JP2008292351A - Dopant profile measuring thin piece sample preparing method - Google Patents

Dopant profile measuring thin piece sample preparing method Download PDF

Info

Publication number
JP2008292351A
JP2008292351A JP2007139076A JP2007139076A JP2008292351A JP 2008292351 A JP2008292351 A JP 2008292351A JP 2007139076 A JP2007139076 A JP 2007139076A JP 2007139076 A JP2007139076 A JP 2007139076A JP 2008292351 A JP2008292351 A JP 2008292351A
Authority
JP
Japan
Prior art keywords
ion beam
dopant profile
gas cluster
cluster ion
thin piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007139076A
Other languages
Japanese (ja)
Other versions
JP4920494B2 (en
Inventor
Osamu Takaoka
修 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
SII NanoTechnology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SII NanoTechnology Inc filed Critical SII NanoTechnology Inc
Priority to JP2007139076A priority Critical patent/JP4920494B2/en
Publication of JP2008292351A publication Critical patent/JP2008292351A/en
Application granted granted Critical
Publication of JP4920494B2 publication Critical patent/JP4920494B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To enable a scanning capacitance microscope dopant profile measurement or an electron beam holography dopant profile measurement for a cross section of a thin piece cut from a desired region in a semiconductor device by a focused ion beam apparatus. <P>SOLUTION: A residual gallium layer 3 on the surface of the thin piece 6 cut by the focused ion beam apparatus is removed by sputtering a gas cluster ion beam 1 such as argon. If the dopant profile measurement is implemented by using an electron beam holography, the thin piece 2 is thinned down by sputtering the gas cluster ion beam 1 after an removal of the residual gallium layer 3 until an electron beam of 100-200 kV passes through it. If the dopant profile measurement is implemented by using a scanning capacitance microscope, a surface of the thin piece 2 is oxidized by an oxygen gas cluster ion beam after the removal of the residual gallium layer 3. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、半導体デバイスのドーパントプロファイル測定用の薄片試料作成に関するものである。   The present invention relates to the preparation of a flake sample for measuring a dopant profile of a semiconductor device.

走査キャパシタンス顕微鏡(SCM)で金属探針直下の微少領域の容量変化を測定することによりMOS構造のドーパントのプロファイル測定が行われている(非特許文献1)。走査キャパシタンス顕微鏡測定ではドーパントの分布のみならずスパイク欠陥なども検出可能である。電子線ホログラフィーを用いてpn接合を含む断面の位相像から電位分布像に変換することでドーパントプロファイル測定が行われている(非特許文献2)。   The profile measurement of the dopant of the MOS structure is performed by measuring the capacitance change in a very small region immediately below the metal probe with a scanning capacitance microscope (SCM) (Non-patent Document 1). The scanning capacitance microscope measurement can detect not only the dopant distribution but also spike defects. Dopant profile measurement is performed by converting a phase image of a cross section including a pn junction into a potential distribution image using electron beam holography (Non-patent Document 2).

従来の走査キャパシタンス顕微鏡用のサンプル作製ではワイヤーソウなどで不良箇所やドーパントプロファイル測定したい個所を含む領域を切り出し、ダイヤモンド砥粒またはコロイダルシリカを用いた精密研磨で薄くしていく方法をとっていた。集束イオンビーム装置(FIB)で不良箇所やドーパントプロファイル測定したい個所を含む領域を切り出した場合にもガリウム注入領域の除去にダイヤモンド砥粒またはコロイダルシリカを用いた精密研磨を用いていた。そのため不良箇所やドーパントプロファイル測定したい個所をピンポイントで切り出すのは困難であった。ここで、ピンポイントで切り出すとは、狙った位置が含まれかつ削りだしが少なくて済むようにできるだけ少ないサンプル量で切り出すという意味である。また走査キャパシタンス顕微鏡測定には、探針と測定領域のシリコンの間に適度な酸化膜が必要で、この酸化膜の作成は、測定領域のシリコンを300℃に加熱した状態で、該領域に20分程度紫外線光を照射して行っていた。   In the preparation of a sample for a conventional scanning capacitance microscope, a method including cutting a region including a defective portion or a portion where a dopant profile is desired to be measured with a wire saw, and thinning by precision polishing using diamond abrasive grains or colloidal silica is employed. Even when a region including a defective portion or a portion where a dopant profile is desired to be measured is cut out by a focused ion beam apparatus (FIB), precision polishing using diamond abrasive grains or colloidal silica is used to remove the gallium implantation region. Therefore, it is difficult to pinpoint a defective portion or a portion where a dopant profile is desired to be measured. Here, cutting out at a pinpoint means cutting out with a sample amount as small as possible so that the target position is included and less shaving is required. In addition, the scanning capacitance microscope measurement requires an appropriate oxide film between the probe and the silicon in the measurement region. This oxide film is formed in a state where the silicon in the measurement region is heated to 300 ° C. It was performed by irradiating ultraviolet light for about minutes.

