JPH11183339A - Sample preparation method for transmission electron microscope - Google Patents

Sample preparation method for transmission electron microscope

Info

Publication number
JPH11183339A
JPH11183339A JP34896697A JP34896697A JPH11183339A JP H11183339 A JPH11183339 A JP H11183339A JP 34896697 A JP34896697 A JP 34896697A JP 34896697 A JP34896697 A JP 34896697A JP H11183339 A JPH11183339 A JP H11183339A
Authority
JP
Japan
Prior art keywords
sample
electron microscope
transmission electron
specific portion
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34896697A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamashita
洋 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP34896697A priority Critical patent/JPH11183339A/en
Publication of JPH11183339A publication Critical patent/JPH11183339A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily prepare a sample for a transmission electron microscope at a specific position. SOLUTION: A sample 1 is sliced by dicing saw machining. An electron beam is radiated near a specific observation position of the sample 1, and a reaction product 3 is deposited. The sample 1 is covered with a plasma polymerization film 4. A focused ion beam is scanned on the sample 1, and the specific observation position is spatter-etched to the thickness of 0.1 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特定箇所を観察す
るための透過電子顕微鏡の試料作製方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for preparing a sample of a transmission electron microscope for observing a specific portion.

【0002】[0002]

【従来の技術】一般に、特定箇所の透過電子顕微鏡(T
EM)の試料を作製するには、多大な労力と時間を必要
としてきた。そこで、近年、集束イオンビーム装置(F
IB)を用いた断面試料の作製方法が注目を集めてお
り、半導体デバイスの分野で一般的な方法となりつつあ
る。図7に従来のFIBを用いた場合のTEM観察方法
の工程を示す。図7(a)において、1は試料、2は観
察特定箇所である。
2. Description of the Related Art Generally, a transmission electron microscope (T
A great deal of labor and time has been required to prepare a sample of (EM). Therefore, in recent years, a focused ion beam apparatus (F
A method for manufacturing a cross-sectional sample using IB) has attracted attention and is becoming a general method in the field of semiconductor devices. FIG. 7 shows steps of a TEM observation method using a conventional FIB. In FIG. 7A, reference numeral 1 denotes a sample, and 2 denotes an observation specific portion.

【0003】図7(b)に示すように、機械研磨または
ダイシングソーにより、試料を薄片化する。次に図7
(c)に示すように、FIBでGaイオンビームを試料
上に走査し、観察箇所の厚さが0.1μmになるまで、
観察箇所の両側を矩形加工する。次に図7(d)に示す
ように、仕上がり面を水平にし、電子ビームが透過する
位置にし、透過電子顕微鏡観察をおこなう。
As shown in FIG. 7B, a sample is sliced by mechanical polishing or a dicing saw. Next, FIG.
As shown in (c), the Ga ion beam is scanned over the sample by the FIB, and the thickness of the observation portion is reduced to 0.1 μm.
Rectangular processing is performed on both sides of the observation point. Next, as shown in FIG. 7 (d), the finished surface is made horizontal, the electron beam is transmitted, and observation with a transmission electron microscope is performed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、たとえ
ば半導体デバイスの微細化、高集積化に伴い、精度よく
特定箇所を薄片化することが困難になってきている。さ
らに、FIBでは加工領域の設定や試料の形状変化を連
続的に観察するため、二次電子像観察が可能であるが、
原子半径の大きいイオンで試料を走査するため、得られ
る二次電子像の分解能があまり高くなく、0.1μm以
下の微小領域を観察することが困難である。
However, for example, with the miniaturization and high integration of semiconductor devices, it has become difficult to accurately slice a specific portion. Furthermore, in FIB, secondary electron image observation is possible because the setting of the processing area and the change in the shape of the sample are continuously observed.
Since the sample is scanned with ions having a large atomic radius, the resolution of the obtained secondary electron image is not so high, and it is difficult to observe a small area of 0.1 μm or less.

【0005】本発明は、このような従来の課題を解決す
るもので、微小領域の特定箇所の透過電子顕微鏡の試料
作製方法を提供することを目的とする。
An object of the present invention is to solve such a conventional problem, and an object of the present invention is to provide a method for preparing a sample of a transmission electron microscope at a specific portion of a minute area.

【0006】[0006]

【課題を解決するための手段】この目的を達成するため
に、請求項1の発明の透過電子顕微鏡の試料作製方法
は、透過電子顕微鏡の観察特定箇所を有する試料をダイ
シングソー加工で薄片化する工程と、試料の観察特定箇
所近傍に電子ビームを照射し、反応生成物を堆積する工
程と、試料にプラズマ重合膜を被覆する工程と、試料に
集束イオンビームを走査し、観察特定箇所を厚さ0.1
μm厚までスパッタエッチングする工程とを有する。
In order to achieve this object, a method for preparing a sample of a transmission electron microscope according to the first aspect of the present invention is to slice a sample having a specific portion observed by a transmission electron microscope by dicing saw processing. A step of irradiating the sample with an electron beam in the vicinity of the observation specific portion to deposit a reaction product, a step of coating the sample with a plasma polymerized film, and a process of scanning the sample with a focused ion beam to make the observation specific portion thick. 0.1
sputter etching to a thickness of μm.

【0007】また、請求項2の発明の透過電子顕微鏡の
試料作製方法は透過電子顕微鏡の観察特定箇所を有する
試料をレーザーマーキングする工程と、試料をダイシン
グソー加工で薄片化する工程と、試料の観察特定箇所近
傍に電子ビームを照射し、反応生成物を堆積する工程
と、試料にプラズマ重合膜を被覆する工程と、試料に集
束イオンビームを走査し、観察特定箇所を厚さ0.1μ
m厚までスパッタエッチングする工程とを有する。
The method for preparing a sample of a transmission electron microscope according to the second aspect of the present invention includes a step of laser marking a sample having a specific portion observed by the transmission electron microscope, a step of thinning the sample by dicing saw processing, A step of irradiating an electron beam in the vicinity of the observation specific area to deposit a reaction product, a step of coating the sample with a plasma polymerized film, and a step of scanning the sample with a focused ion beam so that the observation specific area has a thickness of 0.1 μm.
sputter etching to a thickness of m.

