JP2004264145A - Method for making transmission electron microscope observation specimen - Google Patents

Method for making transmission electron microscope observation specimen Download PDF

Info

Publication number
JP2004264145A
JP2004264145A JP2003054651A JP2003054651A JP2004264145A JP 2004264145 A JP2004264145 A JP 2004264145A JP 2003054651 A JP2003054651 A JP 2003054651A JP 2003054651 A JP2003054651 A JP 2003054651A JP 2004264145 A JP2004264145 A JP 2004264145A
Authority
JP
Japan
Prior art keywords
observation
sample
ion beam
electron microscope
transmission electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003054651A
Other languages
Japanese (ja)
Other versions
JP3768197B2 (en
Inventor
Michihiro Ouse
路博 合瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003054651A priority Critical patent/JP3768197B2/en
Publication of JP2004264145A publication Critical patent/JP2004264145A/en
Application granted granted Critical
Publication of JP3768197B2 publication Critical patent/JP3768197B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for making a transmission electron microscope observation specimen for satisfactory TEM observation by removing roughness on an amorphous layer or on an observed cross-section, these being formed by focused ion beam irradiation in manufacturing. <P>SOLUTION: The observation specimen is made out of an observation specimen substrate, the specimen having a structure made by together combining a columnar specimen body 3, a pyramid-shaped support body 4 projecting in a columnar shape vertically from the specimen body 3, and a thinned part 5, worked/formed to have a width including an observed area, thin-formed, and equipped with an observation face, on an end of the pyramid-shaped support body. The observation face is sputter-etched by irradiating the observation face with an ion beam at a low angle. This makes it possible to remove roughness on the amorphous layer or on the observed cross-section formed by the focused ion beam irradiation, to make the transmission electron microscope specimen with high quality, and to perform satisfactory TEM observation. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、集束イオンビーム(Forcused Ion Beam:以下、FIBと略称する)法による透過電子顕微鏡観察試料の作製方法において、金属層を含む多層膜や半導体デバイス等の詳細な断面構造を透過電子顕微鏡(Transmission Electron Microscope:以下TEMと略称する)で観察するための試料作製方法に関する。
【0002】
【従来の技術】
透過電子顕微鏡を用いて試料を観察する際に、試料は、試料フォルダーに形成された3mmφ程度の開孔に、C字形状をしているリングを用いて搭載され、電子線が照射されて、観察される。そのために、図19に示すように、この透過電子顕微鏡観察試料1は、自立できる程度の強度を有する保持部である柱状試料本体3と、電子線が透過できる程度の薄さを有する薄化部5からなっている。
【0003】
従来このような試料は、集束イオンビームを用いて試料の観察部位をエッチングして薄化加工している(特許文献1、特許文献2参照)。
そこで、以下、この集束イオンビームを用いた透過型電子顕微鏡観察試料の作製について、図13〜19を用いて説明する。
まず、図13に示すように、試料基体111上の微細パターン内にTEM観察が必要な観察部位2が存在する試料基体111のような試料を準備し、これを試料基体111よりも大きいダミー基板12に樹脂系ワックス等を使い可能な限り平坦に接着固定する。次に、図14のように観察部位2が残留するように基板長手方向をストレートタイプのブレードダイシングで浅く切り込んで凸部13を形成する。凸部13の厚さは、後工程のFIB加工時間を考慮し、且つチッピング等で破損しない程度に極力薄く加工する。次に、図15〜16のように電子顕微鏡(以下、装置と記載)の鏡筒内に挿入可能な大きさ(例えば、厚さ約0.2mm×長さ約2mm、高さは基板の厚さ)になるように基板長手方向、次いで、基板長手方向に垂直な方向の順で深く切り出し、図17のような断面凸型の柱状試料を得る。次に、前記断面凸型の柱状試料を補強リング(例えば、SUS製のC型リング)に取り付け、図18のように観察部位2上方からFIB法によりTEM観察可能な適当な厚さ(例えば、約0.1μm)まで薄化し薄化部観察面18を露出させTEM試料を作製し、図19のようにTEM試料を装置鏡筒内に挿入し薄化部観察面18に観察電子線19を照射しTEM観察する。
【0004】
【特許文献1】特開平7−318468号公報
【非特許文献】特開平10−221227号公報
【0005】
【発明が解決しようとする課題】
しかし、前記従来のTEM試料作製方法では、薄化した薄化部観察面18にイオンビームエッチングによるダメージ層が形成されており、主に重元素で構成される酸化物系薄膜超伝導デバイスや、金属層を含み複雑な微細構造を有する半導体デバイスなどを薄化した場合、前者は重元素ほどエッチングされにくいので全体的にTEM像が不鮮明となり、後者はエッチングされにくい重元素系の部分とエッチングされやすい軽元素系の部分との間でエッチングレート差が生じ界面に段差が形成され薄化部観察面18が荒れやすく、現状のTEM試料作製及び観察において大きな問題となっている。
【0006】
ダメージ層の形成には様々な要因が考えられているが、特にその影響が大きいのがFIB照射の加速電圧である。FIBの加速電圧は通常30kVであるが、30kVのFIBでSi結晶を薄化した場合、片面だけでも約30nmの非晶質なダメージ層が形成される。この厚さは薄化した厚さが約0.1μmとすると、その60%がダメージ層で覆われていることになる。ここで、FIB照射において試料に与える加速電圧の影響について検討するため、前記30kVのFIBで薄化したSi結晶の薄化部観察面18に、更に25kVのFIBを平行に照射させたところ前記ダメージ層が約20%除去さることが判明した。これは、加速電圧の低電圧化によりダメージ層が除去可能であることを示唆している。このように、加速電圧を低電圧化した手法を用いればエッチングレート差による界面の段差も軽減され平滑な観察断面が期待できることが明かとなった。
そこで、ダメージ層を限りなく除去して健全な結晶質部分をできるだけ露出させると同時に観察断面の荒れを最小限に抑え平滑な観察断面を得るには、加速電圧の低いイオン研磨等の二次的加工が必要となるが、従来のように断面凸型で柱状に切り出された形状では、二次的加工を加えにくいという問題があった。
【0007】
本発明は、以上の検討の結果得られたFIB照射に関する知見に基づいて完成したものであり、FIB照射による影響で形成されるダメージ層や観察断面の荒れを除去し、良好なTEM観察ができる透過電子顕微鏡観察試料の作製方法を提供するものである。
【0008】
【課題を解決するための手段】
本発明は、先端に凸部を有する柱状試料の当該凸部にある被観察領域を薄化して観察面を露出させる透過電子顕微鏡観察試料の作製方法において、
前記被観察領域を有する試料基体から、前記被観察領域が残留するように前記柱状試料を切り出す第1の工程と、
前記凸部頂部平面に垂直な方向から第1イオンビームを照射して前記凸部を薄化して、薄化部を形成する第2の工程と、
前記観察面となる前記薄化部平面に、低い照射角で第2イオンビームを照射する第3の工程とを少なくとも有することを特徴とする透過電子顕微鏡観察試料の作製方法である。
【0009】
前記柱状試料は、前記試料本体、前記凸部、及び前記凸部に形成された薄化部が一体化した構造であることが好ましい。
【0010】
前記第1イオンビームとして集束ガリウムイオンビームを、前記第2イオンビームとしてアルゴンイオンを用いて薄化することができる。
【0011】
前記第2イオンビームの加速電圧として、前記第1イオンビームよりも低い加速電圧であることが好ましい。また、前記第2イオンビームを前記薄化部に対し、照射角をαとした場合、0°<α≦30°(但し、αは照射角)の角度で照射することが好ましい。さらに前記第2イオンビームが前記薄化部に選択的に照射することが好ましい。
【0012】
この発明の方法によれば、柱状試料本体3と、この柱状試料本体3の垂直方向に柱状に突き出させた角錐状の支持体4と、角錐状の支持体4先端に被観察領域6を含む幅に加工整形された支持体4先端と、支持体4先端に薄片加工形成された薄化部観察面18を含む薄化部5とが一体となった構造とすることで、イオンビームによる薄化後のイオン研磨等の二次的加工を容易にし、FIB照射によるダメージ層を効率よく除去し、構成元素の違いや断面構造の影響で生じる観察断面の荒れも軽減することができる。
【0013】
【発明の実施の形態】
以下、本発明の実施形態について図面を使って説明する。図2は本発明のTEM観察試料作製のための基材を示す斜視図である。図3〜図6は本発明の第1工程を示す斜視図である。図7は本発明の第1工程により作製された試料形状を示す斜視図である。図8は本発明の第2工程を示す斜視図で、薄化部と第1イオンビームの照射方向との関係を示す図である。図9は本発明の実施形態で、(a)は薄化状態1を示す断面図、(b)は薄化状態2を示す平面図である。図10は本発明の第3工程を示す斜視図で、薄化した観察断面と第2イオンビームの照射方向および試料回転との関係を示す図である。図11は本発明の実施形態で、薄化した観察断面と第2イオンビームの照射角との関係を示す図である。図12は本発明の観察試料とTEMの電子線照射方向との関係を示す図である。
