
As shown in FIG. 1, a needle sample 1 for local analysis according to an embodiment of the present invention includes a first main surface and a substrate portion 2 having a second main surface opposite to the first main surface, and a first main surface. The columnar part 3 protruding from the surface and the end of the columnar part 3 opposite to the side connected to the substrate part 2 are sharpened so as to form a cone in the direction in which the columnar part 3 protrudes, A sharpened tip portion is provided with a needle-like portion 4 including a measurement region 74 for local analysis.

基板部2は,例えば,縦横500μm四方,厚さ200〜400μmの箱形である。基板部2の具体的な材料及び大きさは,分析対象の材料によってそれぞれ異なるが,例えば半導体基板上に形成した膜の構造等を分析する場合は,所望の半導体基板(例えばシリコン(Si))を用いることが出来る。柱状部3は,基板部2と一体化しており,基板部2の第1主面の中央部から「第1の方向」に向かって縦横40μm四方,高さ200〜400μmに突出している。なお,「第1の方向」は,分析対象となる層の結晶方位等を考慮することにより,決定されるのが好ましい。即ち,図1に示すように,第1主面の伸延する方向に対して垂直方向を「第1の方向」としてもよいし,第1主面の伸延する方向に対して斜め方向を「第1の方向」としてもよい。   The substrate part 2 is, for example, a box shape having a length and width of 500 μm square and a thickness of 200 to 400 μm. The specific material and size of the substrate unit 2 vary depending on the material to be analyzed. For example, when analyzing the structure of a film formed on a semiconductor substrate, a desired semiconductor substrate (for example, silicon (Si)) Can be used. The columnar part 3 is integrated with the substrate part 2 and protrudes from the central part of the first main surface of the substrate part 2 in a 40 μm square and a height of 200 to 400 μm in the “first direction”. The “first direction” is preferably determined in consideration of the crystal orientation of the layer to be analyzed. That is, as shown in FIG. 1, the direction perpendicular to the direction in which the first main surface extends may be defined as the “first direction”, and the direction oblique to the direction in which the first main surface extends is defined as “first direction”. 1 direction ".

図2に示すように,柱状部3と基板部2との境界部分に,柱状部3から基板部2方向に向かってテーパー状に広がるテーパー部3aを配置すれば,柱状部3の機械的強度が向上する。テーパー部3aの配置する位置は特に限定しないが,例えば,第1主面から高さ20μm付近に配置すれば,一定の目的を達成可能である。   As shown in FIG. 2, the mechanical strength of the columnar portion 3 can be obtained by arranging a tapered portion 3 a that extends in a tapered shape from the columnar portion 3 toward the substrate portion 2 at the boundary portion between the columnar portion 3 and the substrate portion 2. Will improve. The position at which the tapered portion 3a is disposed is not particularly limited. For example, if the tapered portion 3a is disposed at a height of about 20 μm from the first main surface, a certain purpose can be achieved.

針状部4は,図3に示すように,先端径Lが約90nmの針状の被測定領域74を有する。先端径Lは,後述する局所分析装置5で発生させる電界強度により適宜変更可能であるが,一般的な局所分析装置においては,先端径Lが約200nm以下のものが採用可能である。被測定領域74には,導電性薄膜からなる第p被測定膜74p,第q被測定膜74q,第r被測定膜74r,第s被測定膜74s,第t被測定膜74tが順次積層された積層膜が含まれている。被測定領域74を構成する第p被測定膜74p,第q被測定膜74q,第r被測定膜74r,第s被測定膜74s,第t被測定膜74tの具体的な材料及び大きさは分析対象の材料によって異なるが,例えば基板上に形成された磁気記録媒体や素子の結晶構造を測定したい場合は,Co,Fe,Ni等の磁性体材料,銅(Cu)等の導電性材料等が用いられる。なお,図3に示す針状部4においては,第p被測定膜74p,第r被測定膜74r,第t被測定膜74tとしてコバルト鉄(CoFe)層が配置され,第q被測定膜74q,第s被測定膜74sとしてCu層が配置されている。第p被測定膜74p,第q被測定膜74q,第r被測定膜74r,第s被測定膜74s,第t被測定膜74tの厚さTp,Tq,Tr,Ts,Ttは,それぞれ1〜5nm程度である。   As shown in FIG. 3, the needle-like portion 4 has a needle-like measurement region 74 having a tip diameter L of about 90 nm. The tip diameter L can be appropriately changed depending on the electric field intensity generated by the local analyzer 5 described later. However, in a general local analyzer, a tip having a tip diameter L of about 200 nm or less can be employed. In the measurement region 74, a p-th film to be measured 74p, a q-th film to be measured 74q, an r-th film to be measured 74r, an s-th film to be measured 74s, and a t-th film to be measured 74t are sequentially stacked. Laminated film is included. Specific materials and sizes of the p-th film to be measured 74p, the q-th film to be measured 74q, the r-th film to be measured 74r, the s-th film to be measured 74s, and the t-th film to be measured 74t constituting the measurement region 74 are as follows. For example, if you want to measure the crystal structure of a magnetic recording medium or element formed on a substrate, magnetic material such as Co, Fe, or Ni, conductive material such as copper (Cu), etc. Is used. In the needle-like portion 4 shown in FIG. 3, a cobalt iron (CoFe) layer is disposed as the p-th film to be measured 74p, the r-th film to be measured 74r, and the t-th film to be measured 74t, and the q-th film to be measured 74q. A Cu layer is disposed as the s-th film 74s to be measured. The thicknesses Tp, Tq, Tr, Ts, and Tt of the p-th film to be measured 74p, the q-th film to be measured 74q, the r-th film to be measured 74r, the s-th film to be measured 74s, and the t-th film to be measured 74t are 1 respectively. About 5 nm.

以下に示す局所分析装置の説明により更に明確となるが,実施の形態に係る局所分析用針状試料1によれば,先端に被測定領域74を含む針状部4を有する柱状部3に一体化した基板部2を備える。このため,基板部2をピンセット等で挟むことにより,局所分析用針状試料1の作製時及び作製後の取扱いが容易になる。また,基板部2の第2主面は平坦であるため,後述する局所分析装置5内に固定するための導電性ワイヤ11の先端に局所分析用針状試料1を固定するのが容易になるため,図1に示す局所分析用針状試料1によれば,分析の再現性が高くなると共に,局所分析用針状試料1の作製時又は分析装置導入時の歩留まりが向上する。また,図1に示す局所分析用針状試料1は,以下に述べるように,分析対象となる被測定領域74として予め指定された所望の位置の周囲を選択的に切削することにより得られるので,平板状の試料から調べたい部分を選択的に抽出した局所分析用針状試料1が提供できる。   As will be further clarified by the following description of the local analyzer, according to the needle sample 1 for local analysis according to the embodiment, it is integrated with the columnar part 3 having the needle-like part 4 including the measurement region 74 at the tip. The substrate portion 2 is provided. For this reason, sandwiching the substrate part 2 with tweezers or the like facilitates handling during and after the production of the needle sample 1 for local analysis. Further, since the second main surface of the substrate unit 2 is flat, it is easy to fix the needle sample 1 for local analysis to the tip of the conductive wire 11 for fixing in the local analyzer 5 described later. Therefore, according to the needle sample 1 for local analysis shown in FIG. 1, the reproducibility of the analysis is improved and the yield at the time of producing the needle sample 1 for local analysis or introducing the analyzer is improved. Further, as will be described below, the needle sample 1 for local analysis shown in FIG. 1 can be obtained by selectively cutting around a desired position designated in advance as a measurement region 74 to be analyzed. The needle-like sample 1 for local analysis can be provided by selectively extracting the part to be examined from the flat sample.

<局所分析用針状試料の第1の作製方法>
次に,図4〜図8を用いて実施の形態に係る局所分析用針状試料1の第1の作製方法について説明する。なお,以下に述べる局所分析用針状試料1の作製方法は一例であり,この変形例を含めて,これ以外の種々の作製方法により実現可能であることは勿論である。
<First production method of needle-like sample for local analysis>
Next, the 1st preparation method of the needle-shaped sample 1 for local analysis which concerns on embodiment using FIG. 4 ~ FIG. 8 is demonstrated. The method for producing the needle sample 1 for local analysis described below is an example, and it is needless to say that it can be realized by various other production methods including this modification.