【0008】また、請求項3の発明の透過電子顕微鏡の
試料作製方法は透過電子顕微鏡の観察特定箇所を有する
試料をダイシングソー加工で薄片化する工程と、試料に
導電性膜を形成する工程と、試料の観察特定箇所近傍に
電子ビームを照射し、反応生成物を堆積する工程と、試
料にプラズマ重合膜を被覆する工程と、試料に集束イオ
ンビームを走査し、観察特定箇所を厚さ0.1μm厚ま
でスパッタエッチングする工程とを有する。
According to a third aspect of the present invention, there is provided a method for preparing a sample of a transmission electron microscope, comprising the steps of: dicing a sample having a specific portion observed by the transmission electron microscope by dicing saw processing; and forming a conductive film on the sample. A step of irradiating the sample with an electron beam in the vicinity of a specific observation position to deposit a reaction product, a step of coating the sample with a plasma-polymerized film, and a step of scanning the sample with a focused ion beam to reduce the thickness of the specific observation position to zero. . Sputter etching to a thickness of 1 μm.

【0009】また、請求項4の発明の透過電子顕微鏡の
試料作製方法は透過電子顕微鏡の観察特定箇所を有する
試料をレーザーマーキングする工程と、前記試料をダイ
シングソー加工で薄片化する工程と、試料に導電性膜を
形成する工程と、試料の観察特定箇所近傍に電子ビーム
を照射し、反応生成物を堆積する工程と、試料にプラズ
マ重合膜を被覆する工程と、試料に集束イオンビームを
走査し、観察特定箇所を厚さ0.1μm厚までスパッタ
エッチングする工程とを有する。
According to a fourth aspect of the invention, there is provided a method for preparing a sample of a transmission electron microscope, comprising the steps of: laser marking a sample having a specific portion observed by a transmission electron microscope; thinning the sample by dicing saw processing; Forming a conductive film on the sample, irradiating the sample with an electron beam in the vicinity of a specific observation area, depositing a reaction product, coating the sample with a plasma polymerized film, and scanning the sample with a focused ion beam. And sputter-etching the observation specific portion to a thickness of 0.1 μm.

【0010】また、請求項5の発明の透過電子顕微鏡の
試料作製方法は透過電子顕微鏡の観察特定箇所を有する
試料に導電性膜を形成する工程と、試料をダイシングソ
ー加工で薄片化する工程と、試料の観察特定箇所近傍に
電子ビームを照射し、反応生成物を堆積する工程と、試
料にプラズマ重合膜を被覆する工程と、試料を集束イオ
ンビームで走査し、観察特定箇所を厚さ0.1μm厚ま
でスパッタエッチングする工程とを有する。
In a fifth aspect of the present invention, there is provided a method for preparing a sample of a transmission electron microscope, comprising the steps of: forming a conductive film on a sample having a specific portion observed by the transmission electron microscope; and thinning the sample by dicing saw processing. A step of irradiating the sample with an electron beam in the vicinity of a specific observation position to deposit a reaction product, a step of coating the sample with a plasma-polymerized film, and scanning the sample with a focused ion beam so that the specific observation position has a thickness of 0%. . Sputter etching to a thickness of 1 μm.

【0011】また、請求項6の発明の透過電子顕微鏡の
試料作製方法は透過電子顕微鏡の観察特定箇所を有する
試料に導電性膜を形成する工程と、試料をレーザーマー
キングする工程と、前記試料をダイシングソー加工で薄
片化する工程と、試料の観察特定箇所近傍に電子ビーム
を照射し、反応生成物を堆積する工程と、試料にプラズ
マ重合膜を被覆する工程と、試料に集束イオンビームを
走査し、観察特定箇所を厚さ0.1μm厚までスパッタ
エッチングする工程とを有する。
According to a sixth aspect of the present invention, there is provided a method for preparing a sample for a transmission electron microscope, comprising the steps of: forming a conductive film on a sample having a specific portion observed by the transmission electron microscope; laser marking the sample; A process of thinning by dicing saw processing, a process of irradiating an electron beam to the vicinity of a specific point of observation of the sample to deposit a reaction product, a process of coating the sample with a plasma polymerized film, and scanning the sample with a focused ion beam And sputter-etching the observation specific portion to a thickness of 0.1 μm.

【0012】これら構成によって、本発明の透過電子顕
微鏡の試料作製方法では、微小領域の特定箇所の透過電
子顕微鏡の試料作製を簡単にできる。これは、プラズマ
重合膜を被覆することにより、電子ビームで形成した反
応生成物の形状を拡大化し、FIBで容易に識別できる
ことにより実現する。
With these configurations, the method for preparing a sample for a transmission electron microscope of the present invention can simplify the preparation of a sample for a transmission electron microscope at a specific portion of a minute area. This is realized by enlarging the shape of the reaction product formed by the electron beam by coating the plasma polymerized film and easily identifying it by FIB.

【0013】[0013]

【発明の実施の形態】以下本発明の第1の実施の形態の
透過電子顕微鏡の試料作製方法について、図面を参照し
ながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method for preparing a sample for a transmission electron microscope according to a first embodiment of the present invention will be described with reference to the drawings.

【0014】図1(a)〜(e)は本発明の透過電子顕
微鏡の試料作製方法の工程平面図及び工程断面図であ
る。図において、1は試料、2は観察特定箇所である。
図1(a)に示した試料1をダイシングソーを用いて、
図1(b)に示すように2.0mm×0.3mm×0.
6mmの短冊状に加工する。
FIGS. 1 (a) to 1 (e) are a plan view and a sectional view of a process of a method for preparing a sample of a transmission electron microscope according to the present invention. In the figure, 1 is a sample, and 2 is an observation specific portion.
Using a dicing saw, the sample 1 shown in FIG.
As shown in FIG. 1B, 2.0 mm × 0.3 mm × 0.
Process into a 6 mm strip.

