JPH03166744A - Microprocessing method for cross section - Google Patents

Microprocessing method for cross section

Info

Publication number
JPH03166744A
JPH03166744A JP30842789A JP30842789A JPH03166744A JP H03166744 A JPH03166744 A JP H03166744A JP 30842789 A JP30842789 A JP 30842789A JP 30842789 A JP30842789 A JP 30842789A JP H03166744 A JPH03166744 A JP H03166744A
Authority
JP
Japan
Prior art keywords
cross
section
sample
ion beam
function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30842789A
Other languages
Japanese (ja)
Other versions
JP2973211B2 (en
Inventor
Hiroyasu Iarii
伊在井 弘泰
Takashi Minafuji
孝 皆藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP1308427A priority Critical patent/JP2973211B2/en
Publication of JPH03166744A publication Critical patent/JPH03166744A/en
Application granted granted Critical
Publication of JP2973211B2 publication Critical patent/JP2973211B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the influence of an uneven part on the surface of a sample from exhibiting as a vertical stripe on a section and to obtain an accurate sectional image by inclining the sample when the section is formed. CONSTITUTION:After a film 3 is adhered, a sample stage is so rotated that the direction of the part to be formed with a section becomes 90 deg. with respect to an oblique axis, the stage is then inclined at a suitable angle (e.g. 45 deg.), and a hole 4 of a square shape is opened with a sectional position 2 to be desirably observed in an etching function as one side. Since an FIB is obliquely emitted to a sample at the time of processing the section, no vertical stripe due to an abrupt uneven part of the surface is formed. Thus, an accurate sectional shape is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、不良解析などのために半導体デバイスの特定
位置を断面出し加工する方法に関する.〔従来の技術〕 LSI(大現模集積回路)等の高集積化、微細化に伴い
、開発工程や製造工程におけるLSIの断面加工、断面
観察を集束イオンビーム装置で実施する技術が示されて
いる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for processing a cross section of a specific position of a semiconductor device for failure analysis or the like. [Prior art] With the increasing integration and miniaturization of LSIs (large-scale integrated circuits), a technology has been proposed that uses focused ion beam equipment to perform cross-sectional processing and cross-sectional observation of LSIs during the development and manufacturing processes. There is.

これは、走査イオン顕微鏡機能により断面加工部を位置
出しし、さらにマスクレスエッチング機能により断面加
工部を一面として、角形に穴あけし、所望の断而部を露
出させた後、試料を傾斜させて、断面部をイオンビーム
照射方向に向けさせ、再び、走査イオン顕微鏡機能によ
り断面加工部を観察する技術である。
This involves locating the cross-sectional area using the scanning ion microscope function, then drilling a rectangular hole in the cross-sectional area using the maskless etching function to expose the desired cut-off area, and then tilting the sample. This is a technique in which the cross-section is oriented in the direction of ion beam irradiation and the cross-section processed portion is observed again using the scanning ion microscope function.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

この方法では、試料表面の凹凸部が切断断面に影響を与
え、縦筋が走る現象が生じ、正確な断面像が得難い欠点
があった。
This method has the drawback that the unevenness of the sample surface affects the cut cross section, causing vertical streaks to occur, making it difficult to obtain accurate cross-sectional images.

この解決手段の一つとして、断面切断の前に予め試料の
表面をFIBCVD(集束イオンビーム化学的気相戒長
)法により処理し平坦化することで解決できるが、この
場合、試料表面が平坦化されるため、配線パターンが走
査イオン顕漱鏡像上では見にくくなり加工場所がわかり
にくくなる場合がある。
One way to solve this problem is to flatten the surface of the sample by processing it using FIBCVD (focused ion beam chemical vapor deposition) before cutting the cross section. As a result, the wiring pattern may be difficult to see on a scanning ion microscope image, making it difficult to identify the processing location.

本発明の目的は、上記欠点を解決した断面加工法を提供
することにある。
An object of the present invention is to provide a cross-sectional processing method that solves the above-mentioned drawbacks.

〔課題を解決するための手段〕[Means to solve the problem]

本願において開示される発明の概要を説明すれば、次の
とおりである. ■試料の断面形或部を走査イオン顕微鏡機能を用いて、
位置出しを行う。
The outline of the invention disclosed in this application is as follows. ■Using the scanning ion microscope function to scan a certain section of the sample,
Perform positioning.