故障箇所を集束イオンビーム装置によりピンポイントで切り出し、該切り出した部分を透過型電子顕微鏡(TEM)で評価を行う事が行われている(非特許文献3)。透過型電子顕微鏡の評価においては、構造的な問題や、電子エネルギー損失分光(EELS)分析により組成は分るが、ドーパント分布などの電気的な物性を知ることができなかった。集束イオンビーム装置によりピンポイントで切り出したデバイス断面において、設計どおりのドーパント分布になっているか測定する方法や、集束イオンビームでピンポイントで切り出した故障箇所の電気的な特性を調べる方法が求められている(特許文献1)。   It has been practiced to cut out a failed portion at a pinpoint with a focused ion beam apparatus and evaluate the cut-out portion with a transmission electron microscope (TEM) (Non-patent Document 3). In the evaluation of a transmission electron microscope, the composition was found by structural problems and electron energy loss spectroscopy (EELS) analysis, but electrical properties such as dopant distribution could not be known. There is a need for a method for measuring whether the dopant distribution is designed as designed in the cross-section of the device cut out with a focused ion beam device, and a method for examining the electrical characteristics of the failure point cut out with a focused ion beam. (Patent Document 1).

上記要望を実現し信頼性のある走査キャパシタンス顕微鏡測定を行うためには、測定領域のシリコン表面に適度な酸化膜の形成に加え、集束イオンビームによる切り出しに伴う、切り出し部分に注入されたガリウムや切り出し部分に形成されたダメージ層の除去が必要になる。また凹凸も容量に影響するので少なくしなければならなかった。又、電子線ホログラフィーを用いたドーパントプロファイル測定を行うには注入ガリウムを除去し、電子線が透過できるように凹凸の少ないまま試料を薄くしなければならない。信頼性高いデータを得るためには薄くした試料のダメージ領域を低減しなければならない。
X. D. Wang, C. L. Liu, A. Thean, E. Duda, R. Liu, Q. Xie, S. Lu, A. Barr, T. White, B. Y. Nguyen, M. Orlowski, J. Vac. Sci. Technol. B22 373-376(2004) 上田修、応用物理 72 539-549(2003) 近藤芳正、O plus E 25 899-903(2003) 特開2004-226079
In order to realize the above-mentioned demand and perform reliable scanning capacitance microscope measurement, in addition to forming an appropriate oxide film on the silicon surface in the measurement region, gallium implanted into the cut-out part accompanying cut-out with a focused ion beam or It is necessary to remove the damaged layer formed in the cutout portion. In addition, since the unevenness also affects the capacity, it has to be reduced. In order to perform dopant profile measurement using electron beam holography, the implanted gallium must be removed, and the sample must be made thin with little irregularities so that the electron beam can be transmitted. In order to obtain highly reliable data, the damaged area of the thinned sample must be reduced.
XD Wang, CL Liu, A. Thean, E. Duda, R. Liu, Q. Xie, S. Lu, A. Barr, T. White, BY Nguyen, M. Orlowski, J. Vac. Sci. Technol. B22 373-376 (2004) Oeda Osamu, Applied Physics 72 539-549 (2003) Yoshimasa Kondo, O plus E 25 899-903 (2003) JP2004-226079

本発明は、半導体デバイスの所望の断面のドーパントプロファイル測定、もしくは電子線ホログラフィーによるドーパントプロファイル測定を可能にすることを目的とする。   An object of the present invention is to enable measurement of a dopant profile of a desired cross section of a semiconductor device or measurement of a dopant profile by electron holography.