(イ)まず,表面にボロン(B)を1020cm-3ドープした厚さ600μmのSiからなる基板71を用意する。この基板71を希フッ酸処理することにより表面の自然酸化膜を除去した後,直ちに成膜装置に導入し,タンタル(Ta)からなる第1のシード層72をスパッタ法により厚さ10nm程度に堆積する。続いて,図4に示すように,第1のシード層72の表面にCoFeからなる第2のシード層73をスパッタ法により厚さ15nm程度に堆積する。 (A) First, a substrate 71 made of Si having a thickness of 600 μm and boron (B) doped at 10 20 cm −3 on the surface is prepared. After removing the natural oxide film on the surface of the substrate 71 by dilute hydrofluoric acid treatment, the substrate 71 is immediately introduced into the film forming apparatus, and the first seed layer 72 made of tantalum (Ta) is formed to a thickness of about 10 nm by sputtering. accumulate. Subsequently, as shown in FIG. 4, a second seed layer 73 made of CoFe is deposited on the surface of the first seed layer 72 to a thickness of about 15 nm by sputtering.

(ロ)次に,図5に示すように,第2のシード層73の表面にCuからなる第1被測定膜74aを堆積する。続いて,第1被測定膜74aの表面にCoFeからなる第2被測定膜74bを堆積する。第2被測定膜74bの表面にCuからなる第3被測定膜74cを堆積し,第3被測定膜74cの表面にCoFeからなる第4被測定膜74dを堆積する。このように,Cu層とCoFe層とを,それぞれ例えば10層ずつ全部で20層程度に積層し,被測定領域74を形成する。そして,最上段の第t被測定膜74tの表面にニッケル鉄(NiFe)からなるキャップ層をスパッタ法により厚さ150nm程度に堆積し,成膜装置から取り出す。   (B) Next, as shown in FIG. 5, a first film to be measured 74 a made of Cu is deposited on the surface of the second seed layer 73. Subsequently, a second measured film 74b made of CoFe is deposited on the surface of the first measured film 74a. A third measured film 74c made of Cu is deposited on the surface of the second measured film 74b, and a fourth measured film 74d made of CoFe is deposited on the surface of the third measured film 74c. In this way, the Cu region and the CoFe layer are laminated in a total of about 20 layers, for example, 10 layers each to form the measurement region 74. Then, a cap layer made of nickel iron (NiFe) is deposited on the surface of the uppermost t-th film to be measured 74t by a sputtering method to a thickness of about 150 nm and taken out from the film forming apparatus.

(ハ)次に,図5に示すように、被測定領域74が形成された側の面の基板71を精密切削装置等により選択的に機械的に切削し,図6に示すように,第1のシード層72A,72B,・・・・・,第2のシード層73A,73B,・・・・・,被測定膜74A,74B,・・・・・を先端に有する例えば高さ200μm,40μm角の四角柱構造76A,76B,・・・・・,を複数個形成する。精密切削装置としては,ダイシングソー,マシンニングセンタ,フライス盤,超音波振動切削装置,噴射型切削装置,ワイヤリー,ダイアモンドブレード等が使用可能である。続いて,図7に示すように,四角柱構造76Aを中心として周囲500μm四方を、精密切削装置等で機械的に切削し,縦横500μm,厚さ400μmの基板部2Aと基板部2Aに一体化した四角柱状の柱状部3Aを形成する。   (C) Next, as shown in FIG. 5, the substrate 71 on the surface on which the region to be measured 74 is formed is selectively mechanically cut by a precision cutting device or the like, and as shown in FIG. 1 seed layer 72A, 72B,..., Second seed layer 73A, 73B,..., Measured film 74A, 74B,. A plurality of 40 μm square structures 76A, 76B,... Are formed. As the precision cutting device, a dicing saw, a machining center, a milling machine, an ultrasonic vibration cutting device, a jet type cutting device, a wireless device, a diamond blade, or the like can be used. Subsequently, as shown in FIG. 7, the square 500 μm square is mechanically cut with a precision cutting device or the like around the square columnar structure 76A, and integrated into the substrate portion 2A and the substrate portion 2A having a length and width of 500 μm and a thickness of 400 μm. The square columnar portion 3A thus formed is formed.

(ニ)次に,図7に示す結果物をFIB装置に導入し,図8に示すように,「環状ミル」と呼ばれる方法により,柱状部3Aの先端部分から柱状部3Aが突出する方向に向かって錐体をなすように先鋭化する。「環状ミル」とは,FIBの加工機能の一つであり,円X,円Yの2つの同心円で挟まれた部分のみをFIBにより切削する加工方法である。内側の円Yの径dを小さくしていくことにより,柱状部3Aが突出する方向に向かって徐々に径を小さく制御しながら精密に切削していくことが可能である。また,FIBを用いることにより,被測定膜74Aの結晶方位に応じて最適な角度に制御しながら切削することができる。この結果,図1に示すような針状部4が形成できる。   (D) Next, the result shown in FIG. 7 is introduced into the FIB apparatus, and as shown in FIG. 8, in a direction in which the columnar portion 3A protrudes from the tip portion of the columnar portion 3A by a method called “annular mill”. Sharpen to make a cone. The “annular mill” is one of the processing functions of the FIB, and is a processing method in which only the portion sandwiched between two concentric circles X and Y is cut by the FIB. By reducing the diameter d of the inner circle Y, it is possible to cut precisely while controlling the diameter gradually in the direction in which the columnar portion 3A protrudes. Further, by using FIB, cutting can be performed while controlling to an optimum angle according to the crystal orientation of the film to be measured 74A. As a result, a needle-like portion 4 as shown in FIG. 1 can be formed.

本発明の実施の形態に係る局所分析用針状試料1の作製方法によれば,分析対象となる部分、例えば被測定膜74Aを含む被測定領域74等が予め形成された基板71の所望の位置の周囲を選択的に切削することにより,平板状の試料から調べたい部分を選択的に抽出した局所分析用針状試料1が作製できる。このため,記録媒体や素子が既に形成された平板状の試料から所望の領域を選択的に抽出し,抽出した膜等の微細構造を,APFIMを用いて調べることができる。   According to the method for producing the needle sample 1 for local analysis according to the embodiment of the present invention, a desired portion of the substrate 71 on which a portion to be analyzed, for example, a measurement region 74 including a measurement film 74A is formed in advance. By selectively cutting around the position, the needle sample 1 for local analysis in which a portion to be examined from the flat sample is selectively extracted can be produced. For this reason, a desired region can be selectively extracted from a flat sample on which a recording medium or an element has already been formed, and the microstructure of the extracted film or the like can be examined using APFIM.

また,実施の形態に係る局所分析用針状試料1の作製方法では,被測定領域74を先端に含む針状部4が接続された柱状の柱状部3に一体化するように平板状の基板部2を形成する。このため,基板部2をピンセット等で挟むことにより,局所分析用針状試料1の作製時及び作製後の取扱いが容易になる。基板部2から突出した柱状部3の突出する方向は,FIBにより切削方向を制御しながら精密に切削できるため,被測定膜74の結晶方位等に合わせて局所分析用針状試料1を作製できる。この結果,局所分析用針状試料1の軸方向と局所分析用針状試料1の先端に存在する所望の被測定膜74Aの法線方向とを再現性良く所望の角度に調節でき,高い歩留まり且つ高い精度で測定可能な局所分析用針状試料1が作製できる。   Further, in the method for producing the needle sample 1 for local analysis according to the embodiment, a flat substrate so as to be integrated with the columnar column 3 to which the needle 4 including the region to be measured 74 is connected. Part 2 is formed. For this reason, sandwiching the substrate part 2 with tweezers or the like facilitates handling during and after the production of the needle sample 1 for local analysis. Since the protruding direction of the columnar part 3 protruding from the substrate part 2 can be precisely cut while controlling the cutting direction by FIB, the needle sample 1 for local analysis can be produced in accordance with the crystal orientation of the measured film 74 and the like. . As a result, the axial direction of the needle sample 1 for local analysis and the normal direction of the desired film 74A to be measured existing at the tip of the needle sample 1 for local analysis can be adjusted to a desired angle with high reproducibility and high yield. In addition, the needle sample 1 for local analysis that can be measured with high accuracy can be produced.

<局所分析用針状試料の第2の作製方法>
図9〜図11を用いて、実施の形態に係る局所分析用針状試料1の第2の作製方法を説明する。なお、第2の作製方法では、平板状の基板71から局所分析用針状試料1を作製する方法の一例を説明する。
<Second Preparation Method of Needle Sample for Local Analysis>
A second method for producing the needle sample 1 for local analysis according to the embodiment will be described with reference to FIGS. In the second manufacturing method, an example of a method for manufacturing the needle sample 1 for local analysis from the flat substrate 71 will be described.