【0014】
以下順次工程に従って本実施の形態を説明する。
まず、図2のように試料基体11上の微細パターン内にTEM観察が必要な観察部位2が存在する試料基体11を準備し、この試料基体11をこれよりも大きいダミー基板12に樹脂系ワックス等を使って可能な限り平坦に接着固定する。この試料表面は後述するFIB照射の影響を受けやすいので、観察目的に応じて予め基板1表面に真空蒸着法等の手段によりFIB照射の影響を考慮した厚さの保護膜を形成しておくことが望ましい。
【0015】
次に、図3のように観察部位2が残存するように基板長手方向をテーパータイプのブレードダイシングで切り込みテーパー状の凸部13を形成する。ここで注意すべき点は、基板長手方向の切り込み深さと凸部先端の厚さである。基板長手方向を切り込む深さは試料形態や性状により異なるが、後工程のイオン研磨の照射効率を考慮した十分な高さを確保する必要があるため数十〜数百μmの範囲で整形することが望ましい。凸部先端の厚さは、後工程のFIB加工時間を考慮し、且つチッピングで破損しない程度に薄く整形する必要がある。例えば、Si基板では0.03mm以下、硬く脆い透明基板では0.05mm以下にすることが望ましい。
【0016】
次に、図4のように観察部位2を中心に厚さ約0.2mm以下になるようにストレートタイプのブレードダイシングで基板長手方向を深く切り込み試料基体11を完全に複数に切り離す。
【0017】
次に、図5のように観察部位2が残存するように前記凸部13の一部を除去し、支持体4を形成する。支持体4の形態と高さは、図7のように直線的なテーパー状で、且つその高さを数十〜数百μmの範囲で整形することが望ましい。例えば、前記工程(図3)の切り込み深さが約0.1mmなら支持体4の高さも約0.1mmに調整し整形する。ここで注意すべき重要な点は、支持体4の幅(基体長手方向)である。支持体4の幅は、図8のように被観察領域6に形成すべき薄化部5と同じ幅に整形することが望ましいが、このような整形が困難な場合は、後述の第2工程において図9(a)のように薄化部5の幅に応じて支持体4先端の不要な部位を適当な深さまで除去するか、図9(b)のように薄化部5の両端部を薄化部観察面18に対して楔状に適当な深さまで除去する方法で行えばより効果的である。支持体4支持部の形態は、支持体4が破損しないレベルで整形できれば厳密な加工精度は必要としない。次に、図6のように観察部位2を中心に装置鏡筒内に挿入できる長さ約2mm以下になるように基体長手方向断面を深く切り込み基体から完全に切り離す。以上の工程により、図7のような柱状試料本体3と、柱状試料本体3の垂直方向に枝状に突き出した角錐状の支持体4と、角錐状の支持体4先端に被観察領域6を含む幅に加工整形された支持体4先端とが一体となった構造の柱状の透過電子顕微鏡試料1が得られる。ここで、支持体4の形成において、観察部位2の位置確認が困難な場合は、予め前記保護膜を形成してFIBで観察部位2周辺に識別可能な大きさのマーキング加工を施す。膜剥がれの恐れがある場合は、先に前記保護膜を形成してFIBで観察部位2周辺の四方を適当な深さに削り込み基板と分離させてからFIBのCVD膜で覆い接着効果を付与することで観察部位2の識別が容易になり試料破損や膜剥がれ等が軽減される。
【0018】
次に、前記柱状試料を補強リング(例えば、SUS製のC型リング)に接着固定する。次に、FIB専用ホルダーに取付けた状態で装置メインチヤンバー内に挿入し所定の装置およびビーム調整を行う。
【0019】
次に、FIBのCVD機能により被観察領域6上にW保護膜を形成した後、図8のように第1イオンビーム14として加速電圧30kVのFIBを被観察領域6の上方から照射し、TEM観察可能な厚さに達するまでイオンビーム電流を段階的に下げながら薄化し、図9(a)のように薄化部観察面18を露出させる。加速電圧により異なるが200〜400kV級TEMの場合、観察に適した厚さは約0.1μmである。
【0020】
以上の工程により、柱状試料本体3と、この柱状試料本体3の垂直方向に枝状に突き出した角錐状の支持体4と、角錐状の支持体4先端に被観察領域6を含む幅に加工整形された支持体4先端と、支持体4先端に薄化整形された薄化部観察面18を含む薄化部5とが一体化した構造の透過電子顕微鏡(TEM)観察試料1が得られる。
【0021】
次に、前記薄化試料を装置メインチヤンバーから取り出し、図10のようにイオン研磨専用ステージに対して薄化部観察面18が平行な向きになるようにセットし、第2イオンビーム15として加速電圧4kVのアルゴンイオンを基体長手方向から薄化部観察面18に対して低い角度で試料回転させながら、且つ薄化部5だけに選択的に照射されるように調整し数分間照射し、TEM試料を作製した。この第2イオンビームを用いた第3の工程は、FIB機構とイオン研磨機構が一体となった装置またはシステムで行うことが望ましい。ここで、第2イオンビーム15の照射目的について説明する。この目的は、前記30kVのFIB照射で薄化部観察面18に形成された片面だけで約30nmにも達するダメージ層を除去し健全な結晶質部分を露出させること、エッチングレート差による界面の段差を軽減し平滑な薄化部観察面18を得ることである。これを実現するには、前者は第2イオンビーム15の加速電圧の低電圧化、後者は同低電圧化と低角度照射することが重要である。本発明の実施形態では、第2イオンビーム15の加速電圧は第1イオンビーム14よりも十分低い4kVに調整されたアルゴンイオンを用いた。第2イオンビーム15の照射角(α)11は15°とした。ただし、試料形態および構造によっては、加速電圧は0〜10kV以下、アルゴンイオンビームの照射角(α)11は0°<α≦30°の範囲内で微調整することが必要である。
【0022】
前記第2イオンビーム15の照射角11について図面を使って説明する。図11は、薄化部5を真上から見た時の薄化した薄化部観察面18と第2イオンビーム15の照射角11との関係を示す図である。
【0023】
これによれば、薄化部観察面18に対しイオンビームを照射すると薄化部側面(支持体側面)も同時に削られてしまう可能性があるが、図に示すように照射角(α)11と試料回転数(R)を各々0°<α≦30°、2≦R≦10rpmに調整し、薄化部5を試料回転軸16として回転(通常は反時計回り)させることで薄化部側面への照射を最小限に抑えることができる。薄化部5の上方から第2イオンビーム15を照射しない理由は、観察断面の上方から低角度照射するとその上部から徐々に削られてしまうためである。
最後に、作製したTEM試料を装置鏡筒内に挿入し、図12のように薄化部観察面18に対して観察電子線19を照射しTEM観察した。その結果、酸化物系の超伝導デバイス、磁性デバイスなどの重金属層界面やDRAM等の絶縁層の厚さをより鮮明に観察できた。これに対し、従来の試料作製方法ではSi結晶面でのダメージが顕著で重金属層界面も不鮮明であった。
【0024】
【発明の効果】
以上のように本発明によれば、柱状試料本体と、本体の垂直方向に枝状に突き出した角錐状の支持体と、角錐状支持体先端に被観察領域を含む幅に加工整形された支持体先端と、支持体先端に薄片整形された観察断面を含む薄化部とが一体となった構造を形成することで、イオン研磨などの二次的加工が容易になり、これまでTEM観察の弊害であった集束イオンビーム贈射によるダメージ層を除去し、構成元素の違いや断面構造により生じていた観察断面の荒れも軽減できるため、高品質なTEM試料を作製し、良好なTEM観察が可能になる。事例として、酸化物系の超伝導デバイスや磁性デバイス等の重金属層界面や半導体デバイスの絶縁層の厚さをより鮮明に観察できた。
【図面の簡単な説明】
【図1】本発明の透過電子顕微鏡試料の斜視図
【図2】本発明の透過電子顕微鏡試料を作製するための基材を示す斜視図
【図3】本発明の第1工程を示す斜視図
【図4】本発明の第1工程を示す斜視図
【図5】本発明の第1工程を示す斜視図
【図6】本発明の第1工程を示す斜視図
【図7】本発明の第1工程により作製された試料形状を示す斜視図
【図8】本発明の第2工程を示す斜視図
【図9】本発明の実施形態で、(a)は第1の薄化状態を示す断面図、(b)は第2の薄化状態を示す平面図
【図10】本発明の第3工程を示す斜視図で、薄化した観察面と第2イオンビームの照射方向及び試料回転との関係を示す図
【図11】本発明の実施形態で、薄化した観察断面と第2イオンビーム照射角との関係を示す図
【図12】本発明の観察試料と透過電子蹄微鏡の電子線との関係を示す斜視図
【図13】従来の透過電子顕微鏡観察試料を作製するための基材を示す斜視図
【図14】従来の透過電子顕微鏡観察試料を作製するための工程を示す斜視図
【図15】図14の次の工程を示す斜視図
【図16】図15の次の工程を示す斜視図
【図17】図16の工程により作製された試料形状を示す斜視図
【図18】図17の次の工程を示す斜視図
【図19】従来の観察試料と透過電子顕微鏡の電子線との関係を示す斜視図
【符号の説明】
1…透過電子顕微鏡試料
2…観察部位
3…柱状試料本体
4…支持体
5…薄化部
6…被観察領域
11…試料基体
12…ダミー基板
13…凸部
14…第1イオンビーム
15…第2イオンビーム
16…試料回転軸
17…照射角
18…薄化部観察面
19…観察電子線
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for preparing a transmission electron microscope observation sample by a focused ion beam (hereinafter, abbreviated as FIB) method, in which a detailed cross-sectional structure of a multilayer film including a metal layer, a semiconductor device, or the like is examined by a transmission electron microscope. (Transmission Electron Microscope: hereinafter referred to as TEM).
[0002]
[Prior art]
When observing the sample using a transmission electron microscope, the sample is mounted on a hole of about 3 mmφ formed in the sample folder using a C-shaped ring, and is irradiated with an electron beam. To be observed. For this purpose, as shown in FIG. 19, the transmission electron microscope observation sample 1 has a columnar sample body 3 which is a holding portion having a strength enough to be self-supporting, and a thinned portion having a thickness small enough to transmit an electron beam. It consists of five.
[0003]
Conventionally, such a sample has been thinned by etching the observation site of the sample using a focused ion beam (see Patent Documents 1 and 2).
