JP2004191358A - Sample preparation method and device by composite charge particle beam - Google Patents

Sample preparation method and device by composite charge particle beam Download PDF

Info

Publication number
JP2004191358A
JP2004191358A JP2003353123A JP2003353123A JP2004191358A JP 2004191358 A JP2004191358 A JP 2004191358A JP 2003353123 A JP2003353123 A JP 2003353123A JP 2003353123 A JP2003353123 A JP 2003353123A JP 2004191358 A JP2004191358 A JP 2004191358A
Authority
JP
Japan
Prior art keywords
sample
etching
observation
electron beam
ion beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003353123A
Other languages
Japanese (ja)
Inventor
Yasuhiko Sugiyama
安彦 杉山
Toshiaki Fujii
利昭 藤井
Junichi Tashiro
純一 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2003353123A priority Critical patent/JP2004191358A/en
Publication of JP2004191358A publication Critical patent/JP2004191358A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To present a processing method which prevents the problem of damages on a sample surface caused by Ga used as an ion source in the processing of a sample using a converging beam having good processing efficiency, and to provide a device for executing the method. <P>SOLUTION: In the sample processing method of the present invention, in the operations of making a sample into thin or small pieces and exposing a surface thereof to be observed, in order to remove damages on the sample surface due to an ion beam (FIB), rough processing is executed by etching by use of an initial converging ion beam, and finish processing is then executed by gas assist etching by use of an electron beam (EB). As the device, an electron beam body tube which can perform processing is installed, in addition to a FIB body tube, in one sample room. A gas introduction device is further provided which injects a starting material gas for CVD and/or an assist gas for etching to a beam irradiation position. In this way, the processings selectively using both the charge particle beams to execute the processing of the TEM sample can be sequentially performed. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、集束イオンビームを用いた加工と電子ビームを用いた加工とを組合せて行なう試料加工方法と、その加工を実行する装置に関する。   The present invention relates to a sample processing method for performing a combination of processing using a focused ion beam and processing using an electron beam, and an apparatus for performing the processing.

TEMやSPMを用いて試料の断面または表面観察を行なう場合、観察するための試料作製の一手法として、集束イオンビーム装置による薄片化もしくは小片化加工を行なうことは周知である。また、SPMを用いて試料観察面の電気的、磁気的特性などの物性を測定する場合の試料作製にも集束イオンビーム装置による試料の小片化加工が用いられている。例えば、TEM観察用の試料を作製する方法としては、ウエハ状の試料から機械的に小片を切り出しそれを加工する方法と、ウエハのままエッチング加工して薄片化された試料を取り出す方法とが知られている。前者のTEM試料製造方法は、特許文献1に示されるように、(1)観察したい断面部を含む部分をウエハからブロック状に切り出し、該ブロックを図4のAに示すように断面凸字状の小片に切削加工する。(2)この小片をFIB装置の試料ステージに載置し、図4のBに示すように観察断面の表面部分にまずガス導入装置8により原料ガスを噴射させながら集束イオンビーム(FIB)を照射して保護用のデポ膜を形成させて、続いて(3)図4のCに示すように試料の面上方から集束イオンビームを照射し観察断面の後側をスパッタエッチング又はガスアシストエッチング加工により掘り込み、ついで同様の方法で観察断面の前側をエッチング加工により掘り込む。すなわち観察断面部を電子ビームが透過できるように集束イオンビーム装置でその両側を薄片化加工するのである。この際の加工効率を高めるため照射するイオンビームは加速電圧を高圧としビーム電流も大きい高エネルギービームでエッチング加工する。この高エネルギーでのエッチング加工によって観察面がダメージを受け粗削り状態となっているので、(4)粗加工が終わった後で加速電圧を低くしビーム電流も抑えた低エネルギーのビームを用いて仕上げ加工を施しTEM試料を完成させる。この仕上げ加工は粗削り状態となった試料表面を研磨するためである。このようにして仕上げられたTEM試料はTEM装置の試料ステージに載置され、図4のDに図示したように観察断面を透過するように電子ビーム(EB)が照射走査され、透過電子を検出して観察像が得られる。   When observing a cross section or a surface of a sample using a TEM or SPM, it is well known to perform thinning or fragmentation using a focused ion beam apparatus as one method of preparing a sample for observation. In addition, when a physical property such as an electrical or magnetic property of a sample observation surface is measured using the SPM, the sample is cut into small pieces by a focused ion beam apparatus. For example, as a method of preparing a sample for TEM observation, there are known a method of mechanically cutting out a small piece from a wafer-like sample and processing the same, and a method of extracting a thinned sample by etching the wafer as it is. Have been. As described in Patent Document 1, the former method of manufacturing a TEM sample (1) cuts a portion including a cross-sectional portion to be observed from a wafer into a block shape, and cuts the block into a convex shape as shown in FIG. Into small pieces. (2) This small piece is placed on the sample stage of the FIB apparatus, and as shown in FIG. 4B, a focused ion beam (FIB) is first irradiated onto the surface portion of the observation section while the source gas is injected by the gas introducing device 8. Then, a deposition film for protection is formed, and then (3) as shown in FIG. 4C, a focused ion beam is irradiated from above the surface of the sample, and the rear side of the observation section is subjected to sputter etching or gas assist etching. Drilling is performed, and then the front side of the observation section is dug by etching in the same manner. That is, both sides of the observation cross section are thinned by a focused ion beam apparatus so that the electron beam can pass therethrough. In order to enhance the processing efficiency at this time, the ion beam to be irradiated is etched by a high energy beam having a high acceleration voltage and a large beam current. The observation surface is damaged by this high-energy etching process, and it is in a rough-cut state. (4) After roughing is completed, finish using a low-energy beam with a low acceleration voltage and a low beam current. Processing is performed to complete the TEM sample. This finishing is for polishing the surface of the sample which has been roughly cut. The TEM sample thus finished is placed on a sample stage of a TEM device, and irradiated with an electron beam (EB) so as to transmit through an observation section as shown in FIG. To obtain an observation image.