【0015】次に、走査顕微鏡(SEM)内で、たとえ
ば加速電圧20kV、ビーム電流10pA、ビーム径
0.1μmの電子ビームを試料1の観察特定箇所2近傍
に30秒間照射して、図1(c)に示すように、マーキ
ングとして反応生成物3を堆積させる。このとき、直径
約0.1μmの柱状のカーボン膜が形成される。
Next, in the scanning microscope (SEM), for example, an electron beam having an acceleration voltage of 20 kV, a beam current of 10 pA, and a beam diameter of 0.1 μm is irradiated to the vicinity of the observation specific portion 2 of the sample 1 for 30 seconds. As shown in c), the reaction product 3 is deposited as a marking. At this time, a columnar carbon film having a diameter of about 0.1 μm is formed.

【0016】次に、プラズマ重合膜作成装置でメタンガ
ス、エチレンガスを用いて、図1(d)に示すように、
プラズマ重合膜4を被覆させる。このときのプラズマ重
合膜の形成条件はガス圧力10.7Pa、ガス混合比
3:8(メタン:エチレン)、直流電圧1.8kV、放
電電流6mAである。プラズマ重合膜として上記のガス
ではアモルファスカーボン膜が形成される。プラズマ重
合膜4を被覆することにより、反応生成物3は堆積時に
比べて形状が拡大化される。たとえば、プラズマ重合膜
4を1.0μm被覆した場合、直径0.5μmの球状に
拡大される。段差およびマーキング形状の拡大により、
FIBで容易にマーキング部分が識別できる。
Next, as shown in FIG. 1D, methane gas and ethylene gas are used in a plasma polymerization film forming apparatus.
The plasma polymerization film 4 is coated. The conditions for forming the plasma polymerized film at this time were a gas pressure of 10.7 Pa, a gas mixture ratio of 3: 8 (methane: ethylene), a DC voltage of 1.8 kV, and a discharge current of 6 mA. The above gas forms an amorphous carbon film as a plasma polymerized film. By coating the plasma polymerized film 4, the shape of the reaction product 3 is enlarged as compared with the time of deposition. For example, when the plasma polymerized film 4 is covered with 1.0 μm, it is expanded into a 0.5 μm diameter sphere. By increasing the level difference and marking shape,
The marking part can be easily identified by the FIB.

【0017】次にFIB内で、たとえば加速電圧30k
V、10nA〜15pAの範囲のイオンビーム電流のG
a集束イオンビームを用いて、試料上を走査し、図1
(e)に示すように、観察特定箇所2の領域が厚さ0.
1μmになるまで、観察特定箇所2の両側をスパッタエ
ッチングにより矩形加工する。
Next, in the FIB, for example, an acceleration voltage of 30 k
V, G of the ion beam current in the range of 10 nA to 15 pA
a Scanning over the sample using a focused ion beam
As shown in (e), the region of the observation specific portion 2 has a thickness of 0.
Rectangular processing is performed on both sides of the observation specific portion 2 by sputter etching until the thickness becomes 1 μm.

【0018】一般に、FIBの二次電子像分解能はイオ
ンビーム電流量、イオンビーム径に依存する。更にスパ
ッタエッチング速度もイオンビーム電流量に依存し、微
小部分を観察、加工することが困難である。電子ビーム
で反応生成物を形成し、プラズマ重合膜を被覆すること
により、反応生成物の位置を拡大投影することができ
る。このようにして、位置精度の高い加工を可能にする
ことができる。
In general, the resolution of the secondary electron image of the FIB depends on the ion beam current and the ion beam diameter. Further, the sputter etching rate also depends on the amount of ion beam current, and it is difficult to observe and process a minute portion. By forming a reaction product with an electron beam and coating the plasma polymerized film, the position of the reaction product can be enlarged and projected. In this manner, processing with high positional accuracy can be performed.

【0019】以下、本発明の第2の実施の形態の透過電
子顕微鏡の試料作製方法について図面を参照しながら説
明する。
Hereinafter, a method for fabricating a sample of a transmission electron microscope according to a second embodiment of the present invention will be described with reference to the drawings.

【0020】図2(a)〜(e)は本発明の透過電子顕
微鏡の試料作製方法の工程平面図及び工程断面図であ
る。図において、1は試料、2は観察特定箇所である。
図2(a)に示すように試料1をレーザーマーキング装
置を用いて観察特定箇所2近傍に約5μmの矩形のマー
クを形成する。レーザーとしてYAGまたはエキシマレ
ーザーを用いる。
FIGS. 2 (a) to 2 (e) are a plan view and a sectional view of a process of a method for preparing a sample of a transmission electron microscope according to the present invention. In the figure, 1 is a sample, and 2 is an observation specific portion.
As shown in FIG. 2A, a rectangular mark of about 5 μm is formed on the sample 1 in the vicinity of the specific observation point 2 using a laser marking device. A YAG or excimer laser is used as a laser.

【0021】次に試料1をダイシングソーを用いて、図
2(b)に示すように2.0mm×0.3mm×0.6
mmの短冊状に加工する。
Next, as shown in FIG. 2 (b), the sample 1 was 2.0 mm × 0.3 mm × 0.6 mm using a dicing saw.
Process into strips of mm.

【0022】次に、走査顕微鏡内で、たとえば加速電圧
20kV、ビーム電流10pA、ビーム径0.1μmの
電子ビームを試料1の観察特定箇所2近傍に30秒間照
射して、図2(c)に示すように、マーキングとして反
応生成物3を堆積させる。このとき、直径約0.1μm
の柱状のカーボン膜が形成される。
Next, in the scanning microscope, an electron beam having an acceleration voltage of 20 kV, a beam current of 10 pA and a beam diameter of 0.1 μm, for example, is irradiated to the vicinity of the observation specific portion 2 of the sample 1 for 30 seconds, and FIG. As shown, a reaction product 3 is deposited as a marking. At this time, the diameter is about 0.1 μm
Is formed.

【0023】次に、プラズマ重合膜作成装置でメタンガ
ス、エチレンガスを用いて、図2(d)に示すように、
プラズマ重合膜4を被覆させる。
Next, as shown in FIG. 2D, methane gas and ethylene gas are used in a plasma polymerization film forming apparatus.
The plasma polymerization film 4 is coated.

【0024】次にFIB内で、たとえば加速電圧30k
V、10nA〜15pAの範囲のイオンビーム電流のG
a集束イオンビームを用いて、試料上を走査し、図2
(e)に示すように、観察特定箇所2の領域が厚さ0.
1μmになるまで、観察特定箇所2の両側をスパッタエ
ッチングにより矩形加工する。
Next, in FIB, for example, acceleration voltage 30 k
V, G of the ion beam current in the range of 10 nA to 15 pA
a Using a focused ion beam, scan over the sample
As shown in (e), the region of the observation specific portion 2 has a thickness of 0.
Rectangular processing is performed on both sides of the observation specific portion 2 by sputter etching until the thickness becomes 1 μm.

【0025】以下、本発明の第3の実施の形態の透過電
子顕微鏡の試料作製方法について図面を参照しながら説
明する。
Hereinafter, a method for fabricating a sample of a transmission electron microscope according to a third embodiment of the present invention will be described with reference to the drawings.

【0026】図3(a)〜(f)は本発明の透過電子顕
微鏡の試料作製方法の工程平面図及び工程断面図であ
る。図において、1は試料、2は観察特定箇所である。
図3(a)に示した試料1をダイシングソーを用いて、
図3(b)に示すように2.0mm×0.3mm×0.
6mmの短冊状に加工する。
FIGS. 3A to 3F are a process plan view and a process sectional view of a method for preparing a sample for a transmission electron microscope according to the present invention. In the figure, 1 is a sample, and 2 is an observation specific portion.
Using a dicing saw, the sample 1 shown in FIG.
As shown in FIG. 3B, 2.0 mm × 0.3 mm × 0.
Process into a 6 mm strip.

【0027】次に、プラズマ重合膜作成装置で酸化オス
ミウムを用いて、図3(c)に示すように、導電性膜6
を被覆させる。このときの導電性膜6の形成条件はガス
圧力8Pa、直流電圧1.3kV、放電電流1.2mA
である。導電性膜6として上記のガスではオスミウム膜
が形成される。導電性膜を被覆することにより、帯電し
やすい試料においても、反応生成物を形成することがで
きる。
Next, as shown in FIG. 3 (c), a conductive film 6 is formed using osmium oxide in a plasma polymerized film forming apparatus.
Is coated. At this time, the conductive film 6 was formed under the conditions of a gas pressure of 8 Pa, a DC voltage of 1.3 kV, and a discharge current of 1.2 mA.
It is. An osmium film is formed as the conductive film 6 with the above gas. By coating the conductive film, a reaction product can be formed even on a sample which is easily charged.

【0028】次に、走査電子顕微鏡内で、たとえば加速
電圧20kV、ビーム電流10pA、ビーム径0.1μ
mの電子ビームを試料1の観察特定箇所2近傍に30秒
間照射して、図3(d)に示すように、マーキングとし
て反応生成物3を堆積させる。このとき、直径約0.1
μmの柱状のカーボン膜が形成される。
Next, in a scanning electron microscope, for example, an acceleration voltage of 20 kV, a beam current of 10 pA, and a beam diameter of 0.1 μm
The electron beam of m is irradiated to the vicinity of the observation specific portion 2 of the sample 1 for 30 seconds, and the reaction product 3 is deposited as a marking as shown in FIG. At this time, the diameter is about 0.1
A columnar carbon film of μm is formed.

【0029】次に、プラズマ重合膜作成装置でメタンガ
ス、エチレンガスを用いて、図3(e)に示すように、
プラズマ重合膜4を被覆させる。
Next, as shown in FIG. 3E, methane gas and ethylene gas are used in a plasma polymerized film forming apparatus.
The plasma polymerization film 4 is coated.

【0030】次にFIB内で、たとえば加速電圧30k
V、10nA〜15pAの範囲のイオンビーム電流のG
a集束イオンビームを用いて、試料上を走査し、図3
(f)に示すように、観察特定箇所2の領域が厚さ0.
1μmになるまで、観察特定箇所2の両側をスパッタエ
ッチングにより矩形加工する。
Next, in FIB, for example, acceleration voltage 30 k
V, G of the ion beam current in the range of 10 nA to 15 pA
a Using a focused ion beam, scan over the sample
As shown in (f), the region of the observation specific portion 2 has a thickness of 0.
Rectangular processing is performed on both sides of the observation specific portion 2 by sputter etching until the thickness becomes 1 μm.

【0031】以下、本発明の第4の実施の形態の透過電
子顕微鏡の試料作製方法について図面を参照しながら説
明する。
Hereinafter, a method for fabricating a sample of a transmission electron microscope according to a fourth embodiment of the present invention will be described with reference to the drawings.

【0032】図4(a)〜(f)は本発明の透過電子顕
微鏡の試料作製方法の工程平面図及び工程断面図であ
る。図において、1は試料、2は観察特定箇所である。
図4(a)に示すように試料1をレーザーマーキング装
置を用いて観察特定箇所2近傍に約5μmの矩形のマー
ク5を形成する。次に試料1をダイシングソーを用い
て、図4(b)に示すように2.0mm×0.3mm×
0.6mmの短冊状に加工する。
FIGS. 4A to 4F are a process plan view and a process cross-sectional view of a method for manufacturing a sample for a transmission electron microscope according to the present invention. In the figure, 1 is a sample, and 2 is an observation specific portion.
As shown in FIG. 4A, a rectangular mark 5 of about 5 μm is formed in the vicinity of the observation specific portion 2 of the sample 1 using a laser marking device. Next, as shown in FIG. 4B, the sample 1 was 2.0 mm × 0.3 mm ×
Process into a strip of 0.6 mm.

【0033】次に、プラズマ重合膜作成装置で酸化オス
ミウムを用いて、図4(c)に示すように、導電性膜6
を被覆させる。このときの導電性膜6の形成条件はガス
圧力8Pa、直流電圧1.3kV、放電電流1.2mA
である。導電性膜6として上記のガスではオスミウム膜
が形成される。
Next, as shown in FIG. 4 (c), a conductive film 6 was formed using osmium oxide in a plasma polymerized film forming apparatus.
Is coated. At this time, the conductive film 6 was formed under the conditions of a gas pressure of 8 Pa, a DC voltage of 1.3 kV, and a discharge current of 1.2 mA.
It is. An osmium film is formed as the conductive film 6 with the above gas.

