JP2000230891A - Method for preparing sample for transmission type electron microscope - Google Patents

Method for preparing sample for transmission type electron microscope

Info

Publication number
JP2000230891A
JP2000230891A JP11031133A JP3113399A JP2000230891A JP 2000230891 A JP2000230891 A JP 2000230891A JP 11031133 A JP11031133 A JP 11031133A JP 3113399 A JP3113399 A JP 3113399A JP 2000230891 A JP2000230891 A JP 2000230891A
Authority
JP
Japan
Prior art keywords
sample
electron microscope
ion beam
etching
transmission electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11031133A
Other languages
Japanese (ja)
Inventor
Atsushi Ueda
厚 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP11031133A priority Critical patent/JP2000230891A/en
Publication of JP2000230891A publication Critical patent/JP2000230891A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for preparing a samaple for microscopic observation using a transmission type electron microscope facilitating the observation of a planar microstructure with a specific depth in a semiconductor device. SOLUTION: A sample 2 is cut from a semiconductor chip to be made thin by mechanical polishing and the thin sample is attached to a single-ported mesh 6 for transmission type electron microscope observation and a Pt film 7 is formed to the part with specific depth of an end surface and irradiated with gallium ion beam 8 parallel to the main surface of the sample to make the part other than a principal part thin by etching. After etching by gallium ion beam, when the sample is irradiated with argon ions at a low angle, the damaged layer at a time of etching is removed to enable observation of higher resolving power.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体デバイス等
厚さをもった試料の特定深さにおける平面的な微細構造
を、透過電子顕微鏡により観察するための試料作製方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for preparing a sample for observing a planar microstructure at a specific depth of a sample having a thickness such as a semiconductor device by a transmission electron microscope.

【0002】[0002]

【従来の技術】半導体デバイスは、通常、多数のプロセ
スを経て、シリコンなどの基板内部および基板上に形成
されている。これらのプロセスの中で例えばイオン注入
プロセスによる結晶欠陥は、半導体デバイスの特性に大
きな影響を及ぼすため、欠陥の有無や分布を調べること
が重要であり、透過電子顕微鏡による平面的な観察が不
可欠である。
2. Description of the Related Art Semiconductor devices are usually formed in and on a substrate such as silicon through a number of processes. Among these processes, for example, crystal defects caused by the ion implantation process greatly affect the characteristics of semiconductor devices. Therefore, it is important to examine the presence and distribution of defects, and planar observation with a transmission electron microscope is indispensable. is there.

【0003】透過型電子顕微鏡により試料を観察するた
めには、電子ビームが試料を透過できる厚さに薄膜化す
る必要がある。通常数10万V クラスの加速電圧の透過
型電子顕微鏡の場合、電子が透過できて明瞭に観察でき
る厚さは、約100nmである。
In order to observe a sample with a transmission electron microscope, it is necessary to make the sample thin so that an electron beam can pass through the sample. In the case of a transmission electron microscope with an acceleration voltage of several hundred thousand V class, the thickness through which electrons can be transmitted and clearly observed is about 100 nm.

【0004】そのための試料作製方法としては、イオン
ミリング法が一般的に用いられている。イオンミリング
法は、不活性ガスなどの電離イオンによるスッパタリン
グ現象を利用して固体物質を薄膜化する方法で、アノー
ドから導入した微量の不活性ガスをアノードとカソード
間でイオン化し、加速してイオンビームとしてホールカ
ソードから出射し、真空下にある試料に照射して薄膜化
を行う。不活性ガスとしては、アルゴン( 以下Arと記
す)を用い、一般的なミリング条件は、加速電圧2〜8
kV、イオン電流50〜200μA、照射角2〜15°で
ある。
[0004] As a sample preparation method therefor, an ion milling method is generally used. The ion milling method is a method of thinning a solid material using the sputtering effect of ionized ions such as an inert gas.A small amount of inert gas introduced from the anode is ionized between the anode and the cathode and accelerated. It is emitted from the hole cathode as an ion beam, and is irradiated with a sample under vacuum to form a thin film. Argon (hereinafter referred to as Ar) is used as the inert gas, and the general milling conditions are as follows:
kV, ion current 50 to 200 μA, irradiation angle 2 to 15 °.