後者のTEM試料製造方法は、例えば特許文献2に示されるようなものである。観察断面部のウエハ表面においてまず図3の(a)のようにガス銃により保護用デポ膜を形成させる。図3の(b),(c)のように試料の面上方から集束イオンビームを照射し上記観察断面の両側をエッチング加工により削り取り、集束イオンビーム装置で観察断面薄片部の両側に四角い前方穴,後方穴を空ける。該穴の大きさは前方穴が試料台をチルトして観察断面を走査イオン顕微鏡で観察できる程度の大きさに、後方穴は幅は前方穴と同じで奥行きは2/3程度に穿設される。試料面をチルトして図3の(d)のように観察断面として薄片化加工された試料の底辺部に切り込み加工を行う。このときの底辺部の切り込み加工は図5のAに矢印で示されるように集束イオンビームを走査させて行なう。この図5は穴空け加工された部分を斜め上部より観察した顕微鏡観察像のイメージ図である。その際の該切り込み加工によって試料面にダメージを与えてしまうため、再度試料断面を研磨しなくてはならない。特許文献2の方法はこの仕上げ加工時に薄片化した試料の位置ずれを防ぐため、前記の切り込み加工はAに図示したように試料2の底辺部に対してのみ行ない、薄片試料が両側でしっかり固定された状態で上方からの低エネルギーのイオンビームによって仕上げ加工を実行し、両サイドの切り込みは図5のBに示すように仕上げ加工の後観察断面にダメージを与えない上方からの集束イオンビームで行なうようにしたものである。このように集束イオンビームを照射して切り込み加工を行い、図6のA,Bに示すようにマニピュレータ(ガラスプローブ)を操作してこの切片試料を試料本体から切り離し図6のCに示すようにコロジオン膜張付けメッシュ(150メッシュ)等の上に移動させて載置する。図6のDに示すようにメッシュ面上に切り出した切片試料が付着し、TEM観察用の試料が完成する。   The latter TEM sample manufacturing method is, for example, as shown in Patent Document 2. First, as shown in FIG. 3A, a protective deposit film is formed on the wafer surface in the observation section by a gas gun. As shown in FIGS. 3 (b) and 3 (c), a focused ion beam is irradiated from above the surface of the sample, and both sides of the observation cross section are scraped off by etching. , Drill a rear hole. The size of the hole is such that the front hole is tilted on the sample stage and the observation cross section can be observed with a scanning ion microscope, and the rear hole is the same width as the front hole and about 2/3 in depth. You. The sample surface is tilted, and as shown in FIG. 3D, an incision is made in the bottom of the sliced sample as an observation cross section. At this time, the cutting of the bottom is performed by scanning the focused ion beam as shown by an arrow in FIG. FIG. 5 is an image diagram of a microscope observation image obtained by observing a portion formed by drilling from obliquely above. At this time, the sample surface is damaged by the notch processing, so the sample section must be polished again. In the method of Patent Document 2, in order to prevent the displacement of the sliced sample during the finishing process, the above-mentioned cutting process is performed only on the bottom portion of the sample 2 as shown in A, and the sliced sample is firmly fixed on both sides. In this state, finishing is performed with a low-energy ion beam from above, and the cuts on both sides are focused ion beams from above that do not damage the observation cross section after finishing as shown in FIG. 5B. It is something to do. In this manner, the focused ion beam is irradiated to perform the cutting process, and the manipulator (glass probe) is operated as shown in FIGS. 6A and 6B to separate the section sample from the sample main body, and as shown in FIG. 6C. Move and place on a collodion membrane-attached mesh (150 mesh) or the like. As shown in FIG. 6D, the section sample cut out on the mesh surface adheres, and the sample for TEM observation is completed.

ところが、いずれの手法でTEM試料加工を行うにせよ、集束イオンビームのイオン材料には一般に液体金属であるGaが用いられ、薄片化加工に伴い照射されるGaイオンによって試料面に上記したようにダメージを与えてしまうという問題がある。粗加工段階では加速電圧を高くして加工を行うが、それによってダメージを受けた試料表面を仕上げ加工段階では加速電圧を低くし丁寧な仕上げ加工を施して傷んだ試料表面を研磨するといった手順を必要としている。しかし、加速電圧を低くし丁寧な加工を行ってもGaイオン照射によるダメージは完全には取り除くことはできない。このTEM試料をTEM装置によって観察する際、その残留しているGaが電子の透過に本来の試料とは異なる影響を与えるため、透過電子ビームを検出するのにノイズとなってしまう。すなわち、このGaイオン照射によるダメージ層が加工後の試料のTEM観察像を不鮮明なものにしてしまうという問題を起こすのである。   However, regardless of which method the TEM sample processing is performed, Ga, which is a liquid metal, is generally used as the ion material of the focused ion beam, and the Ga surface irradiated with the slicing processing as described above applies the Ga ion to the sample surface. There is a problem of causing damage. In the roughing stage, machining is performed by increasing the acceleration voltage.However, in the finishing stage of the damaged sample surface, a procedure such as lowering the acceleration voltage and performing a careful finishing process to polish the damaged sample surface is performed. In need of. However, even if the acceleration voltage is lowered and careful processing is performed, damage due to Ga ion irradiation cannot be completely removed. When the TEM sample is observed with a TEM device, the remaining Ga affects the transmission of electrons differently from the original sample, which becomes a noise in detecting the transmitted electron beam. That is, there is a problem that the damage layer caused by the Ga ion irradiation makes the TEM observation image of the processed sample unclear.

また、SPMを用いて電気的特性などの物性を評価するための試料を集束イオンビームで作製する場合、試料内へのガリウム注入があると、評価する物性によっては、注入されたGaが影響を与えてしまう。   In addition, when a sample for evaluating physical properties such as electrical characteristics is manufactured using a focused ion beam using SPM, if gallium is implanted into the sample, the injected Ga may have an effect depending on the physical property to be evaluated. I will give it.

従来このような問題を生じない加工方法として、TEM試料作製については、集束イオンビームを用いた加工を行わず、粗加工から仕上げ加工まですべて電子ビームを用いたガスアシストエッチングで行なうものが提示されている(例えば特許文献3参照)。しかし、一般に電子ビームを用いたガスアシストエッチングでは集束イオンビームによるエッチングに比べて非常に遅いため、この先行技術では加工効率の点で問題を残す。   Conventionally, as a processing method that does not cause such a problem, a method of manufacturing a TEM sample that does not perform processing using a focused ion beam but performs all processes from rough processing to finish processing by gas assisted etching using an electron beam is proposed. (For example, see Patent Document 3). However, in general, gas assisted etching using an electron beam is much slower than etching using a focused ion beam, and thus this prior art leaves a problem in terms of processing efficiency.

また、上記Gaイオン照射によるダメージ層を除去するために、低エネルギーの気体イオンビーム、例えばArイオンビームを使う方法も提案されている(例えば特許文献4参照)。しかし、気体イオンビームによるスパッタはダメージ層を物理的に除去するので電子ビームを用いたガスアシストエッチングに比べてダメージ層を多く残す。
特開2000−32390号公報 図2 特開2001−141620号公報 図1、図2、図4 特開平8−329876号公報 図1、図5 特開平6−26012号公報 段落番号0004、図1
Further, a method using a low-energy gas ion beam, for example, an Ar ion beam has been proposed in order to remove the damage layer caused by the Ga ion irradiation (for example, see Patent Document 4). However, sputtering using a gas ion beam physically removes the damaged layer, so that a larger amount of the damaged layer is left as compared with gas assisted etching using an electron beam.
JP 2000-32390A FIG. JP, 2001-141620, A FIGS. 1, 2, and 4 SUMMARY OF THE INVENTION FIG. JP-A-6-26012, paragraph No. 0004, FIG.

本発明の課題は、上記の問題すなわち、加工効率の優れた集束イオンビームを用いた試料の加工において、イオン源として用いるガリウムによる試料面のダメージの問題を解決する加工方法を提示し、それを実行する装置を提供することにある。   An object of the present invention is to provide a processing method that solves the above-mentioned problem, that is, a processing method for solving a problem of damage to a sample surface due to gallium used as an ion source in processing of a sample using a focused ion beam having excellent processing efficiency. It is to provide a device to execute.

本発明の試料加工方法は、試料を薄片化、小片化、また、観察面を露出させる作業において、試料面のイオンビームによる試料内のダメージを除去するために、当初集束イオンビームを用いたエッチング加工で粗加工を実行し、その後、電子ビームを用いたガスアシストエッチングによって仕上げ加工を行うようにする。   In the sample processing method of the present invention, in the work of thinning and shredding a sample and exposing an observation surface, etching using an initially focused ion beam is performed to remove damage in the sample due to an ion beam on the sample surface. Roughing is performed by processing, and then finishing is performed by gas-assisted etching using an electron beam.

装置としては同一試料室内にFIB鏡筒の他に加工が行なえる電子ビーム鏡筒を併設するようにすると共に、CVD用の原料ガス及び/又はエッチング用アシストガスをビーム照射位置に噴射するガス導入装置とを備え、上記の試料の加工を実行すべく両方の荷電粒子ビームを選択して用いる加工を順次行なえるようにした。   As an apparatus, in addition to the FIB column, an electron beam column capable of performing processing is provided in the same sample chamber, and gas introduction for injecting a source gas for CVD and / or an assist gas for etching to a beam irradiation position. An apparatus is provided, so that the processing using the selected charged particle beams can be sequentially performed in order to execute the processing of the sample.

本発明の試料加工方法は、試料を薄片化小片化、また、観察面を露出させる作業において、当初集束イオンビームを用いたエッチング加工で粗加工を実行し、その後、電子ビームを用いたガスアシストエッチングによって仕上げ加工を行い、試料面のイオンビームによるダメージを除去するものであるから、加工効率の優れた集束イオンビームを用いた試料の加工を実行しても、イオン源として用いるGaによる試料面のダメージを効果的に防止することができる。したがって、質のよい試料を提供することができる。   In the sample processing method of the present invention, in the work of thinning the sample into small pieces and exposing the observation surface, rough processing is first performed by etching using a focused ion beam, and thereafter, gas assist using an electron beam is performed. Since the finishing process is performed by etching to remove the damage of the sample surface due to the ion beam, even if the sample is processed using a focused ion beam having excellent processing efficiency, the sample surface using Ga used as an ion source can be used. Can be effectively prevented. Therefore, a high-quality sample can be provided.

また、本発明の複合荷電粒子ビーム装置は、集束イオンビーム鏡筒と加工ができる電子ビーム鏡筒の二つの鏡筒を試料室に取り付けると共に、CVD用の原料ガス及び/又はエッチング用アシストガスをビーム照射位置に噴射するガス導入装置とを備えるのものであるから、集束イオンビーム又は電子ビームを使って行なうエッチング又はデポジションを所望条件に対応して選択的に実行できる。さらに、走査型イオン顕微鏡像と走査型電子顕微鏡像の両方の観察像が得られる構成であるので、ダメージを受けたく無いときは電子顕微鏡像を選択すること、電子顕微鏡像で不鮮明な画像をイオン顕微鏡像で撮ること、或いは両顕微鏡像の比較など幅広い使用が可能となる。そして、試料ステージにチルト機能を持たせることによって、試料内部の観察面をSPMで観察するための試料作製において、集束イオンビームで観察面の上部分をエッチング加工し除去する際、入射ビームを試料面に対して斜めに入射することで、観察面に入射イオンの混入やダメージを軽減することが可能である。   In the composite charged particle beam apparatus according to the present invention, two columns, a focused ion beam column and an electron beam column that can be processed, are attached to the sample chamber, and a source gas for CVD and / or an assist gas for etching are supplied. Since the apparatus is provided with the gas introducing device for injecting the beam at the beam irradiation position, etching or deposition using a focused ion beam or an electron beam can be selectively performed according to desired conditions. In addition, since the observation image of both the scanning ion microscope image and the scanning electron microscope image can be obtained, select the electron microscope image when you do not want to be damaged. A wide range of uses such as taking a microscopic image or comparing both microscopic images is possible. When the sample stage is provided with a tilt function, the incident beam is removed by etching the upper part of the observation surface with a focused ion beam in the preparation of the sample for observing the observation surface inside the sample by SPM. By making the light obliquely incident on the surface, it is possible to reduce the incidence of ions and damage to the observation surface.

また、SPM観察試料がプローブ走査面内方向で異なる種類の材料を有する場合、エッチングガスを吹き付けながら電子ビームを照射するエッチング加工においては、適当なエッチングガスを選ぶことによりエッチングされ易い材料はエッチングされ、エッチングされにくい材料はエッチングされない。これをSPMによる形状観察を行なうことで材料のコントラストを観察することもできる。   Further, when the SPM observation sample has different types of materials in the probe scanning plane direction, in the etching process of irradiating an electron beam while blowing an etching gas, a material which is easily etched by selecting an appropriate etching gas is etched. Materials that are difficult to etch are not etched. By observing the shape by SPM, the contrast of the material can be observed.

また、ダメージ層の除去に電子ビームによるガスアシストエッチングを用いたことで、Arイオンビーム等の気体イオンビームを用いて除去する場合に比べ、ダメージ層を少なくすることができ、例えば超微細化された半導体試料に対しても、TEM観察や、物性観察を含めたSPM観察をより鮮明に行なうことができる。   Further, by using gas-assisted etching using an electron beam to remove the damaged layer, the number of damaged layers can be reduced as compared with the case where removal is performed using a gas ion beam such as an Ar ion beam. The SPM observation including the TEM observation and the physical property observation can be performed more clearly on the semiconductor sample that has been obtained.

本発明の複合荷電粒子ビーム装置は、集束イオンビームと電子ビームが試料面に対し所望の角度で入射できるように試料ステージにチルト調整機能を備えているので、両ビーム軸に対して適宜の角度を採ることが出来るため、加工効率の点でもダメージ防止の点でも所望の対応を採ることができる。   The composite charged particle beam apparatus of the present invention has a tilt adjustment function on the sample stage so that the focused ion beam and the electron beam can be incident on the sample surface at a desired angle. Therefore, desired measures can be taken both in terms of processing efficiency and damage prevention.

本発明は、集束イオンビーム鏡筒と加工ができる電子ビーム鏡筒の二つの鏡筒を試料室に取り付けると共に、イオンビームまたは電子ビームを用いるCVD用の原料ガス及び/又はイオンビームまたは電子ビームを用いるガスアシストエッチング用のアシストガスをビーム照射位置に噴射するガス銃とを備えた装置を用いて、集束イオンビーム又は電子ビームを使って行なうエッチング又はデポジションを選択的に実行する。図1は、そのような複合荷電粒子ビーム装置の基本構成を示したものであって、1は集束イオンビーム鏡筒、2が電子ビーム鏡筒、3は試料室、4は試料ステージ、5は試料、6は真空ポンプ、7は二次荷電粒子検出器、8がガス導入装置である。上記の試料ステージ4は、三次元加工を行うものであるためX,Y,Zと回転、チルトの5軸駆動機構を備えたものが必要である。ただし、本発明で用いる電子ビーム鏡筒2は従来装置において観察用に設置されている走査顕微鏡用のものと違い、加工用にも供するものであるためビーム電流が数pAから数nA程度(例えば、1pAから20nA)まで可変でとれるものを設置する。因みに観察用であればそのビーム電流は数pA乃至数十pA程度のものである。   According to the present invention, two columns, a focused ion beam column and an electron beam column that can be processed, are attached to a sample chamber, and a source gas for CVD using an ion beam or an electron beam and / or an ion beam or an electron beam are supplied. Etching or deposition using a focused ion beam or an electron beam is selectively performed using an apparatus including a gas gun for injecting an assist gas for gas assisted etching to a beam irradiation position. FIG. 1 shows a basic configuration of such a composite charged particle beam apparatus, wherein 1 is a focused ion beam column, 2 is an electron beam column, 3 is a sample chamber, 4 is a sample stage, and 5 is a sample stage. A sample, 6 is a vacuum pump, 7 is a secondary charged particle detector, and 8 is a gas introduction device. Since the sample stage 4 performs three-dimensional processing, it needs to be provided with a five-axis drive mechanism of X, Y, Z, rotation, and tilt. However, since the electron beam column 2 used in the present invention is also used for processing, unlike a scanning microscope installed for observation in a conventional apparatus, the beam current is about several pA to several nA (for example, (1 pA to 20 nA). For observation, the beam current is about several pA to several tens pA.

上記装置を用いて行なう本発明の実施例の一つとして、TEM試料加工方法を説明する。まず、ウエハからブロックを切り出してからTEM観察用を作成する加工法を説明する。(1)観察したい断面部を含む部分をウエハからブロック状に切り出し、該ブロックを図2の(a)に示すように、断面凸字状の小ブロックに切削加工する。(2)この小ブロックをFIB装置の試料ステージに載置し、図2の(b)に示すように観察断面の表面部分にまずガス銃によりW(CO)のような原料ガスを噴射させながら集束イオンビームを照射して保護用のデポ膜を形成させる。続いて(3)図2の(c)に示すように試料の面上方から集束イオンビームを照射し観察断面の後側をスパッタエッチング又はガスアシストエッチング加工により掘り込み、ついで同様の方法で観察断面の前側をエッチング加工により掘り込む。すなわち観察断面部を電子ビームが透過できるようにFIB装置でその両側を薄片化加工する。この際の加工効率を高めるため、照射するイオンビームは加速電圧を高圧とし、ビーム電流も大きな、高エネルギービームでエッチング加工する。この高エネルギーでのエッチング加工によって観察面がダメージを受け粗削り状態となっている上、図2の(d)に示すようにイオンビーム源に用いられたGaが試料加工面に注入されている。そのGa含浸層は約30nmであるので、(4)その部分を削るべく図2の(e)に示すように薄片部分の両側を電子ビームを用いたガスアシストエッチングで仕上げ加工を施し、TEM試料を完成させる。ただし、試料への熱によるダメージを抑えるため電子ビームの加速電圧は数百Vから5kV程度の低加速電圧を用いる。この仕上げ加工は粗削り状態となった試料表面を研磨すると共に、Gaが注入されて残留している層を削りとるためである。このようにして仕上げられたTEM試料はTEM装置の試料ステージに載置され、図2の(f)に図示したように観察断面を透過するように電子ビームが照射走査され、透過電子を検出して観察像が得られる。 A TEM sample processing method will be described as one embodiment of the present invention performed using the above-described apparatus. First, a processing method for cutting a block from a wafer and then preparing a block for TEM observation will be described. (1) A portion including a cross section to be observed is cut out from the wafer in a block shape, and the block is cut into a small block having a convex cross section as shown in FIG. (2) This small block is placed on the sample stage of the FIB apparatus, and a source gas such as W (CO) 6 is first injected by a gas gun onto the surface of the observation section as shown in FIG. 2 (b). While irradiating with a focused ion beam, a deposit film for protection is formed. (3) As shown in FIG. 2 (c), a focused ion beam is irradiated from above the surface of the sample, and the back side of the observation section is dug by sputter etching or gas-assisted etching. Is dug by etching. That is, both sides of the observation cross section are thinned using a FIB apparatus so that the electron beam can pass through. In order to enhance the processing efficiency at this time, the ion beam to be irradiated is subjected to etching with a high energy beam having a high acceleration voltage and a large beam current. The observation surface is damaged by the high-energy etching process, is in a roughened state, and Ga used for the ion beam source is implanted into the sample processing surface as shown in FIG. Since the Ga-impregnated layer has a thickness of about 30 nm, (4) both sides of the thin section are finished by gas-assisted etching using an electron beam as shown in FIG. To complete. However, a low acceleration voltage of several hundred V to about 5 kV is used as an electron beam acceleration voltage in order to suppress heat damage to the sample. This finishing is to polish the surface of the sample which has been roughly cut and to remove the remaining layer after the implantation of Ga. The TEM sample thus finished is placed on a sample stage of a TEM device, and irradiated with an electron beam so as to transmit through an observation section as shown in FIG. To obtain an observation image.

また、ウエハのままエッチング加工して薄片化された試料を取り出す加工法を説明する。図3(a)に示したように所望観察断面部を含む試料表面にCVD原料ガスを欠陥領域に吹き付け、そこへ集束イオンビーム(この場合は電子ビームであってもよい。)を照射して保護用のデポ膜を形成する。続いて図3の(b)に示すように所望観察断面部の後方部分に向けて上方から集束イオンビームを照射してスパッタエッチング又はガス導入装置8からアシストガスを噴射して行なうガスアシストエッチングによって、後方穴を穿設する。また、同様に観察断面部の前方部分に向けて上方から集束イオンビームを照射してスパッタエッチング又はガス導入装置8からアシストガスを噴射して行なうガスアシストエッチングによって、前方穴を穿設する。該前方穴は前記後方穴の加工より先であってもよい。試料小片を断面観察するための斜め前方からの電子ビームや、切り込み加工のための斜め上方からの集束イオンビームが観察断面に照射出来るだけの大きさに加工する必要がある。観察断面部を電子ビームが透過できるように両側の穴空け加工で薄片化加工する際、加工効率を高めるため照射するイオンビームは加速電圧を高圧としビーム電流も大きな、高エネルギービームでエッチング加工する。このため、観察面がダメージを受け粗削り状態となっている上、図3の(c)に示すようにイオンビーム源に用いられたガリウムが試料加工面に注入されている。本発明ではこの段階で試料ステージ4をチルトし、図3の(d)に示すように斜め上方から集束イオンビームを薄片加工された底辺部に切り込みを入れる。このFIB照射は観察断面にダメージを与えるので仕上げ加工の前に実行する。観察断面にはガリウム含浸層がこの場合も約30nmあるので、この切り込み加工の後、その部分を削るべく図3の(e)に示すように薄片部分の後面を電子ビームを用いたガスアシストエッチングで仕上げ加工を施し、粗削り状態となった試料表面を研磨すると共に、Gaが注入されて残留している層を削りとる。また、図3の(f)に図示したように薄片部分の前面も同様に仕上げ加工する。引き続いて薄片部両側に上方より集束イオンビームを照射して切り込み加工を施す。この際の集束イオンビームは薄片試料の真上から照射されるので、観察断面にダメージを与えることは無い。以上の加工工程の後、図6に示した従来技術と同様にマニピュレータ(ガラスプローブ)を操作してこの切片試料を試料本体から切り離し図6のCに示すようにコロジオン膜張付けメッシュ(150メッシュ)等の上に移動させて載置する。図6のDに示すようにメッシュ面上に切り出した切片試料が付着し、TEM観察用の試料が完成する。このようにして仕上げられたTEM試料はTEM装置の試料ステージに載置され、観察断面を透過するように電子ビームが照射走査され、透過電子を検出して観察像が得られる。   In addition, a processing method for extracting a sliced sample by etching the wafer as it is will be described. As shown in FIG. 3A, a CVD source gas is sprayed onto a defect area on a sample surface including a desired observation cross section, and a focused ion beam (in this case, an electron beam may be applied) is irradiated onto the defect area. A protective deposition film is formed. Subsequently, as shown in FIG. 3 (b), a focused ion beam is irradiated from above toward the rear portion of the desired observation cross-section, by sputtering etching or gas-assisted etching performed by injecting an assist gas from the gas introducing device 8. Drill a rear hole. Similarly, a front hole is formed by irradiating a focused ion beam from above toward a front portion of the observation cross-sectional portion by sputter etching or gas assist etching performed by injecting an assist gas from a gas introduction device 8. The front hole may be ahead of the machining of the rear hole. It is necessary to process the sample piece into a size that allows the observation section to be irradiated with an electron beam from obliquely forward for observing the cross section of the sample and a focused ion beam from obliquely above for cutting. When thinning by drilling on both sides so that the electron beam can penetrate the observation cross section, the ion beam to be irradiated is etched with a high energy beam with a high acceleration voltage and a large beam current to increase the processing efficiency. . For this reason, the observation surface is damaged and rough-cut, and the gallium used for the ion beam source is injected into the sample processing surface as shown in FIG. In the present invention, at this stage, the sample stage 4 is tilted, and a focused ion beam is cut from the obliquely upper part of the sliced bottom as shown in FIG. This FIB irradiation is performed before the finishing processing because it damages the observation section. Since the gallium-impregnated layer is about 30 nm in this case also in the observation cross section, after this incision processing, the rear surface of the thin section is subjected to gas-assisted etching using an electron beam as shown in FIG. In addition to polishing the surface of the sample which has been roughly cut, a layer remaining after the implantation of Ga is scraped off. Also, as shown in FIG. 3 (f), the front surface of the thin section is similarly finished. Subsequently, both sides of the thin section are irradiated with a focused ion beam from above to perform cutting. At this time, the focused ion beam is irradiated from directly above the flake sample, so that the observation section is not damaged. After the above processing steps, the section sample is separated from the sample body by operating the manipulator (glass probe) in the same manner as in the prior art shown in FIG. 6, and a collodion film-attached mesh (150 mesh) as shown in FIG. 6C. And place it on top of it. As shown in FIG. 6D, the section sample cut out on the mesh surface adheres, and the sample for TEM observation is completed. The TEM sample thus finished is placed on a sample stage of a TEM device, is irradiated and scanned with an electron beam so as to transmit through an observation section, detects transmitted electrons, and obtains an observation image.

本発明の複合荷電粒子ビームによる試料加工方法を実行する装置の基本構成を示す図である。It is a figure showing the basic composition of the device which performs the sample processing method by the compound charged particle beam of the present invention. ウエハから切り出した小ブロックを基にTEM試料を加工する本発明の方法を説明する図である。FIG. 4 is a diagram illustrating a method of the present invention for processing a TEM sample based on a small block cut out from a wafer. ウエハから直接TEM試料を薄片化加工する本発明の方法を説明する図である。FIG. 3 is a diagram illustrating a method of the present invention for thinning a TEM sample directly from a wafer. ウエハから切り出した小ブロックを基にTEM試料を加工する従来の方法を説明する図である。FIG. 4 is a diagram illustrating a conventional method for processing a TEM sample based on a small block cut out from a wafer. ウエハから直接TEM試料を薄片化加工する従来の方法を説明する図である。FIG. 4 is a diagram illustrating a conventional method for thinning a TEM sample directly from a wafer. ウエハから直接TEM試料を薄片化加工する方法において、メッシュ上に試料切片を移動して固定し、TEM試料とする方法を説明する図である。FIG. 6 is a diagram illustrating a method of thinning a TEM sample directly from a wafer, in which a sample section is moved and fixed on a mesh to obtain a TEM sample.

符号の説明Explanation of reference numerals

1 集束イオンビーム鏡筒 6 真空ポンプ
2 電子ビーム鏡筒 7 二次荷電粒子検出器
3 試料室 8 ガス導入装置
4 試料ステージ
5 試料
DESCRIPTION OF SYMBOLS 1 Focusing ion beam column 6 Vacuum pump 2 Electron beam column 7 Secondary charged particle detector 3 Sample chamber 8 Gas introduction device 4 Sample stage 5 Sample

Claims (9)

試料を集束イオンビームにてエッチングし観察面を露出し、前記露出した観察面にエッチングガスを吹き付けると共に電子ビームを照射して、前記露出した観察面にできた前記集束イオンビームによるダメージ層をエッチング除去することを特徴とする試料作製方法。   The sample is etched with a focused ion beam to expose the observation surface, and the exposed observation surface is blown with an etching gas and irradiated with an electron beam to etch the damaged layer formed on the exposed observation surface by the focused ion beam. A sample preparation method characterized by removing. 試料の所望個所の断面をTEM観察するための薄片試料を作製する方法において、前記試料面上方から集束イオンビームを走査照射し、前記薄片となる領域の両側をエッチング加工し、前記断面を含んだ薄片を作製する第一の工程と、電子ビームを前記第一の工程で作製した前記薄片の両断面を各々走査照射すると同時に、前記試料をエッチングするガスを前記電子ビーム走査照射領域に吹き付け、前記薄片の両断面に残る前記第一の工程中にできたダメージ層をエッチング除去する第二の工程とからなることを特徴とするTEM試料作製方法。   In a method for producing a slice sample for TEM observation of a cross section at a desired portion of the sample, a focused ion beam is scanned and irradiated from above the sample surface, and both sides of a region to be the slice are etched to include the cross section. The first step of producing a thin section, while simultaneously irradiating both cross sections of the thin section produced in the first step with an electron beam, simultaneously blowing the gas for etching the sample to the electron beam scanning irradiation area, A second step of etching and removing a damaged layer formed in the first step remaining on both cross sections of the thin section. 試料の所望個所の断面をSPM観察するための小片試料を作製する方法において、前記試料面上方から集束イオンビームを走査照射し、前記小片となる領域の両側をエッチングし、前記断面を含んだ小片を作製する第一の工程と、電子ビームを前記第一の工程で作製した前記小片の観察断面を走査照射すると同時に、前記試料をエッチングするガスを前記電子ビーム走査照射領域に吹き付け、前記小片の観察断面に残る前記第一の工程中にできたダメージ層をエッチング除去する第二の工程からなることを特徴とするSPM試料作製方法。   In a method of preparing a small sample for SPM observation of a cross section of a desired portion of a sample, a focused ion beam is scanned and irradiated from above the sample surface, both sides of a region to be the small piece are etched, and a small piece including the cross section is etched. A first step of producing, and simultaneously scanning and irradiating the observation cross section of the small piece produced by the electron beam in the first step, simultaneously spraying a gas for etching the sample to the electron beam scanning irradiation area, 2. A method for producing an SPM sample, comprising: a second step of etching and removing a damaged layer formed in the first step remaining in the observation section. 試料内部の所望の観察面をSPM観察するために前記観察面を覆っている上部分を取り除いて観察用試料を作製する方法において、前記観察面を含む領域の上方から集束イオンビームを走査照射し、前記観察面を覆っている上部分をエッチング加工で取り除き前記試料観察面を露出させる第一の工程と、前記第一の工程で露出させた前記試料観察面に電子ビームを走査照射すると同時に前記試料をエッチングするガスを前記電子ビーム走査照射領域に吹き付け、前記試料観察面に残る前記第一の工程中にできたダメージ層をエッチング除去する第二の工程からなることを特徴とするSPM試料作製方法。   In a method of producing an observation sample by removing an upper portion covering the observation surface in order to observe a desired observation surface inside the sample by SPM, a focused ion beam is scanned and irradiated from above an area including the observation surface. A first step of removing the upper portion covering the observation surface by etching to expose the sample observation surface, and simultaneously scanning and irradiating the sample observation surface exposed in the first step with the electron beam; A second step of spraying a gas for etching a sample onto the electron beam scanning irradiation area, and etching and removing a damaged layer formed in the first step remaining on the sample observation surface. Method. 前記電子ビームの加速電圧は、数百Vから5kVであり、ビーム電流は数pAから数nAであることを特徴とする請求項1から4のいずれかに記載の試料作製方法。   The method according to claim 1, wherein an acceleration voltage of the electron beam is several hundred V to 5 kV, and a beam current is several pA to several nA. 前記集束イオンビームによってエッチングする前記第一の工程と、所望個所にエッチングガスを吹き付けると同時に電子ビームを走査照射してエッチングする前記第二の工程を行なう際、被ビーム照射領域に対して所望の入射角度でビームが照射できるように試料ステージのチルト調整を行なうことを特徴とする請求項1から5のいずれかに記載の試料作製方法。   When performing the first step of etching by the focused ion beam and the second step of etching by spraying and irradiating an electron beam at the same time as spraying an etching gas to a desired location, a desired area is irradiated to a beam irradiation area. 6. The method according to claim 1, wherein the tilt of the sample stage is adjusted so that the beam can be irradiated at an incident angle. 前記観察面を含む領域の上方から集束イオンビームを走査照射する際の入射ビームは、観察面に対して斜めに入射することを特徴とする請求項1から4のいずれかに記載の試料作製方法。   5. The sample preparation method according to claim 1, wherein an incident beam when scanning and irradiating the focused ion beam from above a region including the observation surface is obliquely incident on the observation surface. 6. . 集束イオンビーム鏡筒と加工ができる電子ビーム鏡筒の二つの鏡筒を試料室に取り付けると共に、CVD用の原料ガス及び/又はエッチング用アシストガスをビーム照射位置に噴射するガス導入装置とを備え、集束イオンビーム又は電子ビームを使って行なうエッチング又はデポジションを選択的に実行できることを特徴とする複合荷電粒子ビーム装置。   A gas introduction device is provided for mounting two columns, a focused ion beam column and an electron beam column that can be processed, to the sample chamber and injecting a source gas for CVD and / or an assist gas for etching to a beam irradiation position. A composite charged particle beam apparatus capable of selectively performing etching or deposition using a focused ion beam or an electron beam. 集束イオンビームと電子ビームが試料面に対し所望の角度で入射できるように試料ステージにチルト調整機能を備えたことを特徴とする請求項8記載の複合荷電粒子ビーム装置。   9. The composite charged particle beam apparatus according to claim 8, wherein a tilt adjustment function is provided on the sample stage so that the focused ion beam and the electron beam can be incident on the sample surface at a desired angle.
JP2003353123A 2002-11-27 2003-10-14 Sample preparation method and device by composite charge particle beam Withdrawn JP2004191358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003353123A JP2004191358A (en) 2002-11-27 2003-10-14 Sample preparation method and device by composite charge particle beam