上記課題を解決するために、本発明においては、半導体デバイスから、集束イオンビーム装置で薄片試料を切り出し、該切り出した薄片試料の断面の薄膜化や注入ガリウムの除去に、ガスクラスターイオンビームを用いて、切り出した断面の狭い領域に、低ダメージで凹凸の少ない除去加工を施す。ガスクラスターイオンビーム装置を用いれば、そのクラスターサイズと1原子あたりの入射エネルギーの組み合わせを最適化することにより、狭い領域に低ダメージで凹凸の少ない除去加工ができる。   In order to solve the above-described problems, in the present invention, a gas sample ion beam is used to cut a thin sample from a semiconductor device with a focused ion beam apparatus, and to reduce the cross-section of the cut thin sample and to remove implanted gallium. Then, removal processing with less damage and less unevenness is applied to the narrow region of the cut-out cross section. If a gas cluster ion beam device is used, the combination of the cluster size and the incident energy per atom can be optimized, so that removal processing with less damage and less unevenness can be performed in a narrow area.

また酸素ガスクラスターイオンビームを用いれば、そのクラスターサイズや1原子あたりの入射エネルギーを制御することにより、ストイキオメトリーが良く、すなわち形成した酸化膜の化学組成がよりSi02に近く、膜厚制御性の良いシリコン酸化膜が得られる。再現性の良い薄い酸化膜が得られれば、走査キャパシタンス顕微鏡で、信頼性の良いドーパントプロファイルデータを得ることができる。 Also the use of the oxygen gas cluster ion beam, its by controlling the cluster size and the incident energy per atom, good stoichiometry, i.e. chemical composition closer to Si0 2 of the formed oxide film thickness control A good silicon oxide film can be obtained. If a thin oxide film with good reproducibility is obtained, reliable dopant profile data can be obtained with a scanning capacitance microscope.

デバイス断面を、電子線ホログラフィーを用いてドーパントプロファイル測定を行う場合は、100〜200kVの電子線が透過する厚さまで、集束イオンビーム装置で半導体デバイスから切り出した薄片の断面を、ガスクラスターイオンビームのスパッタで薄くする。   When the dopant profile is measured using electron holography for the device cross-section, the cross-section of the slice cut from the semiconductor device with a focused ion beam device is cut into the thickness of the electron beam of 100 to 200 kV. Thin by sputtering.

クラスターイオンビームは原子1個あたりのエネルギーが低く、サンプルに深く注入されることはない。希ガスのクラスターイオンを用いれば、もしイオンが注入されても不活性であるためガリウムのようにドーパントプロファイル測定に影響を与えることはない。クラスターイオンビームのラテラルスパッタ効果(ガスクラスターイオンビームには平面から突き出たところがスパッタされやすい(平坦化しやすい)効果があり、これをラテラルスパッタ効果と呼ぶ)で凹凸の少ない除去断面が得られる。   The cluster ion beam has a low energy per atom and is not implanted deep into the sample. If noble gas cluster ions are used, the dopant profile measurement is not affected unlike gallium because it is inactive even if ions are implanted. The cluster ion beam has a lateral sputtering effect (the gas cluster ion beam has an effect of being easily sputtered (prone to flatten) when protruding from the plane, which is referred to as a lateral sputtering effect), and a removal cross section with less unevenness can be obtained.

酸素ガスクラスターイオンビームで条件を最適化することにより、ストイキオメトリーが良くて適度に薄い酸化膜を再現性良く形成することができる。この場合も酸素ガスクラスターイオンビームで凹凸の少ない酸化膜表面が得られる。   By optimizing the conditions with an oxygen gas cluster ion beam, an oxide film with good stoichiometry and a moderately thin thickness can be formed with good reproducibility. In this case as well, an oxide film surface with less unevenness can be obtained with an oxygen gas cluster ion beam.

以下に本発明の実施例について図面を用いて詳細に説明する。   Embodiments of the present invention will be described below in detail with reference to the drawings.

図1は、集束イオンビーム装置で半導体デバイスから切り出した薄片6の断面を、ガスクラスターイオンビームを用いてエッチングして、電子線ホログラフィーのためのドーパントプロファイル測定用サンプルを作製する場合を説明するための、薄片6の処理工程毎の概略断面図(薄片6の測定断面に垂直で、かつ、半導体デバイス表面に平行な方向から切断した場合の断面図)である。   FIG. 1 illustrates a case where a cross section of a thin piece 6 cut out from a semiconductor device by a focused ion beam apparatus is etched using a gas cluster ion beam to prepare a sample for measuring a dopant profile for electron holography. FIG. 6 is a schematic cross-sectional view (a cross-sectional view when cut from a direction perpendicular to the measurement cross-section of the thin piece 6 and parallel to the surface of the semiconductor device) for each processing step of the thin piece 6.

集束イオンビームを照射して、半導体デバイスの所望の位置で断面を形成し、該断面を含む薄片6を集束イオンビーム装置から取り出す。薄片6には、集束イオンビームが照射された時に、ガリウムが注入され残留ガリウム層3が存在する。取り出した薄片6を、走査キャパシタンス顕微鏡や電子線ホログラフィーでドーパントプロファイル測定可能にするのに必要な前処理を行うために、ガスクラスターイオンビーム装置に導入する。ガスクラスターイオンビーム装置に複合した光学顕微鏡または走査電子顕微鏡で観察しながら、薄片6の表面の残留ガリウム層3がガスクラスターイオンビームの照射位置にくるように位置を調整する。   The focused ion beam is irradiated to form a cross section at a desired position of the semiconductor device, and the slice 6 including the cross section is taken out from the focused ion beam apparatus. When the thin ion beam 6 is irradiated with the focused ion beam, gallium is implanted and the residual gallium layer 3 is present. The extracted slice 6 is introduced into a gas cluster ion beam apparatus in order to perform pre-processing necessary to enable measurement of a dopant profile with a scanning capacitance microscope or electron beam holography. While observing with an optical microscope or a scanning electron microscope combined with a gas cluster ion beam apparatus, the position is adjusted so that the residual gallium layer 3 on the surface of the thin piece 6 comes to the irradiation position of the gas cluster ion beam.

クラスターサイズと1原子あたりの入射エネルギーの組み合わせを最適化したイオンドーズ量1014ions/cm2〜1016ions/cm2、加速電圧10〜20kVのアルゴン等の希ガスのガスクラスターイオンビーム1を薄片6に照射し(図1(a))、集束イオンビーム装置で切り出した薄片6の表面に注入された30nm程度の残留ガリウム層3が除去できるまで表面のスパッタを行う(図1(b))。電子線ホログラフィーを用いてドーパントプロファイル測定する場合は、薄片6をひっくり返して裏面に注入された30nm程度の残留ガリウム層3の除去も行う(図1(c))。サンプルをひっくり返したのち再びガスクラスターイオンビーム装置に複合した光学顕微鏡または走査電子顕微鏡で観察しながら、残留ガリウム除去後の薄片2の表面がガスクラスターイオンビームの照射位置にくるように位置を調整する。 A gas cluster ion beam 1 of a rare gas such as argon with an ion dose of 10 14 ions / cm 2 to 10 16 ions / cm 2 and an acceleration voltage of 10 to 20 kV optimized for the combination of cluster size and incident energy per atom. The thin piece 6 is irradiated (FIG. 1 (a)), and the surface is sputtered until the residual gallium layer 3 of about 30 nm implanted on the surface of the thin piece 6 cut out by the focused ion beam apparatus can be removed (FIG. 1 (b)). ). When measuring the dopant profile using electron holography, the thin piece 6 is turned over and the residual gallium layer 3 of about 30 nm implanted on the back surface is also removed (FIG. 1 (c)). After turning the sample over, while observing with an optical microscope or scanning electron microscope combined with a gas cluster ion beam device again, adjust the position so that the surface of the thin piece 2 after removal of residual gallium is at the irradiation position of the gas cluster ion beam To do.

電子線ホログラフィーを用いてドーパントプロファイルを測定する場合は、両面の残留ガリウム層3を除去したのちに、更にクラスターサイズと1原子あたりの入射エネルギーの組み合わせを最適化したイオンドーズ量1014ions/cm2〜1016ions/cm2、加速電圧10〜20kVのアルゴン等の希ガスのガスクラスターイオンビーム1を、残留ガリウム層除去後の薄片2の表面に照射走査し(図1(d))、100〜200kVの電子線が透過する100nm以下まで更に薄片化する(図1(e))。膜厚の確認は原子間力顕微鏡等で適宜取り出して行う。 When measuring the dopant profile using electron holography, after removing the residual gallium layer 3 on both sides, the ion dose is optimized by combining the cluster size and incident energy per atom 10 14 ions / cm The surface of the thin piece 2 after removing the residual gallium layer is irradiated and scanned with a gas cluster ion beam 1 of a rare gas such as argon having 2 to 10 16 ions / cm 2 and an acceleration voltage of 10 to 20 kV (FIG. 1 (d)), It is further thinned to 100 nm or less through which an electron beam of 100 to 200 kV is transmitted (FIG. 1 (e)). The film thickness is confirmed by taking it out with an atomic force microscope or the like.

残留ガリウム層除去や薄片化の粗加工を、SF6やCF4のような反応性ガスクラスターイオンビームの増速効果のあるスパッタで行い、仕上げ加工をアルゴン等の希ガスのガスクラスターイオンビーム1で行えば加工時間を短くすることができる。 Residual gallium layer removal and slicing roughing are performed by sputtering with the effect of accelerating reactive gas cluster ion beams such as SF 6 and CF 4 , and finishing processing is performed by a gas cluster ion beam of rare gas such as argon 1 If this is done, the processing time can be shortened.

図2は、集束イオンビーム装置で切り出した薄片6から、ガスクラスターイオンビームで、走査キャパシタンス顕微鏡のためのドーパントプロファイル測定用サンプルを作製する場合の薄片6の処理工程毎の概略断面図である。   FIG. 2 is a schematic cross-sectional view for each processing step of the thin piece 6 when a sample for measuring a dopant profile for a scanning capacitance microscope is produced from the thin piece 6 cut out by the focused ion beam apparatus using a gas cluster ion beam.

残留ガリウム層3を除去するために、クラスターサイズと1原子あたりの入射エネルギーの組み合わせを最適化したイオンドーズ量1014ions/cm2〜1016ions/cm2、加速電圧10〜20kVのアルゴン等の希ガスのガスクラスターイオンビーム1を照射する(図2(a))。 In order to remove the residual gallium layer 3, an ion dose of 10 14 ions / cm 2 to 10 16 ions / cm 2 with optimized combination of cluster size and incident energy per atom, argon with an acceleration voltage of 10 to 20 kV, etc. Irradiate the gas cluster ion beam 1 of the rare gas (Fig. 2 (a)).

残留ガリウム層3の除去後、残留ガリウム除去後の薄片2の表面にクラスターイオンサイズ250以上、イオンドーズ量5X1015ions/cm2程度、加速電圧5〜10kVの酸素ガスクラスターイオンビーム5を照射し(図2(b))、残留ガリウム除去後の薄片2の断面に5〜10nm表面酸化層4を形成する(図2(c))。 After the removal of the residual gallium layer 3, the surface of the thin film 2 after the removal of the residual gallium 2 is irradiated with an oxygen gas cluster ion beam 5 having a cluster ion size of 250 or more, an ion dose of about 5 × 10 15 ions / cm 2 and an acceleration voltage of 5 to 10 kV. (FIG. 2 (b)), a 5 to 10 nm surface oxide layer 4 is formed on the cross section of the thin piece 2 after the removal of residual gallium (FIG. 2 (c)).

集束イオンビーム装置で、半導体デバイスの故障箇所の断面を含む薄片試料を切り出す。半導体デバイスの故障箇所は、対象となるチップに対しLSIテスタ、電子ビームテスタ等で測定される。切り出した薄片試料の断面を、走査キャパシタンス顕微鏡や電子線ホログラフィーでドーパントプロファイルを測定することでスパイク欠陥等の故障原因を明らかにすることもできる。   A thin sample including a cross section of a failure portion of the semiconductor device is cut out by the focused ion beam apparatus. The failure location of a semiconductor device is measured with an LSI tester, an electron beam tester or the like on the target chip. The cause of a failure such as a spike defect can be clarified by measuring the dopant profile of the cut-out slice sample with a scanning capacitance microscope or electron holography.

本方法は、走査キャパシタンス顕微鏡によるドーパントプロファイル測定用サンプル作製だけでなく、走査キャパシタンス顕微鏡よりも感度の高い走査非線形誘電率顕微鏡(SNDM)によるドーパントプロファイル測定のサンプル作製にも利用できる。   This method can be used not only for preparing a sample for measuring a dopant profile with a scanning capacitance microscope but also for preparing a sample for measuring a dopant profile with a scanning nonlinear dielectric microscope (SNDM), which is more sensitive than a scanning capacitance microscope.

ガスクラスターイオンビームを用いて、半導体デバイスから集束イオンビーム装置で切り出した薄片をエッチングして、電子線ホログラフィーのためのドーパントプロファイル測定用サンプルを作製する場合の薄片の概略断面図である。It is a schematic sectional drawing of the thin piece in the case of producing the sample for a dopant profile measurement for electron holography by etching the thin piece cut out from the semiconductor device with the focused ion beam apparatus using a gas cluster ion beam. ガスクラスターイオンビームを用いて、半導体デバイスから集束イオンビーム装置で切り出した薄片をエッチングして、走査キャパシタンス顕微鏡のためのドーパントプロファイル測定用サンプルを作製する場合の薄片の概略断面図である。It is a schematic sectional drawing of the thin piece in the case of producing the sample for dopant profile measurement for a scanning capacitance microscope by etching the thin piece cut out from the semiconductor device with the focused ion beam apparatus using a gas cluster ion beam.

符号の説明Explanation of symbols

1 アルゴンガスクラスターイオンビーム
2 残留ガリウム層を除去した薄片
3 残留ガリウム層
4 酸化膜
5 酸素ガスクラスターイオンビーム
6 集束イオンビーム装置で切り出した薄片
1 Argon gas cluster ion beam
2 Thin section from which residual gallium layer has been removed
3 Residual gallium layer
4 Oxide film
5 Oxygen gas cluster ion beam
6 Thin section cut out by focused ion beam device

Claims (5)

半導体デバイスから、集束イオンビーム装置を用いて、所望の断面を含む薄片を切り出す工程と、
該切り出した薄片の残留ガリウム除去をガスクラスターイオンビームで行う工程を有するドーパントプロファイル測定用薄片試料作成方法。
Cutting out a slice including a desired cross section from a semiconductor device using a focused ion beam apparatus;
A method for preparing a flake sample for measuring a dopant profile, comprising a step of removing residual gallium from the cut flake with a gas cluster ion beam.
前記薄片の残留ガリウム除去は、前記薄片の両面に対し行なう請求項1記載のドーパントプロファイル測定用薄片試料作成方法。   2. The method for preparing a thin film sample for measuring a dopant profile according to claim 1, wherein the residual gallium is removed from the thin film on both surfaces of the thin film. 前記残留ガリウム除去後、前記ガスクラスターイオンビームを用いて更に薄片化を行なう請求項2記載のドーパントプロファイル測定用薄片試料作成方法。   3. The method for preparing a flake sample for measuring a dopant profile according to claim 2, wherein after the residual gallium is removed, the gas cluster ion beam is further used for thinning. 前記残留ガリウム除去は反応性ガスクラスターイオンビームで行い、前記残留ガリウム除去後の更なる薄片化は、希ガスクラスターイオンビームで行う請求項3記載のドーパントプロファイル測定用薄片試料作成方法。   4. The method for preparing a slice sample for measuring a dopant profile according to claim 3, wherein the residual gallium removal is performed with a reactive gas cluster ion beam, and further thinning after the residual gallium removal is performed with a rare gas cluster ion beam. 前記薄片の断面の残留ガリウム除去後、前記薄片の表面に酸素ガスクラスターイオンビームを照射し、前記残留ガリウム除去後の薄片の表面に表面酸化層を形成する請求項1記載のドーパントプロファイル測定用薄片試料作成方法。   2. The thin film for measuring a dopant profile according to claim 1, wherein after removing the residual gallium in the cross section of the thin film, the surface of the thin film is irradiated with an oxygen gas cluster ion beam to form a surface oxide layer on the surface of the thin film after removing the residual gallium. Sample preparation method.
JP2007139076A 2007-05-25 2007-05-25 Sample preparation method Active JP4920494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007139076A JP4920494B2 (en) 2007-05-25 2007-05-25 Sample preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007139076A JP4920494B2 (en) 2007-05-25 2007-05-25 Sample preparation method

Publications (2)

Publication Number Publication Date
JP2008292351A true JP2008292351A (en) 2008-12-04
JP4920494B2 JP4920494B2 (en) 2012-04-18

Family

ID=40167220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007139076A Active JP4920494B2 (en) 2007-05-25 2007-05-25 Sample preparation method

Country Status (1)

Country Link
JP (1) JP4920494B2 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000230891A (en) * 1999-02-09 2000-08-22 Fuji Electric Co Ltd Method for preparing sample for transmission type electron microscope
JP2002277364A (en) * 2001-03-19 2002-09-25 Seiko Epson Corp Method of working thin sample piece, and method of preparing thin sample piece
JP2002298774A (en) * 2001-03-29 2002-10-11 Toshiba Corp Electron microscope
JP2003505867A (en) * 1999-07-19 2003-02-12 エピオン コーポレイション Adaptive GCIB for surface smoothing
JP2004047315A (en) * 2002-07-12 2004-02-12 Seiko Instruments Inc Ion beam device, ion beam machining method and holder member
JP2004191358A (en) * 2002-11-27 2004-07-08 Seiko Instruments Inc Sample preparation method and device by composite charge particle beam
JP2004226079A (en) * 2003-01-20 2004-08-12 Seiko Instruments Inc Surface or section processing observation method and its device
JP2004260137A (en) * 2002-12-06 2004-09-16 Soi Tec Silicon On Insulator Technologies Method for recycling substrate
JP2004264145A (en) * 2003-02-28 2004-09-24 Toshiba Corp Method for making transmission electron microscope observation specimen
JP2005175369A (en) * 2003-12-15 2005-06-30 Japan Aviation Electronics Industry Ltd Dry etching method and photonic crystal element produced using same
JP2006093445A (en) * 2004-09-24 2006-04-06 Toshiba Corp Oxide film forming method
JP2006098189A (en) * 2004-09-29 2006-04-13 Jeol Ltd Method and apparatus for producing sample
JP2007108105A (en) * 2005-10-17 2007-04-26 Renesas Technology Corp Method for preparing sample for electron microscope, converged ion beam device and a sample support stand