【0005】図2〜は、イオンミリング法を用いた
透過型電子顕微鏡用試料の作製方法を示した説明図であ
る。 打ち抜き:半導体デバイスのチップ1から観察対象と
なる試料2を超音波ディスクカッターで、所定のサイズ
(例えば直径3mmのディク状)に打ち抜く。
FIG. 2 is an explanatory view showing a method of manufacturing a sample for a transmission electron microscope using an ion milling method. Punching: A sample 2 to be observed is punched out of a semiconductor device chip 1 into a predetermined size (for example, a 3 mm diameter disc) using an ultrasonic disc cutter.

【0006】裏面研磨:試料2の裏面を厚さが約10
0μmになるまで平坦に粗研磨し、さらに中央部が30
μm以下になるまで、ディンプル状に研磨し、粒径0.
1μmの研磨剤で鏡面に仕上げる 補強リング付け:試料2を補強するために、エポキシ
樹脂で(例えばステンレススチール製の)補強リング3
を接着する。リング3の寸法は例えば外径3mm、内径2
mmである。
Backside polishing: The backside of the sample 2 has a thickness of about 10
Roughly polished flat to 0 μm and 30
Polished in a dimple shape until the particle size becomes equal to or less than μm.
Finish the mirror surface with 1 μm abrasive. Reinforcement ring attached: Reinforcement ring 3 made of epoxy resin (for example, made of stainless steel) to reinforce sample 2
Glue. The dimensions of the ring 3 are, for example, an outer diameter of 3 mm and an inner diameter of 2
mm.

【0007】イオンミリング:試料2を回転させなが
ら、試料の裏面側からArイオンビーム4を低角度(照
射角2〜15°)で照射し、中央部に微小な穴5が開く
まで薄膜化する。その結果、穴周辺は十分薄膜化され、
透過型電子顕微鏡での観察領域となる。
[0007] Ion milling: While rotating the sample 2, an Ar ion beam 4 is irradiated at a low angle (irradiation angle 2 to 15 °) from the back side of the sample, and thinned until a minute hole 5 is opened in the center. . As a result, the area around the hole is sufficiently thinned,
This is an observation area with a transmission electron microscope.

【0008】[0008]

【発明が解決しようとする課題】上述のイオンミリング
法は、透過型電子顕微鏡により各種半導体デバイス表面
の平面的な構造を観察するための試料薄膜化方法として
最も一般的な方法である。
The above-described ion milling method is the most common method for thinning a sample for observing the planar structure of the surface of various semiconductor devices with a transmission electron microscope.

【0009】しかしながら、半導体基板の0.1〜数1
0μm に及ぶ内部構造の、特定の深さにおける平面的な
構造を観察できるように薄膜化することは、極めて困難
であった。本発明の目的は、半導体デバイスにおける特
定深さの平面的な微細構造の観察を容易にする、透過型
電子顕微鏡用試料の作製方法を提供することである。
However, 0.1 to several 1
It has been extremely difficult to make the internal structure down to 0 μm thin so that a planar structure at a specific depth can be observed. An object of the present invention is to provide a method for manufacturing a sample for a transmission electron microscope, which facilitates observation of a planar microstructure having a specific depth in a semiconductor device.

【0010】[0010]

【課題を解決するための手段】上記の課題を解決するた
め本発明の透過型電子顕微鏡用試料の作製方法は、板状
試料の一端面の特定部分、例えば特定深さの部分以外の
部分に、板状試料の主面に平行なイオンビームを照射し
てエッチングすることにより、板状試料の特定部分の薄
膜化試料を作製するものとする。
In order to solve the above-mentioned problems, a method for preparing a sample for a transmission electron microscope according to the present invention is directed to a method for forming a sample on a specific portion of one end face of a plate-like sample, for example, a portion other than a portion having a specific depth. Then, a thin film sample of a specific portion of the plate sample is manufactured by irradiating a parallel ion beam to the main surface of the plate sample and etching.