■場合により、次に、マスクレスエッチング機能によっ
て、断面加工位置を含む領域に局所的に膜付けを行う。
(2) Depending on the situation, a maskless etching function is then used to locally apply a film to a region including the cross-sectional processing position.

■次に、マスクレスエッチング機能によって、角形の穴
あけ加工を行い、その際、加工穴の側壁の一つが観察し
た断面位置となるようにする.■次に、試料を1頃斜し
、所望観察断面が現れるように断面加工を行う。
■Next, use the maskless etching function to drill a rectangular hole so that one of the side walls of the hole is at the observed cross-sectional position. (2) Next, tilt the sample about 1 and process the cross section so that the desired observation cross section appears.

■観察したい断面を観察できる方向に試料を回転、傾斜
し、走査イオン顕微鏡機能を用いて、前記加工穴の断面
観察(計測、分析を含む)を行う。
(2) Rotate and tilt the sample in a direction in which the desired cross section can be observed, and use the scanning ion microscope function to observe the cross section of the machined hole (including measurement and analysis).

尚、加工順序として上記■に記した試料の回転、傾斜を
上記■の後(上記■を実行しない場合は上記■の後)に
行い、次に角形に穴あけ加工を行い、その際、加工穴の
一つが観察したい断面位置になるように加工する順序で
も解決の手段となる。
In addition, as for the processing order, rotate and tilt the sample as described in the above ■ after the above ■ (if the above ■ is not performed, after the above ■), then drill a square hole. A method of solving the problem can also be achieved by changing the processing order so that one of the cross-sections is located at the desired cross-sectional position.

〔作用〕[Effect]

試料の任意位置の断面加工時に、試料を傾斜させ、その
傾斜軸を含む面に対し垂直方向に断面形成することによ
り、表面の凹凸部の影響が断面へ縦筋となって現れるの
を防ぐことができるので、正確な断面が得られる. 〔実施例〕 第1図は本発明の一実施例であるイオンビームによるL
SIのミクロ断面加工方法を説明するための図で、第1
図(a)はLSIの観察したい断面位置2を一点鎖線示
した図、第1図(blは上記観察断面位置2を含む領域
をFIBCVD法で膜付けしたところをハンチングで示
した図、第l図telは第1図fblの試料を試料ステ
ージの回転機構により時計方向に90’回転した後を示
した図、第1図fdlは試料ステージを傾斜(右側をア
ンプ)させた図、第1図(e)はエッチング機能により
観察位置を1辺とした角形の穴あけをした図、第1図[
flは試料ステージを傾斜したまま反時計方向に90゜
回転した後を示した図、第1図1glはさらに試料ステ
ージを伸斜(例えば60’に)させて、断面をイオンビ
ーム照射方向へ観察可能の位置に向けた図である。
When processing a cross section at an arbitrary position on a sample, tilt the sample and form a cross section perpendicular to the plane that includes the tilt axis to prevent the effects of surface irregularities from appearing as vertical streaks on the cross section. This allows you to obtain accurate cross sections. [Example] Fig. 1 shows an example of the present invention, in which L by an ion beam is
This is a diagram for explaining the SI micro-section processing method, and the first
Figure (a) is a diagram showing the cross-sectional position 2 of the LSI to be observed with a dashed-dotted line; Figure tel is a diagram showing the sample in Figure 1 fbl after it has been rotated 90' clockwise by the rotation mechanism of the sample stage, Figure 1 fdl is a diagram with the sample stage tilted (amplifier on the right side), Figure 1 (e) is a diagram in which a rectangular hole is made using the etching function, with the observation position as one side;
fl is a diagram after rotating the sample stage 90 degrees counterclockwise with the sample stage tilted, and Figure 1 1gl is a diagram showing the sample stage further tilted (to 60', for example), and the cross section is observed in the ion beam irradiation direction. It is a view facing the possible position.

第2図fa+は従来の加工方法で断面を形威した・一例
を示した図、第2図(blは本発明を実施して断面を形
成した一例を示した図である。
FIG. 2 fa+ is a diagram showing an example of a cross section formed by a conventional processing method, and FIG. 2 bl is a diagram showing an example of a cross section formed by implementing the present invention.