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002344139 2002-11-27
JP2003353123A JP2004191358A (en) 2002-11-27 2003-10-14 Sample preparation method and device by composite charge particle beam

Publications (1)

Publication Number Publication Date
JP2004191358A true JP2004191358A (en) 2004-07-08

Family

ID=32774823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003353123A Withdrawn JP2004191358A (en) 2002-11-27 2003-10-14 Sample preparation method and device by composite charge particle beam

Country Status (1)

Country Link
JP (1) JP2004191358A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006100788A (en) 2004-07-14 2006-04-13 Applied Materials Israel Ltd Method and apparatus for sample formation and microanalysis in vacuum chamber
JP2008292351A (en) * 2007-05-25 2008-12-04 Sii Nanotechnology Inc Dopant profile measuring thin piece sample preparing method
JP2009139379A (en) * 2007-12-06 2009-06-25 Fei Co Slice and view using decoration
JP2011215135A (en) * 2010-03-31 2011-10-27 Fei Co Automated slice milling for viewing feature
CN103941043B (en) * 2013-01-18 2015-12-23 中芯国际集成电路制造(上海)有限公司 The preparation method of SCM sample transversal section
CN104344981B (en) * 2013-08-05 2017-05-03 中芯国际集成电路制造(上海)有限公司 Preparation method of TEM sample
CN107058944A (en) * 2015-11-06 2017-08-18 Fei 公司 The improved method of material deposition
JP2018152330A (en) * 2017-02-16 2018-09-27 カール ツァイス マイクロスコーピー ゲーエムベーハーCarl Zeiss Microscopy GmbH Method of analyzing object and charged particle beam device foe executing this method

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0433326A (en) * 1990-05-30 1992-02-04 Hitachi Ltd Charged beam local treatment device
JPH06260129A (en) * 1993-03-02 1994-09-16 Seiko Instr Inc Focusing ion beam device
JPH08329876A (en) * 1995-05-30 1996-12-13 Hitachi Ltd Method and device for preparing observation specimen
JPH0922110A (en) * 1995-07-06 1997-01-21 Hitachi Ltd Treatment of charged beam, its device, method for working photomask and its device
JPH09145567A (en) * 1995-11-22 1997-06-06 Fuji Electric Co Ltd Manufacture for sample for observation by transmission electron microscope
JPH11183339A (en) * 1997-12-18 1999-07-09 Matsushita Electron Corp Sample preparation method for transmission electron microscope
JP2000035390A (en) * 1998-07-16 2000-02-02 Seiko Instruments Inc Method for thin-piece preparation machining
JP2000122267A (en) * 1998-10-14 2000-04-28 Nikon Corp Repair method for stencil type reticle
JP2000267260A (en) * 1999-03-15 2000-09-29 Toshiba Corp Method for correcting mask defect
JP2001141620A (en) * 1999-11-18 2001-05-25 Seiko Instruments Inc Cutting machining method of sample for transmission type electron microscope
JP2001521678A (en) * 1997-04-16 2001-11-06 マイクリオン コーポレーション Pattern thin film repair using focused particle beam equipment
JP2001319954A (en) * 2000-05-08 2001-11-16 Nippon Steel Corp Sample processing method with focused ion beam
JP2002088478A (en) * 1992-11-02 2002-03-27 Toshiba Corp Film deposition method
JP2002214092A (en) * 2001-01-19 2002-07-31 Mitsubishi Electric Corp Method for preparing sample to be inspected and method for inspecting semiconductor device
JP2002228562A (en) * 2001-01-29 2002-08-14 Toshiba Microelectronics Corp Sample preparing method for transmission electron microscope
JP2003156418A (en) * 2001-11-26 2003-05-30 Mitsubishi Electric Corp Method of preparing analytical sample, analytical method, and analytical sample therefor
JP2004177682A (en) * 2002-11-27 2004-06-24 Seiko Instruments Inc Method for repairing photomask by compound charged particle beam and apparatus therefor
JP2004226079A (en) * 2003-01-20 2004-08-12 Seiko Instruments Inc Surface or section processing observation method and its device
JP2004245660A (en) * 2003-02-13 2004-09-02 Seiko Instruments Inc Manufacture of chip sample, and method and system for observing wall surface of the same
JP2004537758A (en) * 2001-07-27 2004-12-16 エフ・イ−・アイ・カンパニー Electron beam processing
JP2005539273A (en) * 2002-09-18 2005-12-22 エフ・イ−・アイ・カンパニー Photolithographic mask modification