【0034】次に、走査電子顕微鏡内で、たとえば加速
電圧20kV、ビーム電流10pA、ビーム径0.1μ
mの電子ビームを試料1の観察特定箇所2近傍に30秒
間照射して、図4(d)に示すように、マーキングとし
て反応生成物3を堆積させる。このとき、直径約0.1
μmの柱状のカーボン膜が形成される。
Next, in a scanning electron microscope, for example, an acceleration voltage of 20 kV, a beam current of 10 pA, and a beam diameter of 0.1 μm
The electron beam of m is irradiated to the vicinity of the observation specific portion 2 of the sample 1 for 30 seconds to deposit the reaction product 3 as a marking as shown in FIG. At this time, the diameter is about 0.1
A columnar carbon film of μm is formed.

【0035】次に、プラズマ重合膜作成装置でメタンガ
ス、エチレンガスを用いて、図4(e)に示すように、
プラズマ重合膜4を被覆させる。
Next, using a methane gas and an ethylene gas in a plasma polymerization film forming apparatus, as shown in FIG.
The plasma polymerization film 4 is coated.

【0036】次にFIB内で、たとえば加速電圧30k
V、10nA〜15pAの範囲のイオンビーム電流のG
a集束イオンビームを用いて、試料上を走査し、図4
(f)に示すように、観察特定箇所2の領域が厚さ0.
1μmになるまで、観察特定箇所2の両側をスパッタエ
ッチングにより矩形加工する。
Next, in FIB, for example, acceleration voltage 30 k
V, G of the ion beam current in the range of 10 nA to 15 pA
a Scanning over the sample using the focused ion beam
As shown in (f), the region of the observation specific portion 2 has a thickness of 0.
Rectangular processing is performed on both sides of the observation specific portion 2 by sputter etching until the thickness becomes 1 μm.

【0037】以下、本発明の第5の実施の形態の透過電
子顕微鏡の試料作製方法について図面を参照しながら説
明する。
Hereinafter, a method for preparing a sample for a transmission electron microscope according to the fifth embodiment of the present invention will be described with reference to the drawings.

【0038】図5(a)〜(f)は本発明の透過電子顕
微鏡の試料作製方法の工程平面図及び工程断面図であ
る。図において、1は試料、2は観察特定箇所である。
プラズマ重合膜作成装置で酸化オスミウムを用いて、図
5(b)に示すように、導電性膜6を被覆させる。導電
性膜6として上記のガスではオスミウム膜が形成され
る。
FIGS. 5A to 5F are a process plan view and a process cross-sectional view of a method for preparing a sample for a transmission electron microscope according to the present invention. In the figure, 1 is a sample, and 2 is an observation specific portion.
As shown in FIG. 5B, the conductive film 6 is coated with osmium oxide in the plasma polymerization film forming apparatus. An osmium film is formed as the conductive film 6 with the above gas.

【0039】次に、試料1をダイシングソーを用いて、
図5(c)に示すように2.0mm×0.3mm×0.
6mmの短冊状に加工する。
Next, the sample 1 was prepared using a dicing saw.
As shown in FIG. 5C, 2.0 mm × 0.3 mm × 0.
Process into a 6 mm strip.

【0040】次に、走査電子顕微鏡内で、たとえば加速
電圧20kV、ビーム電流10pA、ビーム径0.1μ
mの電子ビームを試料1の観察特定箇所2近傍に30秒
間照射して、図5(d)に示すように、マーキングとし
て反応生成物3を堆積させる。このとき、直径約0.1
μmの柱状のカーボン膜が形成される。
Next, in a scanning electron microscope, for example, an acceleration voltage of 20 kV, a beam current of 10 pA, and a beam diameter of 0.1 μm
The electron beam of m is irradiated to the vicinity of the observation specific portion 2 of the sample 1 for 30 seconds to deposit the reaction product 3 as a marking as shown in FIG. At this time, the diameter is about 0.1
A columnar carbon film of μm is formed.

【0041】次に、プラズマ重合膜作成装置でメタンガ
ス、エチレンガスを用いて、図5(e)に示すように、
プラズマ重合膜4を被覆させる。
Next, using a methane gas and an ethylene gas in a plasma polymerization film forming apparatus, as shown in FIG.
The plasma polymerization film 4 is coated.

【0042】次にFIB内で、たとえば加速電圧30k
V、10nA〜15pAの範囲のイオンビーム電流のG
a集束イオンビームを用いて、試料上を走査し、図5
(f)に示すように、観察特定箇所2の領域が厚さ0.
1μmになるまで、観察特定箇所2の両側をスパッタエ
ッチングにより矩形加工する。
Next, in FIB, for example, acceleration voltage 30 k
V, G of the ion beam current in the range of 10 nA to 15 pA
a Using a focused ion beam, the sample was scanned and
As shown in (f), the region of the observation specific portion 2 has a thickness of 0.
Rectangular processing is performed on both sides of the observation specific portion 2 by sputter etching until the thickness becomes 1 μm.

【0043】以下、本発明の第6の実施の形態の透過電
子顕微鏡の試料作製方法について図面を参照しながら説
明する。
Hereinafter, a method for preparing a sample for a transmission electron microscope according to the sixth embodiment of the present invention will be described with reference to the drawings.

【0044】図6(a)〜(f)は本発明の透過電子顕
微鏡の試料作製方法の工程平面図及び工程断面図であ
る。図において、1は試料、2は観察特定箇所である。
プラズマ重合膜作成装置で酸化オスミウムを用いて、図
6(a)に示すように、導電性膜6を被覆させる。この
ときの導電性膜6の形成条件はガス圧力8Pa、直流電
圧1.3kV、放電電流1.2mAである。導電性膜6
として上記のガスではオスミウム膜が形成される。
FIGS. 6A to 6F are a process plan view and a process cross-sectional view of a method for manufacturing a sample for a transmission electron microscope according to the present invention. In the figure, 1 is a sample, and 2 is an observation specific portion.
As shown in FIG. 6A, the conductive film 6 is coated with osmium oxide in the plasma polymerized film forming apparatus. The conditions for forming the conductive film 6 at this time are a gas pressure of 8 Pa, a DC voltage of 1.3 kV, and a discharge current of 1.2 mA. Conductive film 6
With the above gas, an osmium film is formed.