Therefore, the production of a transmission electron microscope observation sample using this focused ion beam will be described below with reference to FIGS.
First, as shown in FIG. 13, a sample such as the sample substrate 111 in which the observation site 2 requiring the TEM observation exists in the fine pattern on the sample substrate 111 is prepared, and this is set to a dummy substrate larger than the sample substrate 111. 12 is bonded and fixed as flat as possible using a resin wax or the like. Next, as shown in FIG. 14, the projection 13 is formed by cutting the substrate in the longitudinal direction shallowly by straight-type blade dicing so that the observation site 2 remains. The thickness of the convex portion 13 is processed as thin as possible so as not to be damaged by chipping or the like in consideration of the FIB processing time in a later process. Next, as shown in FIGS. 15 and 16, a size (for example, a thickness of about 0.2 mm × a length of about 2 mm, which can be inserted into a column of an electron microscope (hereinafter referred to as an apparatus), and a height of the 17), the sample is deeply cut in the longitudinal direction of the substrate and then in the direction perpendicular to the longitudinal direction of the substrate to obtain a columnar sample having a convex cross section as shown in FIG. Next, the columnar sample having a convex cross section is attached to a reinforcing ring (for example, a C-shaped ring made of SUS), and as shown in FIG. 18, an appropriate thickness (for example, A thin TEM sample is prepared by exposing the thinned portion observation surface 18 to about 0.1 μm), and the observation electron beam 19 is inserted into the thinned portion observation surface 18 as shown in FIG. Irradiate and observe with TEM.
[0004]
[Patent Document 1] JP-A-7-318468 [Non-Patent Document] JP-A 10-221227 [0005]
[Problems to be solved by the invention]
However, in the conventional TEM sample manufacturing method, a damaged layer is formed on the thinned portion observation surface 18 by ion beam etching, and an oxide-based thin film superconducting device mainly composed of heavy elements, When thinning a semiconductor device having a complicated microstructure including a metal layer, the former is harder to etch as a heavy element, so the TEM image is generally unclear, and the latter is etched with a heavy element-based part that is hard to be etched. An etching rate difference is generated between the light-element-based portion and the interface, and a step is formed at the interface, and the thinned portion observation surface 18 is easily roughened, which is a major problem in the current TEM sample preparation and observation.
[0006]
Various factors have been considered for the formation of the damaged layer, and the most significant effect is the acceleration voltage of FIB irradiation. The acceleration voltage of the FIB is usually 30 kV, but when the Si crystal is thinned by the FIB of 30 kV, an amorphous damage layer of about 30 nm is formed on only one side. If the reduced thickness is about 0.1 μm, 60% of the thickness is covered with the damaged layer. Here, in order to examine the effect of the acceleration voltage on the sample in the FIB irradiation, the thinned portion observation surface 18 of the Si crystal thinned by the 30 kV FIB was further irradiated in parallel with the 25 kV FIB in parallel with the damage. It was found that about 20% of the layer was removed. This suggests that the damage layer can be removed by lowering the acceleration voltage. As described above, it has been clarified that the step at the interface due to the difference in etching rate can be reduced and a smooth observation cross section can be expected by using the technique of lowering the acceleration voltage.
Therefore, in order to obtain a smooth observation section while minimizing the roughness of the observation section while simultaneously removing the damaged crystalline layer to expose a sound crystalline portion as much as possible, it is necessary to use secondary polishing such as ion polishing with a low acceleration voltage. Processing is required, but there is a problem that it is difficult to perform secondary processing in a columnar cutout having a convex cross section as in the related art.
[0007]
The present invention has been completed on the basis of the knowledge on FIB irradiation obtained as a result of the above-described study, and removes a damaged layer formed by the influence of FIB irradiation and roughness of an observation cross section, thereby enabling good TEM observation. An object of the present invention is to provide a method for preparing a sample observed by a transmission electron microscope.
[0008]
[Means for Solving the Problems]
The present invention relates to a method for preparing a transmission electron microscope observation sample in which a region to be observed in a columnar sample having a projection at a tip is thinned to expose an observation surface.
A first step of cutting out the columnar sample from the sample substrate having the observed area so that the observed area remains;
A second step of irradiating the first ion beam from a direction perpendicular to the top surface of the projection to thin the projection to form a thinned portion;