【0011】そのようにすれば、従来極めて困難であっ
た特定深さの部分の平面的な観察が可能な薄膜化試料が
得られる。エッチングには、集束したガリウム(Ga)
イオンビームを用いることができる。
In this case, a thinned sample capable of observing a plane at a specific depth, which has been extremely difficult in the past, can be obtained. Gallium (Ga) focused for etching
An ion beam can be used.

【0012】また、イオンビーム電流を次第に減少させ
た段階を経てエッチングすれば、平滑な表面が得られ、
高精度の観察が可能になる。イオンビームによるエッチ
ング後、例えばアルゴンのような別のイオンのビームを
低角度で照射し、加工によるダメージ層を除去するとよ
い。
Further, if etching is performed through a step in which the ion beam current is gradually reduced, a smooth surface can be obtained.
High-precision observation becomes possible. After etching with an ion beam, another ion beam such as argon may be irradiated at a low angle to remove a damaged layer due to processing.

【0013】そのようにすれば、加工によるダメージ層
が除去されるだけでなく、エッチングの際に注入された
ガリウムイオンの影響を除いた表面が得られ、高分解能
の観察が可能になる。
In this case, not only the damaged layer due to the processing is removed, but also the surface excluding the influence of the gallium ions implanted at the time of etching can be obtained, and high-resolution observation can be performed.

【0014】[0014]

【発明の実施の形態】以下に、図面を参照して本発明の
実施の形態を説明する。図1〜は、本発明にかかる
透過型電子顕微鏡用試料の作製方法および観察方法を示
した説明図である。以下順に説明する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory view showing a method for producing a sample for a transmission electron microscope and an observation method according to the present invention. The description will be made in the following order.

【0015】切り出しと裏面研磨:観察しようとする
半導体デバイスの目的とする領域を含むように、約2mm
×1mmの大きさの試料2を切り出す。次に、試料2の裏
面側を(表面側が不要である場合は表面側も)厚さが5
0μm以下になるまで、サンドペーパーなどによる機械
的研磨で薄くする。この機械的研磨は、後のイオンビー
ムによるエッチング量を減らすためである。
Cutting out and polishing the back surface: about 2 mm so as to include the target area of the semiconductor device to be observed.
A sample 2 having a size of × 1 mm is cut out. Next, the back side of the sample 2 (or the front side if the front side is unnecessary) has a thickness of 5 mm.
The thickness is reduced by mechanical polishing with sandpaper or the like until the thickness becomes 0 μm or less. This mechanical polishing is for reducing the amount of etching by the subsequent ion beam.

【0016】単孔メッシュへの固定:透過型電子顕微
鏡用の単孔メッシュ6を、約240°の扇型状に切り抜
き、試料2の観察目的部位が単孔メッシュ6の開口部に
向くようにエポキシ樹脂で接着する。
Fixation to a single-hole mesh: A single-hole mesh 6 for a transmission electron microscope is cut out into a fan shape of about 240 ° so that the observation target portion of the sample 2 faces the opening of the single-hole mesh 6. Adhere with epoxy resin.

【0017】保護膜付け:加工しようとする目的部位
に、例えば蒸着により白金(Pt、厚さ約1μm )膜7
を形成する。これは、端面部分の保護のためであり、場
合によっては省略できる。
Applying a protective film: A platinum (Pt, about 1 μm thick) film 7 is formed on the target portion to be processed, for example, by vapor deposition.
To form This is for protecting the end face portion, and may be omitted in some cases.