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000230891A (en) * 1999-02-09 2000-08-22 Fuji Electric Co Ltd Method for preparing sample for transmission type electron microscope
JP2003505867A (en) * 1999-07-19 2003-02-12 エピオン コーポレイション Adaptive GCIB for surface smoothing
JP2002277364A (en) * 2001-03-19 2002-09-25 Seiko Epson Corp Method of working thin sample piece, and method of preparing thin sample piece
JP2002298774A (en) * 2001-03-29 2002-10-11 Toshiba Corp Electron microscope
JP2004047315A (en) * 2002-07-12 2004-02-12 Seiko Instruments Inc Ion beam device, ion beam machining method and holder member
JP2004191358A (en) * 2002-11-27 2004-07-08 Seiko Instruments Inc Sample preparation method and device by composite charge particle beam
JP2004260137A (en) * 2002-12-06 2004-09-16 Soi Tec Silicon On Insulator Technologies Method for recycling substrate
JP2004226079A (en) * 2003-01-20 2004-08-12 Seiko Instruments Inc Surface or section processing observation method and its device
JP2004264145A (en) * 2003-02-28 2004-09-24 Toshiba Corp Method for making transmission electron microscope observation specimen
JP2005175369A (en) * 2003-12-15 2005-06-30 Japan Aviation Electronics Industry Ltd Dry etching method and photonic crystal element produced using same
JP2006093445A (en) * 2004-09-24 2006-04-06 Toshiba Corp Oxide film forming method
JP2006098189A (en) * 2004-09-29 2006-04-13 Jeol Ltd Method and apparatus for producing sample
JP2007108105A (en) * 2005-10-17 2007-04-26 Renesas Technology Corp Method for preparing sample for electron microscope, converged ion beam device and a sample support stand

Also Published As

Publication number Publication date
JP4920494B2 (en) 2012-04-18

Similar Documents

Publication Publication Date Title
US6537606B2 (en) System and method for improving thin films by gas cluster ion beam processing
Ishitani et al. Improvements in performance of focused ion beam cross-sectioning: aspects of ion-sample interaction
JP4699168B2 (en) Electron microscope sample preparation method
US10283351B2 (en) Single-crystal silicon carbide substrate, method for producing single-crystal silicon carbide substrate, and method for inspecting single-crystal silicon carbide substrate
US6303399B1 (en) Method of sample preparation for electron microscopy
KR20180132546A (en) Face-on, gas-assisted etching for plan-view lamellae preparation
JP2004245841A (en) Temfib sample, and method of manufacturing the same
JP4483583B2 (en) SOI wafer inspection method, analysis apparatus, and SOI wafer manufacturing method
JP2004087174A (en) Ion beam device, and working method of the same
Mehrtens et al. Optimization of the preparation of GaN-based specimens with low-energy ion milling for (S) TEM
Ieshkin et al. The quantitative analysis of silicon carbide surface smoothing by Ar and Xe cluster ions
US7317188B2 (en) TEM sample preparation from a circuit layer structure
JP4920494B2 (en) Sample preparation method
JP2001319954A (en) Sample processing method with focused ion beam
Savvides Surface microroughness of ion-beam etched optical surfaces
JP4335656B2 (en) Sample preparation method for microscope
Chivas et al. Pulsed Laser Assisted Chemical Etch for analytic surface preparation
US8698106B2 (en) Apparatus for detecting film delamination and a method thereof
JP7330326B2 (en) How to prepare specimens for scanning capacitance microscopy
Nowakowski et al. Sample Preparation for Electron Microscopy Characterization (SEM and TEM) and Failure Analysis of Advanced Semiconductor Devices
Gao et al. Experiment study on Crystal/Amorphous Structure of TEM Samples Prepared by FIB Milling
JP2006093642A (en) Sectional sample preparing method
JP2006267048A (en) Method for preparing sample for cross-section observation
KR100901925B1 (en) Evaluation method for gettering ability of wafer
Fillmore et al. Investigation of Low-Energy Focused Ion Beam Milling for Scanning Capacitance Microscopy Sample Preparation

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091113

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4920494

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250