And a third step of irradiating a second ion beam at a low irradiation angle onto the thinned portion plane serving as the observation surface.
[0009]
It is preferable that the columnar sample has a structure in which the sample main body, the convex portion, and a thinned portion formed on the convex portion are integrated.
[0010]
A focused gallium ion beam can be thinned as the first ion beam and argon ions can be thinned as the second ion beam.
[0011]
It is preferable that the acceleration voltage of the second ion beam is lower than that of the first ion beam. When the irradiation angle of the second ion beam to the thinned portion is α, it is preferable that the second ion beam be irradiated at an angle of 0 ° <α ≦ 30 ° (where α is the irradiation angle). Further, it is preferable that the second ion beam selectively irradiates the thinned portion.
[0012]
According to the method of the present invention, the column-shaped sample main body 3, the pyramid-shaped support 4 protruding in a column shape in the vertical direction of the column-shaped sample main body 3, and the observation region 6 at the tip of the pyramid-shaped support 4 are included. By adopting a structure in which the front end of the support 4 processed and shaped into a width and the thinned portion 5 including the thinned portion observation surface 18 formed by flake processing at the front end of the support 4 are integrated, the thinning by the ion beam is performed. Secondary processing such as ion polishing after the formation can be facilitated, the damaged layer due to FIB irradiation can be efficiently removed, and roughness of the observed cross section caused by the difference in constituent elements and the influence of the cross sectional structure can be reduced.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 2 is a perspective view showing a base material for preparing a TEM observation sample according to the present invention. 3 to 6 are perspective views showing a first step of the present invention. FIG. 7 is a perspective view showing the shape of a sample manufactured by the first step of the present invention. FIG. 8 is a perspective view showing a second step of the present invention, and is a view showing the relationship between the thinned portion and the irradiation direction of the first ion beam. FIG. 9 is an embodiment of the present invention, in which (a) is a cross-sectional view showing a thinned state 1 and (b) is a plan view showing a thinned state 2. FIG. 10 is a perspective view showing a third step of the present invention, showing the relationship between the thinned observation cross section, the irradiation direction of the second ion beam, and the rotation of the sample. FIG. 11 is a diagram showing a relationship between a thinned observation cross section and an irradiation angle of the second ion beam in the embodiment of the present invention. FIG. 12 is a diagram showing the relationship between the observation sample of the present invention and the electron beam irradiation direction of the TEM.
[0014]
Hereinafter, the present embodiment will be described according to the sequential steps.
First, as shown in FIG. 2, a sample substrate 11 in which an observation site 2 requiring TEM observation is present in a fine pattern on the sample substrate 11 is prepared. Adhesively fix as flat as possible using Since the surface of this sample is easily affected by the FIB irradiation described later, a protective film having a thickness considering the influence of the FIB irradiation is formed on the surface of the substrate 1 in advance by a means such as a vacuum evaporation method according to the observation purpose. Is desirable.
[0015]
Next, as shown in FIG. 3, a tapered convex portion 13 is formed by cutting the substrate in the longitudinal direction by taper type blade dicing so that the observation site 2 remains. What should be noted here is the depth of cut in the longitudinal direction of the substrate and the thickness of the tip of the projection. The cutting depth in the longitudinal direction of the substrate varies depending on the sample form and properties, but it is necessary to secure a sufficient height in consideration of the irradiation efficiency of ion polishing in the subsequent process, so shaping in the range of tens to hundreds of μm Is desirable. The thickness of the tip of the convex portion needs to be shaped so as not to be damaged by chipping in consideration of the FIB processing time in the subsequent process. For example, the thickness is preferably 0.03 mm or less for a Si substrate, and 0.05 mm or less for a hard and brittle transparent substrate.
[0016]
Next, as shown in FIG. 4, the longitudinal direction of the substrate is deeply cut by straight-type blade dicing so as to have a thickness of about 0.2 mm or less around the observation site 2, and the sample substrate 11 is completely cut into a plurality.
[0017]