【0045】次に、図6(b)に示すように試料1をレ
ーザーマーキング装置を用いて観察特定箇所2近傍に約
5μmの矩形のマーク5を形成する。
Next, as shown in FIG. 6B, a rectangular mark 5 of about 5 μm is formed on the sample 1 in the vicinity of the specific observation point 2 using a laser marking device.

【0046】次に試料1をダイシングソーを用いて、図
6(c)に示すように2.0mm×0.3mm×0.6
mmの短冊状に加工する。
Next, as shown in FIG. 6C, the sample 1 was 2.0 mm × 0.3 mm × 0.6
Process into strips of mm.

【0047】次に、走査電子顕微鏡内で、たとえば加速
電圧20kV、ビーム電流10pA、ビーム径0.1μ
mの電子ビームを試料1の観察特定箇所2近傍に30秒
間照射して、図6(d)に示すように、マーキングとし
て反応生成物3を堆積させる。このとき、直径約0.1
μmの柱状のカーボン膜が形成される。
Next, in a scanning electron microscope, for example, an acceleration voltage of 20 kV, a beam current of 10 pA, and a beam diameter of 0.1 μm
The electron beam of m is irradiated to the vicinity of the observation specific portion 2 of the sample 1 for 30 seconds to deposit the reaction product 3 as a marking as shown in FIG. At this time, the diameter is about 0.1
A columnar carbon film of μm is formed.

【0048】次に、プラズマ重合膜作成装置でメタンガ
ス、エチレンガスを用いて、図6(e)に示すように、
プラズマ重合膜4を被覆させる。
Next, using a methane gas and an ethylene gas in a plasma polymerization film forming apparatus, as shown in FIG.
The plasma polymerization film 4 is coated.

【0049】次にFIB内で、たとえば加速電圧30k
V、10nA〜15pAの範囲のイオンビーム電流のG
a集束イオンビームを用いて、試料上を走査し、図6
(f)に示すように、観察特定箇所2の領域が厚さ0.
1μmになるまで、観察特定箇所2の両側をスパッタエ
ッチングにより矩形加工する。
Next, in FIB, for example, acceleration voltage 30 k
V, G of the ion beam current in the range of 10 nA to 15 pA
a Scanning over the sample using the focused ion beam
As shown in (f), the region of the observation specific portion 2 has a thickness of 0.
Rectangular processing is performed on both sides of the observation specific portion 2 by sputter etching until the thickness becomes 1 μm.

【0050】なお、上記の本発明の各実施の形態では、
パターンのない試料について説明したが、パターンを形
成した試料についても同様の効果を得る。
In each of the above embodiments of the present invention,
Although a sample without a pattern has been described, a similar effect can be obtained with a sample on which a pattern is formed.

【0051】また、上記本発明の各実施の形態では、導
電性膜としてオスミウム膜について説明したが、金、白
金膜についても同様の効果を得る。
Further, in each of the above embodiments of the present invention, the osmium film has been described as the conductive film. However, the same effect can be obtained with a gold or platinum film.

【0052】[0052]

【発明の効果】本発明の透過電子顕微鏡の試料作製方法
は、簡単に観察特定箇所がFIBで識別でき、微細な部
分や微小な異物のTEM観察、構造解析を可能にする。
このことから、様々の不良メカニズムを解明することが
期待でき、更に故障原因を迅速に材料、デバイスの製造
工程、開発工程にフィードバックでき、材料、デバイス
の歩留まり安定あるいは早期開発への効果が期待でき
る。
According to the method for preparing a sample of a transmission electron microscope of the present invention, a specific portion to be observed can be easily identified by FIB, and a TEM observation and a structural analysis of a minute portion or a minute foreign substance can be performed.
From this, it is expected that various failure mechanisms can be elucidated, and furthermore, the cause of failure can be quickly fed back to materials and device manufacturing processes and development processes, and the effects on materials and devices with stable yields or early development can be expected. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態の透過電子顕微鏡の
試料作製方法を示す工程平面図及び工程断面図
FIGS. 1A and 1B are a process plan view and a process cross-sectional view illustrating a method for manufacturing a sample of a transmission electron microscope according to a first embodiment of the present invention.

【図2】本発明の第2の実施の形態の透過電子顕微鏡の
試料作製方法を示す工程平面図及び工程断面図
FIGS. 2A and 2B are a process plan view and a process cross-sectional view illustrating a method for manufacturing a sample of a transmission electron microscope according to a second embodiment of the present invention.

【図3】本発明の第3の実施の形態の透過電子顕微鏡の
試料作製方法を示す工程平面図及び工程断面図
FIG. 3 is a process plan view and a process cross-sectional view illustrating a method for manufacturing a sample of a transmission electron microscope according to a third embodiment of the present invention.

【図4】本発明の第4の実施の形態の透過電子顕微鏡の
試料作製方法を示す工程平面図及び工程断面図
FIG. 4 is a process plan view and a process cross-sectional view illustrating a method for manufacturing a sample of a transmission electron microscope according to a fourth embodiment of the present invention.

【図5】本発明の第5の実施の形態の透過電子顕微鏡の
試料作製方法を示す工程平面図及び工程断面図
FIGS. 5A and 5B are a process plan view and a process cross-sectional view illustrating a method for manufacturing a sample of a transmission electron microscope according to a fifth embodiment of the present invention.

【図6】本発明の第6の実施の形態の透過電子顕微鏡の
試料作製方法を示す工程平面図及び工程断面図
FIG. 6 is a process plan view and a process cross-sectional view illustrating a method for manufacturing a sample of a transmission electron microscope according to a sixth embodiment of the present invention.