【0018】集束イオンビーム照射による加工:ガリ
ウム(Ga)の集束イオンビーム8を試料表面と平行方
向に照射して、目的とする深さの部分だけを残すように
エッチングする。エッチングは、ビーム電流を調節して
粗加工(イオンビーム電流6600〜11500pA)、
中加工 (同1000〜2700pA)、仕上げ加工(同1
50〜350pA)の3段階でおこなうと良い。この装置
では、イオンビームを照射した際に発生する二次電子を
二次電子検出器で検出し、数万倍の二次電子像としてモ
ニターで観察しながら目的としている深さを特定し、試
料を加工することが可能である。観察部の厚さが50nm
以下になるように仕上げる。加工時間は、10〜20μ
m 角の観察領域の場合6時間程度である。
Processing by irradiation with a focused ion beam: A focused ion beam 8 of gallium (Ga) is irradiated in a direction parallel to the sample surface, and etching is performed so as to leave only a target depth. For the etching, the beam current is adjusted to perform rough processing (ion beam current 6600 to 11500 pA),
Medium processing (1000-2700pA), finishing (1)
It is preferable to carry out in three stages of 50 to 350 pA). With this device, secondary electrons generated when irradiating with an ion beam are detected by a secondary electron detector, and the target depth is specified while observing on a monitor as a secondary electron image of tens of thousands of times, Can be processed. Observation part thickness is 50nm
Finish as follows. Processing time is 10-20μ
In the case of the observation area of m square, it takes about 6 hours.

【0019】* Gaイオンビームによる試料へのダメ
ージが問題となる場合には、の後にArイオンビーム
を加工面に対して2〜15°の低角度で照射する。これ
により表面のダメージ層や、注入されたGaイオンが除
去されて高分解能での観察が可能な試料を得ることがで
きる。
* If damage to the sample by the Ga ion beam becomes a problem, an Ar ion beam is subsequently irradiated at a low angle of 2 to 15 ° to the processing surface. As a result, a damaged layer on the surface and the implanted Ga ions are removed, and a sample that can be observed with high resolution can be obtained.

【0020】〜または〜* の工程を経ることに
より、特定深さの平面的な微細構造を広範囲に観察する
ための試料を作製できる。 透過型電子顕微鏡(TEM)観察:薄膜化した領域に
電子線9を照射して、透過電子像を観察する。 実際に作製した試料を透過型電子顕微鏡に装着し、良好
な観察を行うことができた。
Through the steps of or, * , a sample for observing a wide range of a planar microstructure having a specific depth can be prepared. Transmission electron microscope (TEM) observation: A thinned region is irradiated with an electron beam 9 to observe a transmission electron image. The actually fabricated sample was mounted on a transmission electron microscope, and good observation was performed.

【0021】[0021]

【発明の効果】以上説明したように本発明によれば、半
導体デバイス等の板状試料の一端面の特定深さの部分以
外の部分を、板状試料の主面に平行なイオンビームを照
射してエッチングすることにより、透過型電子顕微鏡用
の薄膜化試料が容易に作製でき、従来極めて困難であっ
た特定深さにおける平面的な微細構造が広範囲に観察可
能となった。
As described above, according to the present invention, a portion of a plate-like sample such as a semiconductor device other than a portion at a specific depth is irradiated with an ion beam parallel to the main surface of the plate-like sample. By performing the etching, a thinned sample for a transmission electron microscope can be easily prepared, and a planar fine structure at a specific depth, which has been extremely difficult in the past, can be observed in a wide range.

【0022】例えばイオン注入プロセスで発生する結晶
欠陥等の有無およびその二次元的な分布を観察できるよ
うになった。従って本発明は、半導体デバイスの一層の
技術的な進歩に寄与するところ大である。
For example, it has become possible to observe the presence or absence of crystal defects and the like generated in the ion implantation process and their two-dimensional distribution. Therefore, the present invention greatly contributes to further technical progress of semiconductor devices.

【図面の簡単な説明】[Brief description of the drawings]

【図1】〜は本発明による試料作製方法および観察
方法を示す説明図
FIG. 1 is an explanatory view showing a sample preparation method and an observation method according to the present invention.

【図2】〜は従来の試料作製方法を示す説明図FIG. 2 is an explanatory view showing a conventional sample preparation method.