Next, as shown in FIG. 5, a part of the projection 13 is removed so that the observation site 2 remains, and the support 4 is formed. The shape and height of the support 4 are desirably a linear tapered shape as shown in FIG. 7, and the height is desirably shaped in the range of several tens to several hundreds of μm. For example, if the cutting depth in the above step (FIG. 3) is about 0.1 mm, the height of the support 4 is also adjusted to about 0.1 mm and shaped. An important point to note here is the width of the support 4 (the longitudinal direction of the base). The width of the support 4 is desirably shaped to the same width as the thinned portion 5 to be formed in the observation area 6 as shown in FIG. 8, but if such shaping is difficult, the second step described later is used. 9A, an unnecessary portion at the tip of the support 4 is removed to an appropriate depth according to the width of the thinned portion 5 as shown in FIG. 9A, or both ends of the thinned portion 5 as shown in FIG. It is more effective to remove wedges from the thinned portion observation surface 18 to an appropriate depth. The support 4 does not require strict processing accuracy as long as the support 4 can be shaped to a level at which the support 4 is not damaged. Next, as shown in FIG. 6, the longitudinal section of the base is deeply cut so as to have a length of about 2 mm or less that can be inserted into the apparatus barrel around the observation site 2, and completely cut off from the base. By the above steps, the columnar sample main body 3 as shown in FIG. 7, the pyramid-shaped support 4 protruding in the vertical direction of the columnar sample main body 3 in a branch shape, and the observation region 6 at the tip of the pyramid-shaped support 4 are formed. A columnar transmission electron microscope sample 1 having a structure in which the tip of the support 4 processed and shaped to include the width is integrated is obtained. Here, when it is difficult to confirm the position of the observation site 2 in the formation of the support 4, the protective film is formed in advance, and the periphery of the observation site 2 is marked by the FIB. If there is a risk of film peeling, the protective film is formed first, the four sides around the observation site 2 are cut to an appropriate depth by FIB, separated from the substrate, and then covered with a FIB CVD film to give an adhesive effect. By doing so, the observation site 2 can be easily identified, and sample damage, film peeling, and the like are reduced.
[0018]
Next, the columnar sample is bonded and fixed to a reinforcing ring (for example, a C-type ring made of SUS). Next, while being attached to the FIB-dedicated holder, it is inserted into the apparatus main chamber to perform predetermined apparatus and beam adjustment.
[0019]
Next, after a W protective film is formed on the region 6 to be observed by the CVD function of the FIB, FIB having an acceleration voltage of 30 kV is irradiated from above the region 6 to be observed as the first ion beam 14 as shown in FIG. The ion beam current is gradually reduced until the thickness reaches an observable thickness, and the thinned portion observation surface 18 is exposed as shown in FIG. In the case of a 200-400 kV class TEM, the thickness suitable for observation is about 0.1 μm although it depends on the acceleration voltage.
[0020]
Through the above steps, the columnar sample main body 3, the pyramid-shaped support 4 protruding in the vertical direction of the columnar sample main body 3 in a branch shape, and the end of the pyramid-shaped support 4 processed into a width including the observation area 6. A transmission electron microscope (TEM) observation sample 1 having a structure in which the shaped support 4 tip and the thinned portion 5 including the thinned portion observation surface 18 thinned and shaped at the support 4 tip are integrated is obtained. .
[0021]
Next, the thinned sample is taken out of the main chamber of the apparatus, and set so that the thinned portion observation surface 18 is oriented parallel to a dedicated ion polishing stage as shown in FIG. While rotating the sample at a low angle with respect to the thinned portion observation surface 18 from the longitudinal direction of the substrate with respect to the thinned portion observation surface 18, the argon ions at an acceleration voltage of 4 kV were adjusted so that they were selectively irradiated only to the thinned portion 5 and irradiated for several minutes. , And TEM samples. The third step using the second ion beam is desirably performed by an apparatus or system in which the FIB mechanism and the ion polishing mechanism are integrated. Here, the irradiation purpose of the second ion beam 15 will be described. The purpose is to remove a damaged layer reaching as much as about 30 nm on only one surface formed on the thinned portion observation surface 18 by the FIB irradiation of 30 kV to expose a sound crystalline portion, and to obtain a step at the interface due to a difference in etching rate. And to obtain a smooth thinned portion observation surface 18. To realize this, it is important that the former lower the acceleration voltage of the second ion beam 15 and that the latter lower the voltage and perform irradiation at a low angle. In the embodiment of the present invention, the argon ion whose acceleration voltage of the second ion beam 15 is adjusted to 4 kV which is sufficiently lower than that of the first ion beam 14 is used. The irradiation angle (α) 11 of the second ion beam 15 was set to 15 °. However, depending on the sample form and structure, it is necessary to finely adjust the acceleration voltage within the range of 0 to 10 kV and the irradiation angle (α) 11 of the argon ion beam within the range of 0 ° <α ≦ 30 °.