図9に示すように,ボロン(B)を1020cm-3ドープした厚さ600μmのSiからなる基板71の表面に5mm程度の間隔をおいて,測定対象となる部分にレーザーマーカーにより印Mを付ける。印Mの付け方は任意であり,例えば,被測定領域が平板状試料の表面を含む場合には,選択した被測定領域を中心にした正方形の各頂点をなすように4つの印を付けるなど,測定領域を壊すことなく認識できる方法で付けることが望ましい。続いて,表面に印Mが付けられた側の基板71を精密切削装置等により選択的に切削し,印Mを先端に有する高さ200μm,40μm角の四角柱構造76を形成する。続いて,図10に示すように,印Mを目印として周囲500μm四方を精密切削装置で切削し,柱状部3に一体化した縦横500μm,厚さ400μmの基板部2を形成する。 As shown in FIG. 9, the surface of the substrate 71 made of Si having a thickness of 600 μm doped with boron (B) at 10 20 cm −3 is spaced by about 5 mm, and a portion to be measured is marked with a laser marker. Add. The method of marking M is arbitrary. For example, when the measured area includes the surface of a flat sample, four marks are formed so as to form each vertex of a square centering on the selected measured area. It is desirable to attach the measurement area in such a way that it can be recognized without breaking it. Subsequently, the substrate 71 on the surface with the mark M on the surface is selectively cut by a precision cutting device or the like to form a rectangular column structure 76 having a mark M at the tip and a height of 200 μm and a 40 μm square. Subsequently, as shown in FIG. 10, a square 500 μm square is cut with a precision cutting device using the mark M as a mark to form a substrate portion 2 having a length and width of 500 μm and a thickness of 400 μm integrated with the columnar portion 3.

次に,図10に示す結果物をFIB装置に導入し,図11に示すように,柱状部3の先端を,環状ミルにより柱状部3の先端部分から柱状部3が突出する方向に向かって錐体をなすように先鋭化する。この結果,図1に示すような局所分析用針状試料1が形成できる。   Next, the result shown in FIG. 10 is introduced into the FIB apparatus, and as shown in FIG. 11, the tip of the columnar part 3 is moved in the direction in which the columnar part 3 protrudes from the tip part of the columnar part 3 by an annular mill. Sharpen to form a cone. As a result, a needle sample 1 for local analysis as shown in FIG. 1 can be formed.

実施の形態に係る局所分析用針状試料1の第2の作製方法によれば,平板状の基板71の表面に印Mを付け,印Mを目印として,四角柱形状の柱状部3及び柱状部3に一体化した基板部2を形成する。このため,平板状の試料から調べたい部分を選択的に抽出して形成することができる。なお、基板71に薄膜を成長させた後に印Mをつけ、印Mを目印として柱状部3及び基板部2を形成してもよいことは勿論である。また,得られた局所分析用針状試料1は,基板部2をピンセット等で挟むことにより取扱いが容易になる。このため,局所分析装置5の内部に局所分析用針状試料1を固定する際の再現性が高くなり,より再現性の高い測定を行うことができる。また,構造上の特徴から被測定領域が判別可能な場合は,印Mを付けなくても,構造上の特徴を利用して所望の領域を抽出した針状試料1を得ることができるのは勿論である。   According to the second method for producing the needle sample 1 for local analysis according to the embodiment, the mark M is marked on the surface of the flat substrate 71, and the square columnar column 3 and the columnar shape are marked with the mark M as a mark. The substrate part 2 integrated with the part 3 is formed. Therefore, it is possible to selectively extract and form a portion to be examined from a flat sample. Of course, after the thin film is grown on the substrate 71, the mark M may be applied, and the columnar portion 3 and the substrate portion 2 may be formed using the mark M as a mark. In addition, the obtained needle sample 1 for local analysis can be easily handled by sandwiching the substrate portion 2 with tweezers or the like. For this reason, the reproducibility at the time of fixing the needle-shaped sample 1 for local analysis inside the local analyzer 5 becomes high, and measurement with higher reproducibility can be performed. In addition, when the region to be measured can be discriminated from the structural feature, the needle-like sample 1 from which a desired region is extracted using the structural feature can be obtained without the mark M. Of course.

得られた局所分析用針状試料1をイオンミリング装置に導入し,アルゴン(Ar)イオンによる表面クリーニングを行った後に透過型電子顕微鏡で観察した結果を図12に示す。比較例として,FIBに導入した後,表面クリーニングを行わないで観察した結果を図13に示す。図12,13中の白い部分がFIBによる切削より形成されたアモルファス層4αを示し,図12,13中の黒い部分がアモルファス化しなかった部分を示している。図13に示すように,表面クリーニングを行わなかった場合は,針状部4の周囲に厚さ20nm以上のアモルファス層が観察される。一方,表面クリーニングを行った図12に示す場合では,アモルファス層4αは認められるものの,厚さは5nm以下である。この結果から,局所分析用針状試料1を加工する際には,FIBに加えてイオンミリングによる表面クリーニングを行うことにより,より精度の高い分析が実現可能であることが分かる。   FIG. 12 shows the result of observation with a transmission electron microscope after introducing the obtained needle-like sample 1 for local analysis into an ion milling apparatus and performing surface cleaning with argon (Ar) ions. As a comparative example, FIG. 13 shows the result of observation without surface cleaning after introduction into FIB. The white portions in FIGS. 12 and 13 show the amorphous layer 4α formed by cutting with FIB, and the black portions in FIGS. 12 and 13 show portions that have not been amorphized. As shown in FIG. 13, when surface cleaning is not performed, an amorphous layer having a thickness of 20 nm or more is observed around the needle-like portion 4. On the other hand, in the case shown in FIG. 12 where surface cleaning is performed, the amorphous layer 4α is recognized, but the thickness is 5 nm or less. From this result, it is understood that when processing the needle sample 1 for local analysis, more accurate analysis can be realized by performing surface cleaning by ion milling in addition to FIB.

<局所分析装置>
実施の形態に係る局所分析用針状試料1の観察に適した局所分析装置5として,APFIMの概要を図14に示す。なお,図14に示すAPFIMは一例であり,各構成部品の材質、形状、構造、配置等は下記のものに限定するものはでない。本発明の実施の形態に係る局所分析装置5は,処理室(チャンバー)100と,局所分析用針状試料1を処理室100の内部に固定する固定部10と,固定部10を介して局所分析用針状試料1に接続され,局所分析用針状試料1の被測定膜74に電圧を供給する電圧供給部20と、被測定膜74の先端を通る中心軸上において被測定膜74の先端に対向し、被測定膜74を分析する分析部60とを備える。
<Local analyzer>
FIG. 14 shows an outline of APFIM as a local analyzer 5 suitable for observation of the needle sample 1 for local analysis according to the embodiment. The APFIM shown in FIG. 14 is an example, and the material, shape, structure, arrangement, etc. of each component are not limited to the following. A local analyzer 5 according to an embodiment of the present invention includes a processing chamber (chamber) 100, a fixing portion 10 for fixing the needle sample 1 for local analysis inside the processing chamber 100, and a local portion via the fixing portion 10. A voltage supply unit 20 that is connected to the analysis needle sample 1 and supplies a voltage to the measurement film 74 of the local analysis needle sample 1, and the measurement film 74 on the central axis that passes through the tip of the measurement film 74. An analysis unit 60 that faces the tip and analyzes the film to be measured 74 is provided.

処理室100は,処理室100内部を真空にするためのステンレス鋼(SUS)等からなる金属製のチャンバーであり,フランジ50の外側に真空ポンプが接続されている。水素(H2),ヘリウム(He),ネオン(Ne)等の結像ガスは,バルブ45を介して処理室100に接続されたガス供給部40から処理室100内に導入される。固定部10に接続された電圧供給部20は,局所分析用針状試料1の先端に109V/m程度の負の電界,或いは5×1010V/nm程度の正の電界を生じさせるための電圧を供給する。固定部10は,局所分析用針状試料1を冷却するための冷却機30が接続されている。 The processing chamber 100 is a metal chamber made of stainless steel (SUS) or the like for evacuating the processing chamber 100, and a vacuum pump is connected to the outside of the flange 50. An imaging gas such as hydrogen (H 2 ), helium (He), or neon (Ne) is introduced into the processing chamber 100 from a gas supply unit 40 connected to the processing chamber 100 via a valve 45. The voltage supply unit 20 connected to the fixed unit 10 generates a negative electric field of about 10 9 V / m or a positive electric field of about 5 × 10 10 V / nm at the tip of the needle sample 1 for local analysis. Supply voltage for. The fixing unit 10 is connected to a cooler 30 for cooling the needle sample 1 for local analysis.

固定部10は,図15に示すように,棒状の導電性ワイヤ11及び導電性ワイヤ11に接続された筒状の試料ホルダ12を有する。導電性ワイヤ11は,例えば長さ約1cm,直径約0.5mm程度のCu,銀(Ag),チタン(Ti)等からなるワイヤが使用可能であるが,ワイヤの材料や大きさは特に限定されない。試料ホルダ12は,APFIMの標準ホルダと互換性をもつように設計された既存の器具を用いることができる。図15に示す固定部10においては,ステンレス製の試料ホルダ12の先端の中央に穴12aが設けられ,導電性ワイヤ11の一方の先端を折り曲げて穴に差し込む等の固定方法により,試料ホルダ12と導電性ワイヤ11とが固定可能になっている。導電性ワイヤ11の試料ホルダ12に接続されない側の先端に,図16に示すように,導電性エポキシ樹脂,銀ペースト等からなる導電性接着剤13により局所分析用針状試料1を固定することで試料ホルダ組立体10aが形成できる。導電性接着剤を用いる代わりに,例えば,エポキシ樹脂等の絶縁性接着剤を用いて接着し,その後金属をコーティングするなどの方法で電気的接触を得てもよい。   As shown in FIG. 15, the fixing unit 10 includes a rod-shaped conductive wire 11 and a cylindrical sample holder 12 connected to the conductive wire 11. As the conductive wire 11, for example, a wire made of Cu, silver (Ag), titanium (Ti) or the like having a length of about 1 cm and a diameter of about 0.5 mm can be used, but the material and size of the wire are particularly limited. Not. The sample holder 12 can be an existing instrument designed to be compatible with the APFIM standard holder. In the fixing portion 10 shown in FIG. 15, a hole 12a is provided in the center of the tip of the stainless steel sample holder 12, and the sample holder 12 is fixed by a fixing method such as bending one end of the conductive wire 11 and inserting it into the hole. And the conductive wire 11 can be fixed. As shown in FIG. 16, the needle sample 1 for local analysis is fixed to the tip of the conductive wire 11 on the side not connected to the sample holder 12 with a conductive adhesive 13 made of conductive epoxy resin, silver paste or the like. Thus, the sample holder assembly 10a can be formed. Instead of using the conductive adhesive, for example, an electrical contact may be obtained by a method of bonding using an insulating adhesive such as an epoxy resin and then coating the metal.

分析部60は,図14に示すように,局所分析用針状試料1の中心軸が通る位置に対向し,且つ針状部4の先端部に直交する主面を有して配置されたマイクロチャネルプレート61を備える。更に,分析部60は,マイクロチャネルプレート61の主面の伸延する方向と平行な主面を有してマイクロチャネルプレート61に隣接して配置された蛍光板62,マイクロチャネルプレート61及び蛍光板62の局所分析用針状試料1の中心軸と対向する位置に配置されたプローブホール63を介して局所分析用針状試料1の先端に対向する検出器64,及び局所分析用針状試料1の中心軸上に位置し,蛍光板62を見通す観察窓65を備える。   As shown in FIG. 14, the analysis unit 60 is a micro-array that has a main surface that is opposed to the position through which the central axis of the needle sample 1 for local analysis passes and that is orthogonal to the tip of the needle-like portion 4. A channel plate 61 is provided. Further, the analysis unit 60 has a main surface parallel to the extending direction of the main surface of the microchannel plate 61 and is disposed adjacent to the microchannel plate 61, the microchannel plate 61, and the local area of the fluorescent plate 62. A detector 64 facing the tip of the local analysis needle-like sample 1 through a probe hole 63 arranged at a position opposite to the central axis of the analysis needle-like sample 1, and the central axis of the local analysis needle-like sample 1 An observation window 65 is provided which is positioned above and allows the fluorescent screen 62 to be seen.

マイクロチャネルプレート61は,針状部4の先端から放出される被測定膜74のイオンの位置等を検出可能な二次元のイメージ増倍管である。蛍光板62は,マイクロチャネルプレート61により得られた像を検出する。観察窓65は,蛍光板62が検出した像を観察する窓である。検出器64は,針状部4から放出されたイオンを質量分析する。検出器64は出力装置70に接続されている。なお,局所分析用針状試料と検出器64の間には,主に質量分解能を向上させる目的で,イオン化した物質の飛行道程を変化させるリフレクトロンなどが設けられていても良い。   The microchannel plate 61 is a two-dimensional image intensifier capable of detecting the position of ions on the measurement target film 74 emitted from the tip of the needle-like portion 4. The fluorescent plate 62 detects an image obtained by the microchannel plate 61. The observation window 65 is a window for observing an image detected by the fluorescent screen 62. The detector 64 performs mass analysis on the ions emitted from the needle-like portion 4. The detector 64 is connected to the output device 70. Note that a reflectron or the like that changes the flight path of the ionized substance may be provided between the local analysis needle-like sample and the detector 64 mainly for the purpose of improving the mass resolution.

実施の形態に係る局所分析用針状試料1を用いた局所分析装置5によれば,固定部10の導電性ワイヤ11の先端に,基板部2を有する局所分析用針状試料1を固定する。局所分析用針状試料1は,基板部2をピンセットなどで挟むことにより取扱いが容易になる。このため,基板部2をもたない錐体の針状試料を固定する場合に比べ,導電性ワイヤ11の先端に局所分析用針状試料1を固定するのが容易になる。   According to the local analysis device 5 using the local analysis needle sample 1 according to the embodiment, the local analysis needle sample 1 having the substrate portion 2 is fixed to the tip of the conductive wire 11 of the fixing portion 10. . The needle sample 1 for local analysis can be easily handled by sandwiching the substrate 2 with tweezers. For this reason, it becomes easier to fix the needle sample 1 for local analysis to the tip of the conductive wire 11 as compared to the case of fixing the cone needle sample without the substrate portion 2.

<局所分析装置の測定方法>
次に,実施の形態に係る局所分析装置5の測定方法について説明する。以下に示す局所分析装置5の測定方法は一例であり,測定条件,測定順序等は,下記のものに限定するものはでない。
<Measurement method of local analyzer>
Next, the measurement method of the local analyzer 5 according to the embodiment will be described. The measurement method of the local analyzer 5 shown below is an example, and the measurement conditions, measurement order, etc. are not limited to the following.

まず,図15に示すように,導電性ワイヤ11の一方の先端を折り曲げ,折り曲げた側の導電性ワイヤ11の先端を試料ホルダ12に設けられた穴12aに差し込んで固定する。続いて,図1に示す局所分析用針状試料1の基板部2をピンセットで挟み,肉眼で観察しながら,図16に示すように,局所分析装置5の導電性ワイヤ11の先端に固定する。続いて,導電性ワイヤ11の先端に固定した局所分析用針状試料1を,図5に示す局所分析装置(APFIM)5に導入し,イメージングガスとしてH2とNeの混合ガスをガス供給部40から供給し,冷却機30で局所分析用針状試料1の先端を冷却しながら,電圧供給部20により局所分析用針状試料1の先端に徐々に電圧を印加する。さらに,局所分析用針状試料1の先端の電界蒸発を助長するために電圧を上げ続け,針状部4の先端の被測定膜74の構造を表す像を観察する。この過程で,局所分析用針状試料1の先端の軸の角度の調整は、得られる像を見ながら適宜行われる。 First, as shown in FIG. 15, one end of the conductive wire 11 is bent, and the end of the bent conductive wire 11 is inserted into a hole 12 a provided in the sample holder 12 and fixed. Subsequently, the substrate portion 2 of the local analysis needle-shaped sample 1 shown in FIG. 1 is sandwiched with tweezers and fixed to the tip of the conductive wire 11 of the local analysis device 5 as shown in FIG. 16 while observing with the naked eye. . Subsequently, the local analysis needle sample 1 fixed to the tip of the conductive wire 11 is introduced into the local analyzer (APFIM) 5 shown in FIG. 5, and a mixed gas of H 2 and Ne as an imaging gas is supplied to the gas supply unit. The voltage supply unit 20 gradually applies a voltage to the tip of the local analysis needle-shaped sample 1 while being supplied from 40 and cooling the tip of the local analysis needle-shaped sample 1 with the cooler 30. Further, the voltage is continuously raised to promote electric field evaporation at the tip of the local analysis needle-like sample 1, and an image representing the structure of the film to be measured 74 at the tip of the needle-like portion 4 is observed. In this process, the angle of the tip axis of the needle sample 1 for local analysis is adjusted as appropriate while looking at the obtained image.

続いて,局所分析装置5の導電性ワイヤ11の先端に固定した局所分析用針状試料1の先端に存在する原子の質量分析を行うためのアトムプローブ分析を行う。FIM観察の場合と同様に,冷却機30で局所分析用針状試料1を冷却しながら,電圧供給部20により局所分析用針状試料1の先端に徐々に電圧を印加し,更に,この電圧の20%程度の大きさのパルス電圧を重畳する。局所分析用針状試料1の先端に高電界が加えられることにより,局所分析用針状試料1の先端の被測定領域74の原子が電界蒸発を起こしてイオン化する。イオン化した原子は,プローブホールを通過して検出器64に検出される。パルス電圧を加えた時間を基準にして,イオンの飛行時間を測定することによって質量分析が可能になる。   Subsequently, atom probe analysis for performing mass analysis of atoms present at the tip of the local analysis needle-like sample 1 fixed to the tip of the conductive wire 11 of the local analyzer 5 is performed. As in the case of FIM observation, while the local analysis needle sample 1 is cooled by the cooler 30, a voltage is gradually applied to the tip of the local analysis needle sample 1 by the voltage supply unit 20. A pulse voltage having a magnitude of about 20% is superimposed. When a high electric field is applied to the tip of the local analysis needle-like sample 1, atoms in the measurement region 74 at the tip of the local analysis needle-like sample 1 cause electric field evaporation to be ionized. The ionized atoms pass through the probe hole and are detected by the detector 64. Mass spectrometry can be performed by measuring the time of flight of ions with reference to the time when the pulse voltage is applied.

実施の形態に係る局所分析用針状試料1を用いた局所分析装置5によれば,取扱いが容易な局所分析用針状試料1を固定部10に固定することにより,例えば10個作った局所分析用針状試料1のすべてを失敗することなく固定できる。したがって,図1に示す局所分析用針状試料1を用いた局所分析装置5によれば,分析したい被測定膜74の原子構造を高い歩留まりで,再現性良く分析できる。   According to the local analyzer 5 using the local analysis needle sample 1 according to the embodiment, by fixing the local analysis needle sample 1 that is easy to handle to the fixing portion 10, for example, 10 local samples are made. All of the analytical needle-like sample 1 can be fixed without failure. Therefore, according to the local analyzer 5 using the needle sample 1 for local analysis shown in FIG. 1, the atomic structure of the film 74 to be measured can be analyzed with high yield and high reproducibility.

図1に示す局所分析用針状試料1を用いて,図14に示す局所分析装置5でFIM観察を行った結果を図17に示す。図17は,局所分析用針状試料1の先端の被測定膜74に徐々に電圧を印加し,2kV付近から輝点が観察され始めた後も更に電圧を印加し続けた結果得られた像を示している。図17に示す像から明らかなように,図3に示す針状部4の先端の被測定膜74に形成された第t被測定膜74t(CoFe層),第s被測定膜74s(Cu層),・・・・・,第p被測定膜74p(Cu層)に対応して,第t被測定膜の像It,第s被測定膜の像Is,・・・・・,第p被測定膜の像Ipがそれぞれ同心円状のコントラストとして明瞭に映っているのが観察できる。
さらに,図1に示す局所分析用針状試料1に対し,図14に示す局所分析装置5によりアトムプローブ分析を行った結果を図18に示す。図1に示す局所分析用針状試料1の第t被測定膜の膜厚Tt,第s被測定膜の膜厚Ts,・・・・・,第p被測定膜の膜厚Tpの各膜厚にそれぞれ対応して測定される組成比が急峻に変化し,CoFe層とCu層の交互積層構造が形成されていることが明瞭に確認できる。
FIG. 17 shows the result of FIM observation performed by the local analyzer 5 shown in FIG. 14 using the needle sample 1 for local analysis shown in FIG. FIG. 17 shows an image obtained as a result of applying a voltage gradually to the film 74 to be measured at the tip of the needle sample 1 for local analysis and further applying the voltage after the bright spot started to be observed from around 2 kV. Is shown. As apparent from the image shown in FIG. 17, the t-th measured film 74t (CoFe layer) and the s-th measured film 74s (Cu layer) formed on the measured film 74 at the tip of the needle-like portion 4 shown in FIG. ),... Corresponding to the p-th film 74p (Cu layer), the image It of the t-th film, the image Is of the s-th film,. It can be observed that the image Ip of the measurement film is clearly shown as a concentric contrast.
Further, FIG. 18 shows the result of atom probe analysis performed on the local analysis needle sample 1 shown in FIG. 1 by the local analysis device 5 shown in FIG. The film thickness Tt of the t-th film to be measured, the film thickness Ts of the s-th film to be measured,..., The film thickness Tp of the p-th film to be measured shown in FIG. It can be clearly confirmed that the composition ratios measured corresponding to the respective thicknesses change sharply, and an alternating laminated structure of CoFe layers and Cu layers is formed.

<試料ホルダ組立体>
図16に示す導電性ワイヤ11の代わりに,図19に示すように,基板部2の第2主面と接着するための平坦面11aを先端に有する棒状の導電性ワイヤ11Aを用いれば、局所分析用針状試料1との固定を更に容易且つ確実に行うことができる試料ホルダ組立体10bが得られる。図19においては、基板部2の幅(図19の紙面に向かって水平方向の長さ)か、基板部2の幅より大きい長さの平坦部分を確保した平坦面11aを先端部に有する棒状の導電性ワイヤ11Aが用いられている。図19に示す導電性ワイヤ11の平坦面11aは,例えば断面の直径が0.5mm程度のチタンワイヤの端面を機械的に研磨すればよい。導電性ワイヤ11の平坦面11aには,加工方法によっては中心付近に小さな穴,或いは微小の凹凸が生じる場合もある。しかし,基板部2の第2主面の一部と接着し基板部2を固定できる程度の平坦な面、好ましくは基板部2の幅以上の大きさを確保した平坦な面、更に好ましくは基板部2の第2主面の占める面積以上の平坦な面が、導電性ワイヤ11Aに形成されていれば,一定の効果を奏する。
<Sample holder assembly>
In place of the conductive wire 11 shown in FIG. 16, if a rod-like conductive wire 11A having a flat surface 11a at the tip for bonding to the second main surface of the substrate portion 2 is used as shown in FIG. A sample holder assembly 10b that can be more easily and reliably fixed to the analysis needle-like sample 1 is obtained. In FIG. 19, a rod-like shape having a flat surface 11 a at the tip portion that secures a flat portion whose width is the width of the substrate portion 2 (the length in the horizontal direction toward the paper surface of FIG. 19) or longer than the width of the substrate portion 2. The conductive wire 11A is used. For the flat surface 11a of the conductive wire 11 shown in FIG. 19, for example, the end surface of a titanium wire having a cross-sectional diameter of about 0.5 mm may be mechanically polished. On the flat surface 11a of the conductive wire 11, a small hole or minute unevenness may occur near the center depending on the processing method. However, a flat surface that can be bonded to a part of the second main surface of the substrate portion 2 to fix the substrate portion 2, preferably a flat surface that secures a size larger than the width of the substrate portion 2, more preferably a substrate. If a flat surface equal to or larger than the area occupied by the second main surface of the portion 2 is formed on the conductive wire 11A, a certain effect is obtained.

図19に示す試料ホルダ組立体10bにおいて,導電性ワイヤ11Aに局所分析用針状試料1を固定する際は,局所分析用針状試料1の基板部2の第2主面が平坦面11aと対向するように,導電性接着剤13を用いて導電性ワイヤ11Aと局所分析用針状試料1とを接着する。その後,導電性ワイヤ11Aに固定した局所分析用針状試料1を図14に示す局所分析装置5の内部に固定する。この固定方法により,例えば図16に示す導電性ワイヤ11に局所分析用針状試料1を固定する場合に10個のうちの9個が分析前に局所分析用針状試料1の角度を補正する必要があるのに比べ,図19に示す導電性ワイヤ11Aを用いた場合では,10個の局所分析用針状試料1のすべてが角度を補正する必要なく分析ができる。   In the sample holder assembly 10b shown in FIG. 19, when the local analysis needle sample 1 is fixed to the conductive wire 11A, the second main surface of the substrate portion 2 of the local analysis needle sample 1 is flat with the flat surface 11a. The conductive wire 11 </ b> A and the local analysis needle-like sample 1 are bonded using the conductive adhesive 13 so as to face each other. Thereafter, the needle sample 1 for local analysis fixed to the conductive wire 11A is fixed inside the local analyzer 5 shown in FIG. With this fixing method, for example, when the local analysis needle sample 1 is fixed to the conductive wire 11 shown in FIG. 16, nine of the ten samples correct the angle of the local analysis needle sample 1 before analysis. Compared to the necessity, when the conductive wire 11A shown in FIG. 19 is used, all of the ten local analysis needle-like samples 1 can be analyzed without the need for correcting the angle.

図20に示すように,導電性ワイヤ11Bの平坦面11aの周囲に突部11bを配置し,図12に示すように,基板部2が導電性ワイヤ11Bの先端に一部埋設できるように導電性ワイヤ11Bの先端を機械的切削により加工すれば,突部11bが局所分析用針状試料1を固定する際のガイドの役割を果たす。このため,図20に示す試料ホルダ組立体10cによれば,局所分析装置5への固定が図19に示す試料ホルダ組立体10bを用いた場合より更に容易になる上,被測定膜74の先端の角度の制御が簡単になる。   As shown in FIG. 20, the protrusion 11b is arranged around the flat surface 11a of the conductive wire 11B, and the substrate 2 is conductive so that it can be partially embedded in the tip of the conductive wire 11B as shown in FIG. If the tip of the conductive wire 11B is machined by mechanical cutting, the protrusion 11b serves as a guide when fixing the needle sample 1 for local analysis. Therefore, according to the sample holder assembly 10c shown in FIG. 20, the fixing to the local analyzer 5 becomes easier than in the case of using the sample holder assembly 10b shown in FIG. The control of the angle becomes easy.

例えば図20に示す例においては,直径0.5mmのチタンワイヤの中心部に,基板部2の大きさに合わせて設計した縦横0.3mm程度の四角形の溝を,精密切削装置等により形成する。平坦面11aは,図10に示す導電性ワイヤ11Aと同様に,加工方法によっては小さな穴,或いは微小の凹凸が生じる場合もあるが,基板部2の第2主面の占める面積以上の平坦な面が全体として確保されればよい。また,図12に示す導電性ワイヤ11Bは,四角形の平坦面11aの四隅を平坦面11aに比べて深く切削することにより平坦面11a表面に微小の凹凸が生じていても,本発明の効果を損ねるものではない。   For example, in the example shown in FIG. 20, a rectangular groove of about 0.3 mm in length and width designed to match the size of the substrate portion 2 is formed in the center of a 0.5 mm diameter titanium wire by a precision cutting device or the like. . Similar to the conductive wire 11A shown in FIG. 10, the flat surface 11a may have small holes or minute irregularities depending on the processing method. However, the flat surface 11a is flat more than the area occupied by the second main surface of the substrate portion 2. It is sufficient that the surface is secured as a whole. Further, the conductive wire 11B shown in FIG. 12 has the effect of the present invention even if minute irregularities are generated on the surface of the flat surface 11a by cutting the four corners of the rectangular flat surface 11a deeper than the flat surface 11a. It is not detrimental.

図20に示す導電性ワイヤ11Bに局所分析用針状試料1を固定する際は,図21に示すように,局所分析用針状試料1の基板部2の第2主面が平坦面11aと対向するように,導電性接着剤13を用いて導電性ワイヤ11Bと局所分析用針状試料1とを接着する。その後,導電性ワイヤ11Bに固定した局所分析用針状試料1を図14に示す局所分析装置5内部に固定する。この固定方法によれば,図19に示す導電性ワイヤ11Aを用いた場合と同様に局所分析用針状試料1の角度を補正する必要なく分析ができる。   When fixing the local analysis needle sample 1 to the conductive wire 11B shown in FIG. 20, as shown in FIG. 21, the second main surface of the substrate portion 2 of the local analysis needle sample 1 is a flat surface 11a. The conductive wire 11 </ b> B and the local analysis needle-like sample 1 are bonded using the conductive adhesive 13 so as to face each other. Thereafter, the local analysis needle-like sample 1 fixed to the conductive wire 11B is fixed inside the local analysis device 5 shown in FIG. According to this fixing method, analysis can be performed without the need to correct the angle of the needle sample 1 for local analysis, as in the case of using the conductive wire 11A shown in FIG.

さらに,導電性ワイヤ11Bと局所分析用針状試料1との接着後の軸のズレを光学顕微鏡で観察すると,図19に示す導電性ワイヤ11Aを用いた試料ホルダ組立体10bでは,導電性ワイヤ11A端面の中心と局所分析用針状試料1の先端部との軸のズレが10個中最大0.15mm程度になる。一方,図21に示す試料ホルダ組立体10cでは,導電性ワイヤ11B端面の中心と局所分析用針状試料1の先端部との軸のズレが,10個中最大でも0.08mm程度に抑えることができる。この結果から,図11に示す導電性ワイヤ11Bを用いた試料ホルダ組立体10cによれば,局所分析用針状試料1を簡単に固定でき,局所分析用針状試料1の先端の向きと導電性ワイヤ11Bの軸方向のズレを少なくできることが理解できる。したがって,再現性良く高い歩留まりで局所分析用針状試料1の被測定領域74の分析ができる。   Further, when the deviation of the axis after bonding between the conductive wire 11B and the needle sample 1 for local analysis is observed with an optical microscope, the sample holder assembly 10b using the conductive wire 11A shown in FIG. The deviation of the axis between the center of the end face of 11A and the tip of the needle sample 1 for local analysis is about 0.15 mm at maximum. On the other hand, in the sample holder assembly 10c shown in FIG. 21, the axial misalignment between the center of the end surface of the conductive wire 11B and the tip of the needle sample 1 for local analysis is suppressed to about 0.08 mm at the maximum. Can do. From this result, according to the sample holder assembly 10c using the conductive wire 11B shown in FIG. 11, the needle sample 1 for local analysis can be easily fixed, the direction of the tip of the needle sample 1 for local analysis and the conductivity. It can be understood that the axial displacement of the conductive wire 11B can be reduced. Therefore, it is possible to analyze the measurement region 74 of the needle sample 1 for local analysis with high reproducibility and high yield.

(その他の実施の形態)
上記のように,本発明は実施の形態によって記載したが,この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態,実施例及び運用技術が明らかとなろう。
(Other embodiments)
As described above, the present invention has been described according to the embodiment. However, it should not be understood that the description and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples, and operational techniques will be apparent to those skilled in the art.

上述した局所分析用針状試料1は,FIM,アトムプローブ,三次元アトムプローブの他に,局所分析用針状試料1と同様な試料を測定することができる他の様々な局所分析装置に応用可能である。   The above-described needle sample 1 for local analysis is applied to various other local analyzers that can measure the same sample as the needle sample 1 for local analysis in addition to FIM, atom probe, and three-dimensional atom probe. Is possible.

局所分析用針状試料1の表面は,機械的な切削や研磨によって形成された凹凸や荒れが生じていても本発明の効果を損ねるものではない。また,柱状部3の形状を円柱状にする,柱状部3の高さを150μm,300μmにする,柱状部の縦横の幅を50μm,30μmにする,或いは基板部2の大きさを300μm四方にする等の変更を適宜加えても,実施の形態において説明した局所分析用針状試料1と同様の効果が得られることは勿論である。   Even if the surface of the needle sample 1 for local analysis has irregularities or roughness formed by mechanical cutting or polishing, the effect of the present invention is not impaired. Also, the shape of the columnar part 3 is made cylindrical, the height of the columnar part 3 is 150 μm and 300 μm, the vertical and horizontal widths of the columnar part are 50 μm and 30 μm, or the size of the substrate part 2 is 300 μm square. Needless to say, the same effects as those of the local analysis needle-like sample 1 described in the embodiment can be obtained even if appropriate changes are made.

上述した局所分析用針状試料1の作製方法においては,基板上に柱状部3を形成した後に基板部2の大きさを規定し,その後,柱状部3の先端を加工することによって針状部4を切削したが,加工手順は上述した方法に限定されない。また,上述した局所分析用針状試料1の作製方法では,針状部4を切削する際にFIBを用いて切削したが,切削する手段はFIBに限定されず,機械的な研磨,化学研磨,電解研磨又はそれらの組み合わせ等のどのような手段によっても上述した実施の形態に係る発明の奏する効果と同様の効果を得ることができる。   In the method for producing the needle sample 1 for local analysis described above, the size of the substrate part 2 is defined after the columnar part 3 is formed on the substrate, and then the tip of the columnar part 3 is processed to form the needle-like part. Although 4 was cut, the processing procedure is not limited to the method described above. Further, in the above-described method for producing the needle sample 1 for local analysis, the needle part 4 is cut using FIB when cutting, but the cutting means is not limited to FIB, and mechanical polishing and chemical polishing are performed. The effect similar to the effect of the invention according to the above-described embodiment can be obtained by any means such as electropolishing or a combination thereof.

このように,本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって,本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。   As described above, the present invention naturally includes various embodiments not described herein. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.

本発明の実施の形態に係る局所分析用針状試料(その1)を示す斜視図である。It is a perspective view which shows the needle-shaped sample for local analysis which concerns on embodiment of this invention (the 1). 本発明の実施の形態に係る局所分析用針状試料(その2)を示す斜視図である。It is a perspective view which shows the needle-shaped sample for local analysis (the 2) which concerns on embodiment of this invention. 図1に示す局所分析用針状試料の針状部の先端に形成された被測定膜を示す断面図である。It is sectional drawing which shows the to-be-measured film | membrane formed in the front-end | tip of the acicular part of the acicular sample for local analysis shown in FIG. 本発明の実施の形態に係る局所分析用針状試料の第1の作製方法(その1)である。It is the 1st preparation method (the 1) of the needle-shaped sample for local analysis which concerns on embodiment of this invention. 本発明の実施の形態に係る局所分析用針状試料の第1の作製方法(その2)である。It is the 1st preparation method (the 2) of the needle-shaped sample for local analysis which concerns on embodiment of this invention. 本発明の実施の形態に係る局所分析用針状試料の第1の作製方法(その3)である。It is the 1st preparation method (the 3) of the needle-shaped sample for local analysis which concerns on embodiment of this invention. 本発明の実施の形態に係る局所分析用針状試料の第1の作製方法(その4)である。It is the 1st preparation method (the 4) of the needle-shaped sample for local analysis which concerns on embodiment of this invention. 本発明の実施の形態に係る局所分析用針状試料の第1の作製方法(その5)である。It is the 1st preparation method (the 5) of the needle-shaped sample for local analysis which concerns on embodiment of this invention. 本発明の実施の形態に係る局所分析用針状試料の第2の作製方法(その1)である。It is the 2nd preparation method (the 1) of the needle-shaped sample for local analysis concerning an embodiment of the invention. 本発明の実施の形態に係る局所分析用針状試料の第2の作製方法(その2)である。It is the 2nd preparation method (the 2) of the needle-shaped sample for local analysis which concerns on embodiment of this invention. 本発明の実施の形態に係る局所分析用針状試料の第2の作製方法(その3)である。It is the 2nd preparation method (the 3) of the needle-shaped sample for local analysis which concerns on embodiment of this invention. 本発明の実施の形態に係る局所分析用針状試料に表面クリーニングを施した場合における針状部の先端を走査型電子顕微鏡で観察した結果を示す説明図である。It is explanatory drawing which shows the result of having observed the front-end | tip of the needle-shaped part with the scanning electron microscope at the time of performing surface cleaning to the needle-shaped sample for local analysis which concerns on embodiment of this invention. 本発明の実施の形態に係る局所分析用針状試料に表面クリーニングを施さない場合における針状部の先端を走査型電子顕微鏡で観察した結果を示す説明図である。It is explanatory drawing which shows the result of having observed the front-end | tip of the needle-like part in the case where surface cleaning is not given to the needle-shaped sample for local analysis which concerns on embodiment of this invention with the scanning electron microscope. 本発明の実施の形態に係る局所分析装置を示す説明図である。It is explanatory drawing which shows the local analyzer which concerns on embodiment of this invention. 本発明の実施の形態に係る局所分析装置の固定部の一例を示す説明図である。It is explanatory drawing which shows an example of the fixing | fixed part of the local analyzer which concerns on embodiment of this invention. 本発明の実施の形態に係る試料ホルダ組立体を示す説明図である。It is explanatory drawing which shows the sample holder assembly which concerns on embodiment of this invention. 図1に示す局所分析用針状試料の先端の被測定膜をFIM観察して得られた像を示す説明図である。It is explanatory drawing which shows the image obtained by FIM observation of the to-be-measured film | membrane of the front-end | tip of the needle-shaped sample for local analysis shown in FIG. 図1に示す局所分析用針状試料の先端の被測定膜をAPFIM観察して得られた質量分析結果を示す説明図である。It is explanatory drawing which shows the mass spectrometry result obtained by APFIM observation of the to-be-measured film | membrane of the front-end | tip of the needle-shaped sample for local analysis shown in FIG. 本発明の実施の形態に係る試料ホルダ組立体を示す側面図である。It is a side view which shows the sample holder assembly which concerns on embodiment of this invention. 本発明の実施の形態に係る試料ホルダ組立体に好適な導電性ワイヤを示す断面図である。It is sectional drawing which shows the electroconductive wire suitable for the sample holder assembly which concerns on embodiment of this invention. 本発明の実施の形態に係る試料ホルダ組立体を示す断面図である。It is sectional drawing which shows the sample holder assembly which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1…局所分析用針状試料
2…基板部
3…柱状部
3a…テーパー部
4…針状部
4α…アモルファス層
5…局所分析装置
10…固定部
10a,10b,10c…試料ホルダ組立体
11,11A,11B…導電性ワイヤ
11a…平坦面
11b…突部
12…試料ホルダ
13…導電性接着剤
20…電圧供給部
30…冷却器
40…ガス供給部
45…バルブ
50…フランジ
60…分析部
61…マイクロチャネルプレート
62…蛍光体
63…プローブホール
64…検出器
65…観察窓
70…出力装置
71…基板
72,72A,72B…第1のシード層
73,73A,73B…第2のシード層
74…被測定領域
74A,74B…被測定膜
74a…第1被測定膜
74b…第2被測定膜
74c…第3被測定膜
74d…第4被測定膜
74p…第p被測定膜
74q…第q被測定膜
74r…第r被測定膜
74s…第s被測定膜
74t…第t被測定膜
75…キャップ層
76,76A,76B…四角柱構造
DESCRIPTION OF SYMBOLS 1 ... Acicular sample for local analysis 2 ... Substrate part 3 ... Columnar part 3a ... Tapered part 4 ... Needle-like part 4 (alpha) ... Amorphous layer 5 ... Local analyzer 10 ... Fixed part 10a, 10b, 10c ... Sample holder assembly 11, DESCRIPTION OF SYMBOLS 11A, 11B ... Conductive wire 11a ... Flat surface 11b ... Projection 12 ... Sample holder 13 ... Conductive adhesive 20 ... Voltage supply part 30 ... Cooler 40 ... Gas supply part 45 ... Valve 50 ... Flange 60 ... Analysis part 61 ... microchannel plate 62 ... phosphor 63 ... probe hole 64 ... detector 65 ... observation window 70 ... output device 71 ... substrate 72, 72A, 72B ... first seed layer 73, 73A, 73B ... second seed layer 74 ... measurement region 74A, 74B ... measurement film 74a ... first measurement film 74b ... second measurement film 74c ... third measurement film 74d ... fourth measurement film 74p ... first p film to be measured 74q ... q-th film to be measured 74r ... r-th film to be measured 74s ... s-th film to be measured 74t ... t-th film to be measured 75 ... cap layer 76, 76A, 76B ... square pillar structure

Claims (7)

第1主面及び前記第1主面に対向する第2主面を有する基板部と,
前記第1主面から突出した柱状部と,
前記柱状部の前記基板部に接続された側とは反対側の端部から前記柱状部が突出する方向に向かって錐体をなすように先鋭化された針状部
とを備え,前記針状部の先端部に局所分析用の被測定領域を含むことを特徴とする局所分析用針状試料。
A substrate portion having a first main surface and a second main surface opposite to the first main surface;
A columnar portion protruding from the first main surface;
A needle-like part sharpened so as to form a cone from the end of the columnar part opposite to the side connected to the substrate part in a direction in which the columnar part protrudes. A needle-like sample for local analysis, comprising a region to be measured for local analysis at the tip of the part.
第1主面及び前記第1主面に対向する第2主面を有する基板部と,
前記第1主面から突出した柱状部と,
前記柱状部の前記基板部に接続された側とは反対側の端部から前記柱状部が突出する方向に向かって錐体をなすように先鋭化され,先鋭化された先端部に局所分析用の被測定領域を含む針状部と,
前記基板部の前記第2主面と接着するための平坦面を有する棒状の導電性ワイヤ部
とを備えることを特徴とする試料ホルダ組立体。
A substrate portion having a first main surface and a second main surface opposite to the first main surface;
A columnar portion protruding from the first main surface;
The columnar portion is sharpened so as to form a cone from the end opposite to the side connected to the substrate portion in the direction in which the columnar portion protrudes, and the sharpened tip is used for local analysis. A needle-shaped part including a region to be measured;
A sample holder assembly comprising: a rod-shaped conductive wire portion having a flat surface for bonding to the second main surface of the substrate portion.
前記導電性ワイヤ部は,前記平坦面の周辺に前記平坦面から突出した突部を有することを特徴とする請求項2に記載の試料ホルダ組立体。   The sample holder assembly according to claim 2, wherein the conductive wire portion has a protrusion protruding from the flat surface around the flat surface. 第1主面及び前記第1主面に対向する第2主面を有する基板部,前記第1主面から突出した柱状部,前記柱状部の前記基板部に接続された側とは反対側の端部から前記柱状部が突出する方向に向かって錐体をなすように先鋭化され,先鋭化された先端部に局所分析用の被測定領域を含む針状部,及び前記基板部の第2主面に接続され,前記基板部を保持する試料ホルダからなる試料ホルダ組立体を固定する固定部と,
前記固定部を介して前記針状部の前記被測定領域をイオン化するための電圧を供給する電圧供給部と、
前記柱状部の前記針状部の先端を通る中心軸上において前記被測定領域の先端に対向し、前記被測定領域を分析する分析部
とを備えることを特徴とする局所分析装置。
A substrate portion having a first principal surface and a second principal surface opposite to the first principal surface, a columnar portion protruding from the first principal surface, and a side of the columnar portion opposite to the side connected to the substrate portion A needle-like part which is sharpened so as to form a cone in a direction in which the columnar part protrudes from the end part, and includes a measurement region for local analysis at the sharpened tip part; and a second part of the substrate part A fixing part for fixing a sample holder assembly, which is connected to the main surface and comprises a sample holder for holding the substrate part;
A voltage supply unit for supplying a voltage for ionizing the measurement area of the needle-like part via the fixing part;
A local analysis apparatus comprising: an analysis unit configured to analyze the measurement region, facing the tip of the measurement region on a central axis passing through the tip of the needle-like portion of the columnar part.
被測定領域を含む構造体を切削し,第1主面及び前記第1主面に対向する第2主面を有する基板部及び前記基板部から突出した柱状部を形成するステップと,
前記柱状部の前記基板部に接続された側とは反対側の端部から前記柱状部が突出する方向に向かって錐体をなすように先鋭化し,先鋭化した先端部に前記被測定領域を含む針状部を形成するステップ
とを備えることを特徴とする局所分析用針状試料の作製方法。
Cutting a structure including a region to be measured to form a first main surface and a substrate portion having a second main surface facing the first main surface and a columnar portion protruding from the substrate portion;
The columnar part is sharpened so as to form a cone from the end opposite to the side connected to the substrate part in the direction in which the columnar part protrudes, and the measured region is formed at the sharpened tip part. And a step of forming a needle-shaped part including the needle-shaped sample for local analysis.
前記柱状部を形成するステップは,
前記被測定領域に印を付けるステップと,
前記印の周辺に存在する前記被測定領域以外の領域を選択的に除去するステップ
を含むことを特徴とする請求項5に記載の局所分析用針状試料の作製方法。
The step of forming the columnar part includes:
Marking the measured area;
The method for producing a needle sample for local analysis according to claim 5, further comprising the step of selectively removing a region other than the region to be measured existing around the mark.
前記針状部を形成するステップは,収束イオンビーム及びイオンミリングの少なくとも一方を用いて形成することを特徴とする請求項5又は6に記載の局所分析用針状試料の作製方法。   The method for producing a needle sample for local analysis according to claim 5 or 6, wherein the step of forming the needle-like portion is formed using at least one of a focused ion beam and ion milling.
JP2004043389A 2004-02-19 2004-02-19 Needle-like sample for local analysis, sample holder assembly, local analyzer and method for manufacturing needle-like sample for local analysis Pending JP2005233786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004043389A JP2005233786A (en) 2004-02-19 2004-02-19 Needle-like sample for local analysis, sample holder assembly, local analyzer and method for manufacturing needle-like sample for local analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004043389A JP2005233786A (en) 2004-02-19 2004-02-19 Needle-like sample for local analysis, sample holder assembly, local analyzer and method for manufacturing needle-like sample for local analysis

Publications (1)

Publication Number Publication Date
JP2005233786A true JP2005233786A (en) 2005-09-02

Family

ID=35016898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004043389A Pending JP2005233786A (en) 2004-02-19 2004-02-19 Needle-like sample for local analysis, sample holder assembly, local analyzer and method for manufacturing needle-like sample for local analysis

Country Status (1)

Country Link
JP (1) JP2005233786A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052967A (en) * 2004-08-10 2006-02-23 Fujitsu Ltd Sample for evaluating nanolevel structural composition, its manufacturing method, and evaluation method of nanolevel structural composition
JP2009025127A (en) * 2007-07-19 2009-02-05 Toppan Printing Co Ltd Sample preparing method
JP2011059002A (en) * 2009-09-11 2011-03-24 Central Res Inst Of Electric Power Ind Method of making sample
EP2916342A1 (en) * 2014-03-05 2015-09-09 Fei Company Fabrication of a lamella for correlative atomic-resolution tomographic analyses
CN105865862A (en) * 2016-03-25 2016-08-17 江苏省沙钢钢铁研究院有限公司 Preparation method of three-dimensional atom probe sample
EP3318862A1 (en) * 2016-11-04 2018-05-09 FEI Company Tomography sample preparation systems and methods with improved speed, automation, and reliability
CN111829841A (en) * 2019-04-15 2020-10-27 台湾积体电路制造股份有限公司 Needle-shaped sample, analysis and preparation method thereof
US11476079B1 (en) 2021-03-31 2022-10-18 Fei Company Method and system for imaging a multi-pillar sample

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052967A (en) * 2004-08-10 2006-02-23 Fujitsu Ltd Sample for evaluating nanolevel structural composition, its manufacturing method, and evaluation method of nanolevel structural composition
JP2009025127A (en) * 2007-07-19 2009-02-05 Toppan Printing Co Ltd Sample preparing method
JP2011059002A (en) * 2009-09-11 2011-03-24 Central Res Inst Of Electric Power Ind Method of making sample
JP2015170600A (en) * 2014-03-05 2015-09-28 エフ・イ−・アイ・カンパニー Fabrication of malleable lamella for correlative atomic-resolution tomographic analyses
EP2916343A1 (en) 2014-03-05 2015-09-09 Fei Company Fabrication of a Lamella for Correlative Atomic-Resolution Tomographic Analyses
CN104897696A (en) * 2014-03-05 2015-09-09 Fei公司 Fabrication of a lamella for correlative atomic-resolution tomographic analysis
EP2916342A1 (en) * 2014-03-05 2015-09-09 Fei Company Fabrication of a lamella for correlative atomic-resolution tomographic analyses
US9797923B2 (en) 2014-03-05 2017-10-24 Fei Company Fabrication of a malleable lamella for correlative atomic-resolution tomographic analyses
CN105865862A (en) * 2016-03-25 2016-08-17 江苏省沙钢钢铁研究院有限公司 Preparation method of three-dimensional atom probe sample
EP3318862A1 (en) * 2016-11-04 2018-05-09 FEI Company Tomography sample preparation systems and methods with improved speed, automation, and reliability
KR20180050209A (en) * 2016-11-04 2018-05-14 에프이아이 컴파니 Tomography sample preparation systems and methods with improved speed, automation, and reliability
US10190953B2 (en) 2016-11-04 2019-01-29 Fei Company Tomography sample preparation systems and methods with improved speed, automation, and reliability
KR102470232B1 (en) 2016-11-04 2022-11-23 에프이아이 컴파니 Tomography sample preparation systems and methods with improved speed, automation, and reliability
CN111829841A (en) * 2019-04-15 2020-10-27 台湾积体电路制造股份有限公司 Needle-shaped sample, analysis and preparation method thereof
US11476079B1 (en) 2021-03-31 2022-10-18 Fei Company Method and system for imaging a multi-pillar sample

Similar Documents

Publication Publication Date Title
EP2278307B1 (en) Method for inspecting a sample
JP4185604B2 (en) Sample analysis method, sample preparation method and apparatus therefor
JP4570980B2 (en) Sample stage and sample processing method
US6956210B2 (en) Methods for preparing samples for atom probe analysis
JP2004245660A (en) Manufacture of chip sample, and method and system for observing wall surface of the same
JP2005233786A (en) Needle-like sample for local analysis, sample holder assembly, local analyzer and method for manufacturing needle-like sample for local analysis
JP2007248082A (en) Standard sample to be used for charged particle beam device, charged particle beam device, and method for manufacturing standard sample to be used for charged particle beam device
CN111220819A (en) Focused ion beam cutting sample preparation method
JP2004264145A (en) Method for making transmission electron microscope observation specimen
JP4309857B2 (en) Method for forming needle-like body used for field ion microscope or atom probe, and needle-like body used for field ion microscope or atom probe
JP4393899B2 (en) Sample for atom probe apparatus and processing method thereof
JP2005308400A (en) Sample machining method, sample machining device and sample observing method
JP5772647B2 (en) Thin piece sample preparation apparatus and thin piece sample preparation method
JP4654018B2 (en) Focused ion beam processing apparatus, sample stage, and sample observation method
TWI255339B (en) Method of applying micro-protection in defect analysis
JP4902712B2 (en) Atom probe analysis method
JP3266995B2 (en) Method and apparatus for observing and measuring conductive members
US20120117696A1 (en) Integrated metallic microtip coupon structure for atom probe tomographic analysis
JP4555714B2 (en) Preparation method of nano-level structural composition observation sample
JP4628153B2 (en) Nano-level structural composition observation apparatus and nano-level structural composition observation method
JP5151288B2 (en) Sample preparation method
JP2005345347A (en) Micro-sample preparation device, micro-sample installation tool, and micro-sample processing method
JP3909773B2 (en) Wire rod residual stress measuring method and wire rod residual stress measuring device
KR100620728B1 (en) Method for Manufacturing Specimen for Analyzing by Transmission Electron Microscope
JPH09127139A (en) Manufacture of cantilever type minute probe and cantilever type minute probe

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070416

A131 Notification of reasons for refusal

Effective date: 20070710

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071106