【符号の説明】[Explanation of symbols]

1 半導体チップ 2 試料 3 補強リング 4 Arイオン 5 穴 6 単孔メッシュ 7 Pt膜 8 Gaイオン 9 電子線 Reference Signs List 1 semiconductor chip 2 sample 3 reinforcing ring 4 Ar ion 5 hole 6 single hole mesh 7 Pt film 8 Ga ion 9 electron beam

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】板状試料の一端面の観察しようとする特定
深さの部分以外の部分を、板状試料の主面に平行なイオ
ンビームを照射してエッチングすることにより、前記板
状試料の特定深さの部分の薄膜化試料を作製することを
特徴とする透過型電子顕微鏡用試料の作製方法。
1. A method for irradiating an ion beam parallel to a main surface of a plate-like sample on a portion other than a portion of a specific depth to be observed on one end surface of the plate-like sample, thereby etching the plate-like sample. A method for preparing a sample for a transmission electron microscope, characterized by preparing a thinned sample at a portion having a specific depth.
【請求項2】集束したガリウムイオンビームを用いてエ
ッチングすることを特徴とする請求項1記載の透過型電
子顕微鏡用試料の作製方法。
2. The method for producing a sample for a transmission electron microscope according to claim 1, wherein etching is performed using a focused gallium ion beam.
【請求項3】イオンビーム電流を次第に減少させたエッ
チング段階を経ることを特徴とする請求項2記載の透過
型電子顕微鏡用試料の作製方法。
3. The method for preparing a sample for a transmission electron microscope according to claim 2, further comprising an etching step in which an ion beam current is gradually reduced.
【請求項4】イオンビームによるエッチング後、別のイ
オンのビームを低角度で照射し、加工によるダメージ層
を除去することを特徴とする請求項1ないし3のいずれ
かに記載の透過型電子顕微鏡用試料の作製方法。
4. The transmission electron microscope according to claim 1, wherein after etching with the ion beam, another ion beam is irradiated at a low angle to remove a damaged layer due to processing. Method of preparing sample for use.
【請求項5】別のイオンとしてアルゴンイオンを用いる
ことを特徴とする請求項4記載の透過型電子顕微鏡用試
料の作製方法。
5. The method for preparing a sample for a transmission electron microscope according to claim 4, wherein argon ions are used as another ion.
JP11031133A 1999-02-09 1999-02-09 Method for preparing sample for transmission type electron microscope Pending JP2000230891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11031133A JP2000230891A (en) 1999-02-09 1999-02-09 Method for preparing sample for transmission type electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11031133A JP2000230891A (en) 1999-02-09 1999-02-09 Method for preparing sample for transmission type electron microscope

Publications (1)

Publication Number Publication Date
JP2000230891A true JP2000230891A (en) 2000-08-22

Family

ID=12322943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11031133A Pending JP2000230891A (en) 1999-02-09 1999-02-09 Method for preparing sample for transmission type electron microscope

Country Status (1)

Country Link
JP (1) JP2000230891A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343841A (en) * 2001-05-16 2002-11-29 Shin Etsu Handotai Co Ltd Method for manufacturing sample for observing crystal defect in silicon crystal and thin piece sample
WO2005090941A1 (en) * 2004-03-17 2005-09-29 Sii Nanotechnology Inc. Atom probe equipment and preliminary processing method for sample by it
JP2008292351A (en) * 2007-05-25 2008-12-04 Sii Nanotechnology Inc Dopant profile measuring thin piece sample preparing method
JP2010271101A (en) * 2009-05-20 2010-12-02 Aoi Electronics Co Ltd Minute sample stand, substrate for forming the minute sample stand, method for manufacturing the minute sample stand, and analyzing method using the minute sample stand
JP2013011610A (en) * 2012-08-23 2013-01-17 Aoi Electronics Co Ltd Minute sample stand, substrate for manufacturing minute sample stand, and analyzing method using minute sample stand
JP2016504599A (en) * 2013-01-11 2016-02-12 エフ・イ−・アイ・カンパニー Ion implantation to change etch rate
WO2021179541A1 (en) * 2020-03-12 2021-09-16 厦门超新芯科技有限公司 Transmission electron microscope in-situ chip and preparation method therefor
CN116337910A (en) * 2023-03-30 2023-06-27 胜科纳米(苏州)股份有限公司 Delamination method in chip detection and failure analysis process

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343841A (en) * 2001-05-16 2002-11-29 Shin Etsu Handotai Co Ltd Method for manufacturing sample for observing crystal defect in silicon crystal and thin piece sample
WO2005090941A1 (en) * 2004-03-17 2005-09-29 Sii Nanotechnology Inc. Atom probe equipment and preliminary processing method for sample by it
JP2008292351A (en) * 2007-05-25 2008-12-04 Sii Nanotechnology Inc Dopant profile measuring thin piece sample preparing method
JP2010271101A (en) * 2009-05-20 2010-12-02 Aoi Electronics Co Ltd Minute sample stand, substrate for forming the minute sample stand, method for manufacturing the minute sample stand, and analyzing method using the minute sample stand
JP2013011610A (en) * 2012-08-23 2013-01-17 Aoi Electronics Co Ltd Minute sample stand, substrate for manufacturing minute sample stand, and analyzing method using minute sample stand
JP2016504599A (en) * 2013-01-11 2016-02-12 エフ・イ−・アイ・カンパニー Ion implantation to change etch rate
US10325754B2 (en) 2013-01-11 2019-06-18 Fei Company Ion implantation to alter etch rate
WO2021179541A1 (en) * 2020-03-12 2021-09-16 厦门超新芯科技有限公司 Transmission electron microscope in-situ chip and preparation method therefor
GB2609774A (en) * 2020-03-12 2023-02-15 Xiamen Chip Nova Tech Co Ltd Transmission electron microscope in-situ chip and preparation method therefor
CN116337910A (en) * 2023-03-30 2023-06-27 胜科纳米(苏州)股份有限公司 Delamination method in chip detection and failure analysis process

Similar Documents

Publication Publication Date Title
US6300631B1 (en) Method of thinning an electron transparent thin film membrane on a TEM grid using a focused ion beam
JP5090255B2 (en) STEM sample preparation method in situ
US7525087B2 (en) Method for creating observational sample
JP3058394B2 (en) Preparation method for cross-section specimen for transmission electron microscope
JP4699168B2 (en) Electron microscope sample preparation method
JP3711018B2 (en) TEM sample thinning method
US7345289B2 (en) Sample support prepared by semiconductor silicon process technique
JP2004087174A (en) Ion beam device, and working method of the same
KR20180132546A (en) Face-on, gas-assisted etching for plan-view lamellae preparation
US7112790B1 (en) Method to prepare TEM samples
JP2000230891A (en) Method for preparing sample for transmission type electron microscope
JP2003194681A (en) Tem sample preparation method
JP3768197B2 (en) Preparation method of transmission electron microscope specimen
US5563412A (en) Method of making specimens for an electron microscope
US7180061B2 (en) Method for electron beam-initiated coating for application of transmission electron microscopy
US6251782B1 (en) Specimen preparation by focused ion beam technique
JP4170048B2 (en) Ion beam apparatus and ion beam processing method
JP2002277364A (en) Method of working thin sample piece, and method of preparing thin sample piece
CN111474196B (en) Method for controlling deformation generated by sample preparation of transmission electron microscope
JP4219084B2 (en) Preparation method for thin section sample for microscope
Anderson et al. Practical Aspects of FIB Tem Specimen Preparation: With Emphasis On Semiconductor Applications
EP1612836B1 (en) Method for the removal of a microscopic sample from a substrate
JPH11160210A (en) Observation sample for transmission electron microscope and its preparation
Tsujimoto et al. Cross-sectional TEM sample preparation method using FIB etching for thin-film transistor
KR20050033699A (en) Method for forming sample using analysis by tem