[0022]
The irradiation angle 11 of the second ion beam 15 will be described with reference to the drawings. FIG. 11 is a diagram showing a relationship between the thinned portion observation surface 18 and the irradiation angle 11 of the second ion beam 15 when the thinned portion 5 is viewed from directly above.
[0023]
According to this, when the ion beam is irradiated on the thinned portion observation surface 18, the side surface of the thinned portion (the side surface of the support) may be cut at the same time, but as shown in the figure, the irradiation angle (α) 11 And the sample rotation speed (R) are adjusted to 0 ° <α ≦ 30 ° and 2 ≦ R ≦ 10 rpm, respectively, and the thinning section 5 is rotated (usually counterclockwise) with the thinning section 5 as the sample rotation shaft 16. Irradiation on the side surface can be minimized. The reason why the second ion beam 15 is not irradiated from above the thinned portion 5 is that when irradiated at a low angle from above the observation section, the second ion beam 15 is gradually cut off from above.
Finally, the prepared TEM sample was inserted into the apparatus barrel, and the observation electron beam 19 was irradiated to the thinned portion observation surface 18 as shown in FIG. As a result, it was possible to more clearly observe the interface of a heavy metal layer such as an oxide-based superconducting device or a magnetic device and the thickness of an insulating layer such as a DRAM. On the other hand, in the conventional sample preparation method, damage on the Si crystal plane was remarkable, and the interface of the heavy metal layer was unclear.
[0024]
【The invention's effect】
As described above, according to the present invention, a column-shaped sample main body, a pyramid-shaped support that protrudes in a branch shape in the vertical direction of the main body, and a support that is processed and shaped into a width including a region to be observed at the pyramid-shaped support tip. By forming a structure in which the tip of the body and the thinned part including the observation cross section shaped into a slice at the tip of the support are integrated, secondary processing such as ion polishing becomes easy. Since the damage layer caused by the focused ion beam irradiation, which was an adverse effect, can be removed, and the roughness of the observation cross section caused by the difference in the constituent elements and the cross-sectional structure can be reduced, a high-quality TEM sample can be prepared and good TEM observation can be performed. Will be possible. As an example, the interface of a heavy metal layer such as an oxide-based superconducting device or a magnetic device and the thickness of an insulating layer of a semiconductor device could be more clearly observed.
[Brief description of the drawings]
FIG. 1 is a perspective view of a transmission electron microscope sample of the present invention. FIG. 2 is a perspective view showing a base material for producing the transmission electron microscope sample of the present invention. FIG. 3 is a perspective view showing a first step of the present invention. FIG. 4 is a perspective view showing a first step of the present invention. FIG. 5 is a perspective view showing a first step of the present invention. FIG. 6 is a perspective view showing a first step of the present invention. FIG. 8 is a perspective view showing a sample shape manufactured by one step. FIG. 8 is a perspective view showing a second step of the present invention. FIG. 9 is a cross section showing a first thinned state in an embodiment of the present invention. FIG. 10B is a plan view showing a second thinned state. FIG. 10 is a perspective view showing a third step of the present invention. FIG. 11 is a diagram showing the relationship between the thinned observation section and the second ion beam irradiation angle in the embodiment of the present invention. FIG. 13 is a perspective view showing a relationship between a sample and an electron beam of a transmission electron hoof microscope. FIG. 13 is a perspective view showing a substrate for producing a conventional transmission electron microscope observation sample. FIG. 14 is a conventional transmission electron microscope observation sample. FIG. 15 is a perspective view showing the next step of FIG. 14. FIG. 16 is a perspective view showing the next step of FIG. 15. FIG. 17 is a perspective view showing the next step of FIG. FIG. 18 is a perspective view showing the next step of FIG. 17; FIG. 19 is a perspective view showing the relationship between a conventional observation sample and an electron beam of a transmission electron microscope.
DESCRIPTION OF SYMBOLS 1 ... Transmission electron microscope sample 2 ... Observation part 3 ... Column-shaped sample main body 4 ... Supporter 5 ... Thinned part 6 ... Observation area 11 ... Sample base 12 ... Dummy substrate 13 ... Convex part 14 ... First ion beam 15 ... First 2 ion beam 16 ... sample rotation axis 17 ... irradiation angle 18 ... thinned part observation surface 19 ... observation electron beam