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0433326A (en) * 1990-05-30 1992-02-04 Hitachi Ltd Charged beam local treatment device
JP2002088478A (en) * 1992-11-02 2002-03-27 Toshiba Corp Film deposition method
JPH06260129A (en) * 1993-03-02 1994-09-16 Seiko Instr Inc Focusing ion beam device
JPH08329876A (en) * 1995-05-30 1996-12-13 Hitachi Ltd Method and device for preparing observation specimen
JPH0922110A (en) * 1995-07-06 1997-01-21 Hitachi Ltd Treatment of charged beam, its device, method for working photomask and its device
JPH09145567A (en) * 1995-11-22 1997-06-06 Fuji Electric Co Ltd Manufacture for sample for observation by transmission electron microscope
JP2001521678A (en) * 1997-04-16 2001-11-06 マイクリオン コーポレーション Pattern thin film repair using focused particle beam equipment
JPH11183339A (en) * 1997-12-18 1999-07-09 Matsushita Electron Corp Sample preparation method for transmission electron microscope
JP2000035390A (en) * 1998-07-16 2000-02-02 Seiko Instruments Inc Method for thin-piece preparation machining
JP2000122267A (en) * 1998-10-14 2000-04-28 Nikon Corp Repair method for stencil type reticle
JP2000267260A (en) * 1999-03-15 2000-09-29 Toshiba Corp Method for correcting mask defect
JP2001141620A (en) * 1999-11-18 2001-05-25 Seiko Instruments Inc Cutting machining method of sample for transmission type electron microscope
JP2001319954A (en) * 2000-05-08 2001-11-16 Nippon Steel Corp Sample processing method with focused ion beam
JP2002214092A (en) * 2001-01-19 2002-07-31 Mitsubishi Electric Corp Method for preparing sample to be inspected and method for inspecting semiconductor device
JP2002228562A (en) * 2001-01-29 2002-08-14 Toshiba Microelectronics Corp Sample preparing method for transmission electron microscope
JP2004537758A (en) * 2001-07-27 2004-12-16 エフ・イ−・アイ・カンパニー Electron beam processing
JP2003156418A (en) * 2001-11-26 2003-05-30 Mitsubishi Electric Corp Method of preparing analytical sample, analytical method, and analytical sample therefor
JP2005539273A (en) * 2002-09-18 2005-12-22 エフ・イ−・アイ・カンパニー Photolithographic mask modification
JP2004177682A (en) * 2002-11-27 2004-06-24 Seiko Instruments Inc Method for repairing photomask by compound charged particle beam and apparatus therefor
JP2004226079A (en) * 2003-01-20 2004-08-12 Seiko Instruments Inc Surface or section processing observation method and its device
JP2004245660A (en) * 2003-02-13 2004-09-02 Seiko Instruments Inc Manufacture of chip sample, and method and system for observing wall surface of the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006100788A (en) 2004-07-14 2006-04-13 Applied Materials Israel Ltd Method and apparatus for sample formation and microanalysis in vacuum chamber
JP2008292351A (en) * 2007-05-25 2008-12-04 Sii Nanotechnology Inc Dopant profile measuring thin piece sample preparing method
JP2009139379A (en) * 2007-12-06 2009-06-25 Fei Co Slice and view using decoration
JP2014167474A (en) * 2007-12-06 2014-09-11 Fei Co Slice and view with decoration
JP2011215135A (en) * 2010-03-31 2011-10-27 Fei Co Automated slice milling for viewing feature
US9412559B2 (en) 2010-03-31 2016-08-09 Fei Company Automated slice milling for viewing a feature
CN103941043B (en) * 2013-01-18 2015-12-23 中芯国际集成电路制造(上海)有限公司 The preparation method of SCM sample transversal section
CN104344981B (en) * 2013-08-05 2017-05-03 中芯国际集成电路制造(上海)有限公司 Preparation method of TEM sample
CN107058944A (en) * 2015-11-06 2017-08-18 Fei 公司 The improved method of material deposition
CN107058944B (en) * 2015-11-06 2020-11-10 Fei 公司 Improved method for material deposition
US11069523B2 (en) 2015-11-06 2021-07-20 Fei Company Method of material deposition
JP2018152330A (en) * 2017-02-16 2018-09-27 カール ツァイス マイクロスコーピー ゲーエムベーハーCarl Zeiss Microscopy GmbH Method of analyzing object and charged particle beam device foe executing this method

Similar Documents

Publication Publication Date Title
JP5591550B2 (en) High selectivity, low damage electron beam delineation etching
JP5925182B2 (en) Sample preparation method for imaging
Ishitani et al. Improvements in performance of focused ion beam cross-sectioning: aspects of ion-sample interaction
JP6366216B2 (en) Method for making thin samples for TEM imaging
JP3711018B2 (en) TEM sample thinning method
KR102273042B1 (en) Face-on, gas-assisted etching for plan-view lamellae preparation
JP6629596B2 (en) Ion implantation to change etching rate
JP2014130145A5 (en)
US20010053605A1 (en) Apparatus and method for reducing differential sputter rates
US20060017016A1 (en) Method for the removal of a microscopic sample from a substrate
JP2010038921A (en) Method of machining work piece with focused ion beam
JP2009198412A (en) Preparation method of sample for transmission electron microscope, and sample for transmission electron microscope
JP2016008971A (en) Method and system of creating symmetrical fib deposition
JP2004087174A (en) Ion beam device, and working method of the same
US7317188B2 (en) TEM sample preparation from a circuit layer structure
JP2004191358A (en) Sample preparation method and device by composite charge particle beam
US7180061B2 (en) Method for electron beam-initiated coating for application of transmission electron microscopy
US6251782B1 (en) Specimen preparation by focused ion beam technique
JP2004095339A (en) Ion beam device and ion beam processing method
Munroe et al. The structure of damage layers in transmission electron microscope specimens in elemental and compound semiconductors after FIB fabrication
EP1612836B1 (en) Method for the removal of a microscopic sample from a substrate
Engelmann et al. TEM sample preparation using focused ion beam-Capabilities and limits
JP2004069628A (en) Method for producing in-line test sample
JP2012057945A (en) Method for creating sample for electron microscope observation
US20050211896A1 (en) Pt coating initiated by indirect electron beam for resist contact hole metrology

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20081121