第3図は本発明が使用する集束イオンビーム装置および
画像処理回路図である.ここに、1はL51.2は断面
加工位置、3はFIBCVDによる膜付け部分、4は穴
あけ部、5は断面、6は絶縁膜、7は上層配線、8は下
層配線、9はSi基板、10は縦筋、11はわずかな斜
め筋、21はイオン鏡筒、22は試料ステージ、23は
試料ホルダー、24は試料、25は二次荷電粒子検出器
、26はガス銃、27は真空チャンバー、28はイオン
ビーム、31は走査制御部、32は画像取込み・再構戒
制御部、33は画像メモリ部、34は増幅器、35は表
示部を示す。
Figure 3 is a diagram of the focused ion beam device and image processing circuit used in the present invention. Here, 1 is L51.2 is the cross-sectional processing position, 3 is the film attachment part by FIBCVD, 4 is the hole punching part, 5 is the cross section, 6 is the insulating film, 7 is the upper layer wiring, 8 is the lower layer wiring, 9 is the Si substrate, 10 is a vertical stripe, 11 is a slight diagonal stripe, 21 is an ion column, 22 is a sample stage, 23 is a sample holder, 24 is a sample, 25 is a secondary charged particle detector, 26 is a gas gun, and 27 is a vacuum chamber. , 28 is an ion beam, 31 is a scanning control section, 32 is an image capture/reconstruction control section, 33 is an image memory section, 34 is an amplifier, and 35 is a display section.

第1図(a)に示すように観察したい試料LSIのコン
タクトを走査イオン顕微鏡像により位置出しを行う。次
に第1図(blに示すようにコンタクトを含む領域3を
FIBCVD法で膜付けする。
As shown in FIG. 1(a), the contacts of the sample LSI to be observed are located using a scanning ion microscope image. Next, as shown in FIG. 1 (bl), a film is deposited on the region 3 including the contact by the FIBCVD method.

FIBCVD法はガス銃26により試料表面に原料ガス
を吸着させ、20〜30κeVのエネルギーで加速した
イオンビーム28を局所的に照射することにより、照射
領域のみに選択的に膜を形戒する方法で、本実施例では
原料ガスにW(Go)iを用いタングステン1模を形威
している.勿論、ガスを変えて他の金属膜形成によって
も本発明は実施可能である.この膜付けは長時間施すと
、試料の膜付け領域表面が平坦化されるため、配線パタ
ーンが走査イオン顕微鏡像上では見にくくなるので、平
坦化される前に膜付けを終了したほうが断面形成は容易
になる.この膜付け後、第l図fclに示すように、断
面形成する部分の試料表面上の方向が傾斜軸に対して9
rになるよう試料ステージを回転させ、次に、試料ステ
ージを適当角度(例えば45゜) {IJI斜させて、
エッチング機能により観察したい断面位置2を一辺とし
て、角形形状の穴あけ4を行う。
The FIBCVD method is a method that selectively forms a film only in the irradiated area by adsorbing a source gas on the sample surface using a gas gun 26 and locally irradiating it with an ion beam 28 accelerated with an energy of 20 to 30 κeV. In this example, W(Go)i is used as the raw material gas and a tungsten 1 model is used. Of course, the present invention can also be practiced by changing the gas and forming other metal films. If this film is applied for a long time, the surface of the film-applied area of the sample will be flattened, making the wiring pattern difficult to see on a scanning ion microscope image. Therefore, it is better to finish the film application before it is flattened to prevent cross-sectional formation. It becomes easier. After this film is deposited, as shown in Figure 1 fcl, the direction of the section to be formed on the sample surface is 99 with respect to the tilt axis.
Rotate the sample stage so that the angle is
A rectangular hole 4 is made using the etching function with the cross-sectional position 2 to be observed as one side.

この断面加工時にはFIBが試料に斜めに照射されるの
で、第2図fatの10で示すように表面の急峻な凹凸
による切断断面の縦筋は出なくなり、影響が出たとして
も、第2図fblの11で示すように斜めの筋が僅かに
残る程度である.したがって、より正確な断面形状が得
られる。
During this cross-section processing, the FIB is irradiated obliquely onto the sample, so vertical streaks due to steep surface irregularities will not appear on the cut cross section, as shown by 10 in fat in Figure 2, and even if they are affected, as shown in Figure 2. Only a slight diagonal streak remains as shown by 11 in fbl. Therefore, a more accurate cross-sectional shape can be obtained.

この穴あけは、まず、視野確保のための粗い穴あけを行
い、仕上げ加工と2段階に行うことにより、早く、かつ
正確な断面加工がなされる.粗い穴あけは高電流ビーム
(例えば29A〜6p^)でなされ、また、仕上げ加工
は中電流ビーム(例えば2pA〜30ρA)で観察した
い断面位置2に照射することにより行われ、急傾斜の側
壁断面5が形戒される。
This drilling process is performed in two stages: first, rough drilling to ensure visibility, and then finishing, which allows for quick and accurate cross-sectional processing. Rough drilling is done with a high current beam (e.g. 29A to 6p^), and finishing is performed by irradiating the cross-sectional position 2 to be observed with a medium current beam (e.g. 2pA to 30ρA), and the steep side wall cross-section 5 is is a formal precept.

上記実施例は試料を傾斜させてから断面形或した例だが
、粗い穴あけを行った後に試料を傾斜させ仕上げ加工を
行っても同様な端面が得られる゛.次に、第l図(f)
に示すように、イオンビーム照射方向に試料の加工断面
が露呈するように試料ステージを回転させ、断面部分の
視野が確保できる範囲内でさらに試料ステージを傾斜さ
せる。この断面を比較的低電流ビーム(例えば29A〜
30pA)で走査イオン顕微鏡により観察する. 尚、断面観察したい異物などの異状部分が小さい場合な
どは、膜付けしないで断面形或を実施することもある.
このような場合にも上述の操作を行うことで、より正確
な断面形状が得られる。
Although the above example is an example in which the cross-sectional shape was obtained by tilting the sample, a similar end surface can also be obtained by tilting the sample after rough drilling and performing finishing machining. Next, Figure 1(f)
As shown in Figure 2, the sample stage is rotated so that the processed cross section of the sample is exposed in the ion beam irradiation direction, and the sample stage is further tilted within a range where the field of view of the cross section can be secured. This cross section is connected to a relatively low current beam (for example, 29A~
Observe with a scanning ion microscope at 30 pA). In addition, if the abnormal part such as a foreign object to be observed in cross section is small, cross-sectional observation may be performed without applying a film.
Even in such a case, a more accurate cross-sectional shape can be obtained by performing the above-described operation.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、上記のように断面威形時に試料を傾斜
させることにより、試料表面の凹凸部の影響が断面部へ
縦筋となって現れるのを防止できる。したがって、より
正確な断面像が得られる。
According to the present invention, as described above, by tilting the sample during the cross-sectional shape, it is possible to prevent the influence of the uneven portions on the sample surface from appearing in the form of vertical lines in the cross-section. Therefore, a more accurate cross-sectional image can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法をLSIの上層配線と下層配線間
のコンタクト部の断面を観察する場合に適用した実施例
の上面説明図で、第1図falはLSIの観察したい断
面位置2を一点鎖線で示した図、第1図(blは上記蜆
察位置2を含む領域をFIBCVD法で膜付けしたとこ
ろをハソチングで示した図、第1図(Clは試料ステー
ジの回転機構により試料時計方向に90゜回転した後を
示した図、第l図fdlは試料ステージを傾斜(右側を
アンプ)させた図、第I図(elはエッチング機能によ
り観察位置を一辺とした角形の穴あけをした図、第1図
fflは試料ステージ反時計方向に90゜回転した後を
示した図、第1図fg)はさらに試料ステージを傾斜(
例えば60゜)させて、断面をイオンビーム照射方向へ
観察可能の位置に向けた図である。 第2図(alは従来の加工方法で断面を形威した一例を
示した図、第2図[blは本発明を実施して断面を形成
した一例を示した図である。 第3図は本発明が使用する集束イオンビーム装置および
画像処理回路図である。 LSI 断面加工位置 FIBCVDによる膜付け部分 穴あけ部 断面 絶縁膜 上層配線 下層配線 Si基板 縦筋 わずかな斜め筋 イオン鏡筒 試料ステージ 二式料ホノレダー 試事4 二次荷電粒子検出器 ガス銃 真空チャンバー 2B・ 31・ 32・ 33・ 34・ 35・ イオンビーム 走査制御部 画像取込み・再構成制御部 画像メモリ部 増幅器 表示部
FIG. 1 is an explanatory top view of an example in which the method of the present invention is applied to the case of observing a cross section of a contact portion between an upper layer wiring and a lower layer wiring of an LSI. The figure shown by the dashed line, Figure 1 (BL is a diagram showing the area including the above-mentioned observation position 2 coated with a film by the FIBCVD method, Figure 1 (Cl is the sample clock by the rotating mechanism of the sample stage). Figure I (fdl) is a diagram with the sample stage tilted (amplifier on the right side), Figure I (el is a square hole with the observation position as one side) using the etching function. Figure 1 ffl shows the sample stage after it has been rotated 90 degrees counterclockwise, Figure 1 fg) shows the sample stage further tilted (
60°), and the cross section is oriented to a position where it can be observed in the ion beam irradiation direction. Figure 2 (al is a diagram showing an example of a cross section formed by a conventional processing method, Figure 2 [bl is a diagram showing an example of a cross section formed by implementing the present invention). It is a focused ion beam device and an image processing circuit diagram used in the present invention. LSI cross-section processing position FIBCVD film attachment portion drilling section cross-section Insulating film Upper layer wiring Lower layer wiring Si substrate Slight diagonal vertical streak Ion column sample stage Two sets Photo Reder Trial 4 Secondary charged particle detector Gas gun Vacuum chamber 2B・ 31・ 32・ 33・ 34・ 35・ Ion beam scanning control section Image capture/reconstruction control section Image memory section Amplifier Display section

Claims (2)

【特許請求の範囲】[Claims] (1)イオンビーム電流値を切換える手段を備えた集束
イオンビーム鏡筒と、XY移動機構の他に少なくとも傾
斜機構を持つ試料ステージと、デポジション原料ガスを
試料表面に吹きつけるガス銃と、二次荷電粒子検出器と
を備えて、走査イオン顕微鏡機能、マスクレスエッチン
グ機能、マスクレスデポジション機能の三つの機能を持
つ集束イオンビーム装置を用いて試料の任意位置の断面
観察のために断面加工を行う加工方法において、断面加
工時に試料を傾斜させることを特徴とするミクロ断面加
工方法。
(1) A focused ion beam column equipped with a means for switching the ion beam current value, a sample stage having at least a tilting mechanism in addition to an XY moving mechanism, and a gas gun for spraying deposition raw material gas onto the sample surface; A focused ion beam device equipped with a secondary charged particle detector and has three functions: scanning ion microscope function, maskless etching function, and maskless deposition function is used to process cross sections for cross-sectional observation of arbitrary positions on samples. A micro cross-section processing method characterized by tilting a sample during cross-section processing.
(2)前記ミクロ断面形成部を含む領域の表面の、当該
断面形成前にマスクレスデポジション機能によって局所
的に膜付けを行うことを特徴とする第1項記載のミクロ
断面加工方法。
(2) The micro cross section processing method according to item 1, characterized in that a film is locally formed on the surface of the region including the micro cross section forming portion by a maskless deposition function before forming the cross section.
JP1308427A 1989-11-27 1989-11-27 Section observation method Expired - Lifetime JP2973211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1308427A JP2973211B2 (en) 1989-11-27 1989-11-27 Section observation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1308427A JP2973211B2 (en) 1989-11-27 1989-11-27 Section observation method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP8315222A Division JP2992682B2 (en) 1996-11-26 1996-11-26 Cross section observation method for integrated circuits

Publications (2)

Publication Number Publication Date
JPH03166744A true JPH03166744A (en) 1991-07-18
JP2973211B2 JP2973211B2 (en) 1999-11-08

Family

ID=17980924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1308427A Expired - Lifetime JP2973211B2 (en) 1989-11-27 1989-11-27 Section observation method

Country Status (1)

Country Link
JP (1) JP2973211B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0552721A (en) * 1991-08-22 1993-03-02 Hitachi Ltd Sample separating method and method for analyzing separated sample obtained by the separating method
JP2003022776A (en) * 2001-07-05 2003-01-24 Hitachi Ltd Sample production apparatus and sample production method
US6664552B2 (en) 2000-11-06 2003-12-16 Hitachi, Ltd. Method and apparatus for specimen fabrication
US8304721B2 (en) 2009-02-20 2012-11-06 Sii Nanotechnology Inc. Micro cross-section processing method
US8426830B2 (en) 2008-12-18 2013-04-23 Sll Nano Technology Inc. Focused ion beam apparatus, sample processing method using the same, and computer program for focused ion beam processing
JP2015084345A (en) * 2015-02-04 2015-04-30 株式会社日立ハイテクサイエンス Focused ion beam device and cross-sectional processing observation method
US9310325B2 (en) 2013-03-27 2016-04-12 Hitachi High-Tech Science Corporation Focused ion beam apparatus and method of working sample using the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5099291B2 (en) 2006-02-14 2012-12-19 エスアイアイ・ナノテクノロジー株式会社 Focused ion beam apparatus and sample cross-section processing and observation method
JP5135516B2 (en) * 2008-03-10 2013-02-06 エスアイアイ・ナノテクノロジー株式会社 Thin sample preparation method
CN104813459B (en) * 2012-10-05 2018-01-19 Fei 公司 Multidimensional structure accesses

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0552721A (en) * 1991-08-22 1993-03-02 Hitachi Ltd Sample separating method and method for analyzing separated sample obtained by the separating method
US6664552B2 (en) 2000-11-06 2003-12-16 Hitachi, Ltd. Method and apparatus for specimen fabrication
US6794663B2 (en) 2000-11-06 2004-09-21 Hitachi, Ltd. Method and apparatus for specimen fabrication
US7268356B2 (en) 2000-11-06 2007-09-11 Hitachi, Ltd. Method and apparatus for specimen fabrication
US7897936B2 (en) 2000-11-06 2011-03-01 Hitachi, Ltd. Method and apparatus for specimen fabrication
US8796651B2 (en) 2000-11-06 2014-08-05 Hitachi, Ltd. Method and apparatus for specimen fabrication
JP2003022776A (en) * 2001-07-05 2003-01-24 Hitachi Ltd Sample production apparatus and sample production method
US8426830B2 (en) 2008-12-18 2013-04-23 Sll Nano Technology Inc. Focused ion beam apparatus, sample processing method using the same, and computer program for focused ion beam processing
US8304721B2 (en) 2009-02-20 2012-11-06 Sii Nanotechnology Inc. Micro cross-section processing method
US9310325B2 (en) 2013-03-27 2016-04-12 Hitachi High-Tech Science Corporation Focused ion beam apparatus and method of working sample using the same
JP2015084345A (en) * 2015-02-04 2015-04-30 株式会社日立ハイテクサイエンス Focused ion beam device and cross-sectional processing observation method

Also Published As

Publication number Publication date
JP2973211B2 (en) 1999-11-08

Similar Documents

Publication Publication Date Title
JP5090255B2 (en) STEM sample preparation method in situ
JP5882381B2 (en) Slice and view with decoration
JP2779414B2 (en) Processing and observation method of micro section
US5824598A (en) IC wiring connecting method using focused energy beams
US5990478A (en) Method for preparing thin specimens consisting of domains of different materials
JP3216881B2 (en) Sample cross section observation method
JP4279369B2 (en) Semiconductor device processing method
JPH03166744A (en) Microprocessing method for cross section
JPH08329876A (en) Method and device for preparing observation specimen
US5940678A (en) Method of forming precisely cross-sectioned electron-transparent samples
EP0320292B1 (en) A process for forming a pattern
JP3132938B2 (en) Charged beam device for cross-section processing observation and processing method
US6150280A (en) Electron-beam cell projection aperture formation method
JPH04186831A (en) Charged-particle beam treatment method and device thereof
US6420703B1 (en) Method for forming a critical dimension SEM calibration standard of improved definition and standard formed
US5747803A (en) Method for preventing charging effect and thermal damage in charged-particle microscopy
JP2992682B2 (en) Cross section observation method for integrated circuits
JP3018041B2 (en) Ion beam processing equipment
JP2887407B2 (en) Sample observation method using focused ion beam
JP2708560B2 (en) Method for forming connection wiring to semiconductor device
JPH11274044A (en) Machining method by charged beam and machining system thereof, and observation method and system by the charged beam
JPH0794512A (en) Method and equipment for forming wiring
JP2594941B2 (en) IC wiring connection method and device
JPH04192247A (en) Observation method for micro cross section
JP2916117B2 (en) Wiring forming device for IC element

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070903

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 11