Claims (6)

先端に凸部を有する柱状試料の当該凸部にある被観察領域を薄化して観察面を露出させる透過電子顕微鏡観察試料の作製方法において、
前記被観察領域を有する試料基体から、前記被観察領域が残留するように前記柱状試料を切り出す第1の工程と、
前記凸部頂部平面に垂直な方向から第1イオンビームを照射して前記凸部を薄化して、薄化部を形成する第2の工程と、
前記観察面となる前記薄化部平面に、低い照射角で第2イオンビームを照射する第3の工程とを少なくとも有することを特徴とする透過電子顕微鏡観察試料の作製方法。
In a method for preparing a transmission electron microscope observation sample in which a region to be observed in the columnar sample having a convex portion at the tip is thinned to expose an observation surface,
A first step of cutting out the columnar sample from the sample substrate having the observed area so that the observed area remains;
A second step of irradiating the first ion beam from a direction perpendicular to the top surface of the projection to thin the projection to form a thinned portion;
A third step of irradiating the thinned portion plane, which is the observation surface, with a second ion beam at a low irradiation angle.
前記柱状試料は、前記試料本体、前記凸部、及び前記凸部に形成された薄化部が一体化した構造であることを特徴とする請求項1記載の透過電子顕微鏡観察試料の作製方法。2. The method for preparing a transmission electron microscope observation sample according to claim 1, wherein the columnar sample has a structure in which the sample body, the protrusion, and a thinned portion formed on the protrusion are integrated. 前記第1イオンビームとして集束ガリウムイオンビームを、前記第2イオンビームとしてアルゴンイオンを用いて薄化することを特徴とする請求項1記載の透過電子顕微鏡観察試料の作製方法。The method for preparing a transmission electron microscope observation sample according to claim 1, wherein a focused gallium ion beam is thinned as the first ion beam and argon ions are thinned as the second ion beam. 前記第2イオンビームの加速電圧として、前記第1イオンビームよりも低い加速電圧であることを特徴とする請求項1記載の透過電子顕微鏡観察試料の作製方法。2. The method for producing a transmission electron microscope observation sample according to claim 1, wherein the acceleration voltage of the second ion beam is lower than that of the first ion beam. 前記第2イオンビームを前記薄化部に対し、照射角をαとした場合、0°<α≦30°(但し、αは照射角)の角度で照射することを特徴とする請求項1記載の透過電子顕微鏡観察試料の作製方法。The irradiation of the second ion beam at an angle of 0 ° <α ≦ 30 ° (here, α is an irradiation angle) when the irradiation angle is α with respect to the thinned portion. Method for preparing a sample observed with a transmission electron microscope. 前記第2イオンビームが前記薄化部に選択的に照射されることを特徴とする請求項1記載の透過電子顕微鏡観察試料の作製方法。2. The method according to claim 1, wherein the second ion beam is selectively applied to the thinned portion.
JP2003054651A 2003-02-28 2003-02-28 Preparation method of transmission electron microscope specimen Expired - Fee Related JP3768197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003054651A JP3768197B2 (en) 2003-02-28 2003-02-28 Preparation method of transmission electron microscope specimen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003054651A JP3768197B2 (en) 2003-02-28 2003-02-28 Preparation method of transmission electron microscope specimen