【図7】従来の透過電子顕微鏡の観察方法を示す工程図FIG. 7 is a process chart showing a conventional transmission electron microscope observation method.

【符号の説明】[Explanation of symbols]

1 試料 2 観察特定箇所 3 反応生成物 4 プラズマ重合膜 5 マーク 6 導電性膜 DESCRIPTION OF SYMBOLS 1 Sample 2 Observation specific place 3 Reaction product 4 Plasma polymerization film 5 Mark 6 Conductive film

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 透過電子顕微鏡の観察特定箇所を有する
試料をダイシングソー加工で薄片化する工程と、前記試
料の観察特定箇所近傍に電子ビームを照射し、反応生成
物を堆積する工程と、前記試料にプラズマ重合膜を被覆
する工程と、前記試料に集束イオンビームを走査し、観
察特定箇所を厚さ0.1μm厚までスパッタエッチング
する工程とを有することを特徴とする透過電子顕微鏡の
試料作製方法。
1. A step of slicing a sample having a specific location observed by a transmission electron microscope by dicing saw processing, irradiating an electron beam near the specific observation location of the sample to deposit a reaction product, A sample preparation method for a transmission electron microscope, comprising: a step of coating a sample with a plasma-polymerized film; and a step of scanning the sample with a focused ion beam and sputter-etching an observation specific portion to a thickness of 0.1 μm. Method.
【請求項2】 透過電子顕微鏡の観察特定箇所を有する
試料をレーザーマーキングする工程と、前記試料をダイ
シングソー加工で薄片化する工程と、前記試料の観察特
定箇所近傍に電子ビームを照射し、反応生成物を堆積す
る工程と、前記試料にプラズマ重合膜を被覆する工程
と、前記試料に集束イオンビームを走査し、観察特定箇
所を厚さ0.1μm厚までスパッタエッチングする工程
とを有することを特徴とする透過電子顕微鏡の試料作製
方法。
2. A step of laser-marking a sample having a specific portion observed by a transmission electron microscope, a step of thinning the sample by dicing saw processing, and irradiating an electron beam to a vicinity of the specific portion of the sample observed and reacting the sample. A step of depositing a product, a step of coating the sample with a plasma-polymerized film, and a step of scanning the sample with a focused ion beam and sputter-etching a specific observation location to a thickness of 0.1 μm. Characteristic method of preparing transmission electron microscope samples.
【請求項3】 透過電子顕微鏡の観察特定箇所を有する
試料をダイシングソー加工で薄片化する工程と、前記試
料に導電性膜を形成する工程と、前記試料の観察特定箇
所近傍に電子ビームを照射し、反応生成物を堆積する工
程と、前記試料にプラズマ重合膜を被覆する工程と、前
記試料に集束イオンビームを走査し、観察特定箇所を厚
さ0.1μm厚までスパッタエッチングする工程とを有
することを特徴とする透過電子顕微鏡の試料作製方法。
3. A step of slicing a sample having a specific portion observed by a transmission electron microscope by dicing saw processing, a step of forming a conductive film on the sample, and irradiating an electron beam to the vicinity of the specific portion of the sample observed. And depositing a reaction product, coating the sample with a plasma-polymerized film, and scanning the sample with a focused ion beam to sputter etch a specific observation location to a thickness of 0.1 μm. A method for preparing a sample for a transmission electron microscope, comprising:
【請求項4】 透過電子顕微鏡の観察特定箇所を有する
試料をレーザーマーキングする工程と、前記試料をダイ
シングソー加工で薄片化する工程と、前記試料に導電性
膜を形成する工程と、前記試料の観察特定箇所近傍に電
子ビームを照射し、反応生成物を堆積する工程と、前記
試料にプラズマ重合膜を被覆する工程と、前記試料に集
束イオンビームを走査し、観察特定箇所を厚さ0.1μ
m厚までスパッタエッチングする工程とを有することを
特徴とする透過電子顕微鏡の試料作製方法。
4. A step of laser marking a sample having a specific portion observed by a transmission electron microscope, a step of thinning the sample by dicing saw processing, a step of forming a conductive film on the sample, and a step of A step of irradiating an electron beam in the vicinity of the specific observation area to deposit a reaction product, a step of coating the sample with a plasma polymerized film, and a step of scanning the sample with a focused ion beam so that the specific observation area has a thickness of 0. 1μ
and sputter etching to a thickness of m.
【請求項5】 透過電子顕微鏡の観察特定箇所を有する
試料に導電性膜を形成する工程と、前記試料をダイシン
グソー加工で薄片化する工程と、前記試料の観察特定箇
所近傍に電子ビームを照射し、反応生成物を堆積する工
程と、前記試料にプラズマ重合膜を被覆する工程と、前
記試料に集束イオンビームを走査し、観察特定箇所を厚
さ0.1μm厚までスパッタエッチングする工程とを有
することを特徴とする透過電子顕微鏡の試料作製方法。
5. A step of forming a conductive film on a sample having a specific location observed by a transmission electron microscope, a step of thinning the sample by dicing saw processing, and irradiating an electron beam near the specific observation location of the sample. And depositing a reaction product, coating the sample with a plasma-polymerized film, and scanning the sample with a focused ion beam to sputter etch a specific observation location to a thickness of 0.1 μm. A method for preparing a sample for a transmission electron microscope, comprising:
【請求項6】 透過電子顕微鏡の観察特定箇所を有する
試料に導電性膜を形成する工程と、前記試料をレーザー
マーキングする工程と、前記試料をダイシングソー加工
で薄片化する工程と、前記試料の観察特定箇所近傍に電
子ビームを照射し、反応生成物を堆積する工程と、前記
試料にプラズマ重合膜を被覆する工程と、前記試料に集
束イオンビームを走査し、観察特定箇所を厚さ0.1μ
m厚までスパッタエッチングする工程とを有することを
特徴とする透過電子顕微鏡の試料作製方法。
6. A step of forming a conductive film on a sample having a specific portion observed by a transmission electron microscope, a step of laser marking the sample, a step of thinning the sample by dicing saw processing, A step of irradiating an electron beam in the vicinity of the specific observation area to deposit a reaction product, a step of coating the sample with a plasma polymerized film, and a step of scanning the sample with a focused ion beam so that the specific observation area has a thickness of 0. 1μ
and sputter etching to a thickness of m.
【請求項7】 導電性膜としてOs、Au、またはPt
を用いることを特徴とする請求項3、4、5、6記載の
透過電子顕微鏡の試料作製方法。
7. Os, Au, or Pt as a conductive film
7. The method for preparing a sample for a transmission electron microscope according to claim 3, wherein:
JP34896697A 1997-12-18 1997-12-18 Sample preparation method for transmission electron microscope Pending JPH11183339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34896697A JPH11183339A (en) 1997-12-18 1997-12-18 Sample preparation method for transmission electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34896697A JPH11183339A (en) 1997-12-18 1997-12-18 Sample preparation method for transmission electron microscope

Publications (1)

Publication Number Publication Date
JPH11183339A true JPH11183339A (en) 1999-07-09

Family

ID=18400598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34896697A Pending JPH11183339A (en) 1997-12-18 1997-12-18 Sample preparation method for transmission electron microscope

Country Status (1)

Country Link
JP (1) JPH11183339A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004191358A (en) * 2002-11-27 2004-07-08 Seiko Instruments Inc Sample preparation method and device by composite charge particle beam
US7355176B2 (en) 2004-09-10 2008-04-08 Samsung Electronics Co., Ltd. Method of forming TEM specimen and related protection layer
JP2009139132A (en) * 2007-12-04 2009-06-25 Sii Nanotechnology Inc Sample processing method and apparatus
JP2010507781A (en) * 2006-10-20 2010-03-11 エフ・イ−・アイ・カンパニー Method and sample structure for creating S / TEM sample
US8357913B2 (en) 2006-10-20 2013-01-22 Fei Company Method and apparatus for sample extraction and handling
CN105334095A (en) * 2015-12-01 2016-02-17 贵州大学 Sample preparation method and device for metal material transmission electron microscope with diameter of less than 3 mm
JP2018100953A (en) * 2016-12-16 2018-06-28 住友金属鉱山株式会社 Method for marking and method for preparing analyzing sample
CN115047016A (en) * 2022-08-16 2022-09-13 合肥晶合集成电路股份有限公司 Three-dimensional TEM sample structure and preparation method thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004191358A (en) * 2002-11-27 2004-07-08 Seiko Instruments Inc Sample preparation method and device by composite charge particle beam
US7355176B2 (en) 2004-09-10 2008-04-08 Samsung Electronics Co., Ltd. Method of forming TEM specimen and related protection layer
US8890064B2 (en) 2006-10-20 2014-11-18 Fei Company Method for S/TEM sample analysis
JP2010507781A (en) * 2006-10-20 2010-03-11 エフ・イ−・アイ・カンパニー Method and sample structure for creating S / TEM sample
US8357913B2 (en) 2006-10-20 2013-01-22 Fei Company Method and apparatus for sample extraction and handling
US8525137B2 (en) 2006-10-20 2013-09-03 Fei Company Method for creating S/TEM sample and sample structure
US8993962B2 (en) 2006-10-20 2015-03-31 Fei Company Method and apparatus for sample extraction and handling
US9275831B2 (en) 2006-10-20 2016-03-01 Fei Company Method for S/TEM sample analysis
US9336985B2 (en) 2006-10-20 2016-05-10 Fei Company Method for creating S/TEM sample and sample structure
US9349570B2 (en) 2006-10-20 2016-05-24 Fei Company Method and apparatus for sample extraction and handling
US9581526B2 (en) 2006-10-20 2017-02-28 Fei Company Method for S/TEM sample analysis
JP2009139132A (en) * 2007-12-04 2009-06-25 Sii Nanotechnology Inc Sample processing method and apparatus
CN105334095A (en) * 2015-12-01 2016-02-17 贵州大学 Sample preparation method and device for metal material transmission electron microscope with diameter of less than 3 mm
JP2018100953A (en) * 2016-12-16 2018-06-28 住友金属鉱山株式会社 Method for marking and method for preparing analyzing sample
CN115047016A (en) * 2022-08-16 2022-09-13 合肥晶合集成电路股份有限公司 Three-dimensional TEM sample structure and preparation method thereof

Similar Documents

Publication Publication Date Title
US5270552A (en) Method for separating specimen and method for analyzing the specimen separated by the specimen separating method
US4964946A (en) Process for fabricating self-aligned field emitter arrays
US6395347B1 (en) Micromachining method for workpiece observation
US7115882B2 (en) TEM sample holder
US7112790B1 (en) Method to prepare TEM samples
JP2004087174A (en) Ion beam device, and working method of the same
JPH11183339A (en) Sample preparation method for transmission electron microscope
JP2008070155A (en) Preparation method for observing sample for transmission electron microscope
JP2002228562A (en) Sample preparing method for transmission electron microscope
JPH11218473A (en) Method and device for preparing sample for section transmission electron microscope
JP5101563B2 (en) Manufacturing method of micro sample stage
JPH03166744A (en) Microprocessing method for cross section
KR100694580B1 (en) method for manufacturing Transmission Electron Microscope of Specimen for Analyzing
US20060016987A1 (en) Method and apparatus for rapid sample preparation in a focused ion beam microscope
JP2000230891A (en) Method for preparing sample for transmission type electron microscope
Latif Nanofabrication using focused ion beam
JP2004253232A (en) Sample fixing table
KR960002290B1 (en) Transmission electron microscopy test device manufacturing
KR20050033699A (en) Method for forming sample using analysis by tem
JP4219084B2 (en) Preparation method for thin section sample for microscope
JPH05266789A (en) Manufacture of electron beam device
KR100655581B1 (en) Device for Coating Specimen for Analyzing by Transmission Electron Microscope and Method for Coating it using the same
JP2004069628A (en) Method for producing in-line test sample
JP2004271393A (en) Pedestal base plate, measuring holder for electron microscope, measuring sample assembly, method for producing measuring sample and measuring method
KR20050112261A (en) Method of forming sample using analysis by tem