Publications (2)

Publication Number Publication Date
JP2004264145A true JP2004264145A (en) 2004-09-24
JP3768197B2 JP3768197B2 (en) 2006-04-19

Family

ID=33118929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003054651A Expired - Fee Related JP3768197B2 (en) 2003-02-28 2003-02-28 Preparation method of transmission electron microscope specimen

Country Status (1)

Country Link
JP (1) JP3768197B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007178205A (en) * 2005-12-27 2007-07-12 Furukawa Electric Co Ltd:The Manufacturing method of sample for measuring impurity distribution of semiconductor and measuring method of impurity distribution
JP2008292351A (en) * 2007-05-25 2008-12-04 Sii Nanotechnology Inc Dopant profile measuring thin piece sample preparing method
WO2012077554A1 (en) 2010-12-06 2012-06-14 株式会社日立ハイテクノロジーズ Charged particle beam apparatus and method of irradiating charged particle beam
JP2012132813A (en) * 2010-12-22 2012-07-12 Renesas Electronics Corp Transmission electron microscope specimen and method for preparing the same
JP2013234855A (en) * 2012-05-07 2013-11-21 Japan Fine Ceramics Center Manufacture method of sample, and device for removing damage layer
JP2014505255A (en) * 2011-01-28 2014-02-27 エフ・イ−・アイ・カンパニー Preparation of TEM sample
CN106769162A (en) * 2017-02-20 2017-05-31 广西大学 A kind of transmission electron microscope magnetic sample preprocessor
CN112147373A (en) * 2020-10-30 2020-12-29 上海华力微电子有限公司 Transmission electron microscope sample and preparation method thereof
JPWO2021100144A1 (en) * 2019-11-20 2021-05-27
CN114441267A (en) * 2022-01-28 2022-05-06 上海华力微电子有限公司 Method for manufacturing transmission electron microscope section sample
CN114624080A (en) * 2022-03-07 2022-06-14 上海大学 Preparation method of transmission electron microscope test sample for section of hot-dip galvanized steel sheet
CN116223168A (en) * 2023-05-08 2023-06-06 中山大学 Preparation method for preparing TEM and AFM region observation sample by using FIB

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103543056B (en) * 2013-10-30 2015-10-07 武汉新芯集成电路制造有限公司 A kind of failure ratio certain bits method prepared in perspective electron microscopic sample process

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4728800B2 (en) * 2005-12-27 2011-07-20 古河電気工業株式会社 Method for producing sample for impurity distribution measurement of compound semiconductor using electron holography and method for measuring impurity distribution
JP2007178205A (en) * 2005-12-27 2007-07-12 Furukawa Electric Co Ltd:The Manufacturing method of sample for measuring impurity distribution of semiconductor and measuring method of impurity distribution
JP2008292351A (en) * 2007-05-25 2008-12-04 Sii Nanotechnology Inc Dopant profile measuring thin piece sample preparing method
WO2012077554A1 (en) 2010-12-06 2012-06-14 株式会社日立ハイテクノロジーズ Charged particle beam apparatus and method of irradiating charged particle beam
JP2012132813A (en) * 2010-12-22 2012-07-12 Renesas Electronics Corp Transmission electron microscope specimen and method for preparing the same
JP2014505255A (en) * 2011-01-28 2014-02-27 エフ・イ−・アイ・カンパニー Preparation of TEM sample
JP2013234855A (en) * 2012-05-07 2013-11-21 Japan Fine Ceramics Center Manufacture method of sample, and device for removing damage layer
CN106769162A (en) * 2017-02-20 2017-05-31 广西大学 A kind of transmission electron microscope magnetic sample preprocessor
JP7389817B2 (en) 2019-11-20 2023-11-30 株式会社日立ハイテク Lamella preparation method, analysis system, and sample analysis method
JPWO2021100144A1 (en) * 2019-11-20 2021-05-27
WO2021100144A1 (en) * 2019-11-20 2021-05-27 株式会社日立ハイテク Lamella fabrication method, analysis system, and sample analysis method
TWI761997B (en) * 2019-11-20 2022-04-21 日商日立全球先端科技股份有限公司 Sheet manufacturing method, analysis system, and sample analysis method
CN112147373A (en) * 2020-10-30 2020-12-29 上海华力微电子有限公司 Transmission electron microscope sample and preparation method thereof
CN114441267A (en) * 2022-01-28 2022-05-06 上海华力微电子有限公司 Method for manufacturing transmission electron microscope section sample
CN114624080A (en) * 2022-03-07 2022-06-14 上海大学 Preparation method of transmission electron microscope test sample for section of hot-dip galvanized steel sheet
CN116223168A (en) * 2023-05-08 2023-06-06 中山大学 Preparation method for preparing TEM and AFM region observation sample by using FIB
CN116223168B (en) * 2023-05-08 2023-09-15 中山大学 Preparation method for preparing TEM and AFM region observation sample by using FIB

Also Published As

Publication number Publication date
JP3768197B2 (en) 2006-04-19

Similar Documents

Publication Publication Date Title
JP3768197B2 (en) Preparation method of transmission electron microscope specimen
JP3711018B2 (en) TEM sample thinning method
JP4570980B2 (en) Sample stage and sample processing method
JP2009198412A (en) Preparation method of sample for transmission electron microscope, and sample for transmission electron microscope
JP2007108105A (en) Method for preparing sample for electron microscope, converged ion beam device and a sample support stand
JP2009216478A (en) Method of manufacturing thin-film sample for observing transmission electron microscope
US20090038382A1 (en) Probe and cantilever
JP3923733B2 (en) Sample preparation method for transmission electron microscope
TWI255339B (en) Method of applying micro-protection in defect analysis
JP2000230891A (en) Method for preparing sample for transmission type electron microscope
KR20140035071A (en) A method for making plan view tem sample using fib
JP2005233786A (en) Needle-like sample for local analysis, sample holder assembly, local analyzer and method for manufacturing needle-like sample for local analysis
JP3536100B2 (en) Evaluation method of semiconductor device
US6251782B1 (en) Specimen preparation by focused ion beam technique
JP2002277364A (en) Method of working thin sample piece, and method of preparing thin sample piece
JPH083768A (en) Preparation of plane tem sample
JP2004253232A (en) Sample fixing table
US5993291A (en) Specimen block preparation for TEM analysis
JP3891139B2 (en) Crystal defect evaluation method and evaluation sample
JP2004271393A (en) Pedestal base plate, measuring holder for electron microscope, measuring sample assembly, method for producing measuring sample and measuring method
EP1051747A1 (en) Method for producing integrated circuits
JP2529398B2 (en) Transmission electron microscope material preparation method and observation method
JPH11160210A (en) Observation sample for transmission electron microscope and its preparation
JPH06180277A (en) Preparation of sample for transmission electron microscope
JP2011047660A (en) Minute sample stand, substrate used for manufacturing the minute sample stand, method for manufacturing the minute sample stand and analyzing method using the minute sample stand

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060131

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees