JP2004271393A - Pedestal base plate, measuring holder for electron microscope, measuring sample assembly, method for producing measuring sample and measuring method - Google Patents

Pedestal base plate, measuring holder for electron microscope, measuring sample assembly, method for producing measuring sample and measuring method Download PDF

Info

Publication number
JP2004271393A
JP2004271393A JP2003063936A JP2003063936A JP2004271393A JP 2004271393 A JP2004271393 A JP 2004271393A JP 2003063936 A JP2003063936 A JP 2003063936A JP 2003063936 A JP2003063936 A JP 2003063936A JP 2004271393 A JP2004271393 A JP 2004271393A
Authority
JP
Japan
Prior art keywords
sample
thickness
measured
electron beam
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003063936A
Other languages
Japanese (ja)
Inventor
Akira Takashima
章 高島
Yoshiki Kamata
善己 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003063936A priority Critical patent/JP2004271393A/en
Publication of JP2004271393A publication Critical patent/JP2004271393A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pedestal base plate capable of simply producing a sample for observing TEM (transmission electron microscope). <P>SOLUTION: The pedestal substrate is equipped with a sample-holding part 3, a beam part 8 and a holder-producing body 4. The sample-holding part 3 has a region 1 to be observed having a sample for observing an electron microscope mounted on the top part thereof. The beam part 8 has a thickness smaller than that of the sample-holding part 3 measured in a direction vertical to the region 1 to be observed and is connected to at least one of a plurality of side walls, constituting a three-dimensional shape for defining the region 1 to be observed of the sample-holding part 3. The holder-producing body 4 is connected to the beam part 8 and has a bottom surface larger than that of the sample-holding part 3 and is equipped with the holder producing body 4 having the same plane level as the bottom surface of the sample-holding part 3. The beam part 8 is formed as a constricted structure by the residual part formed to the bottom part of a separation groove 21 for separating the sample-holding part 3 and the holder-producing body 4. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は透過型電子顕微鏡(TEM)用の試料を搭載するペデスタル基板、電子顕微鏡用測定治具、TEM用の測定試料組み立て体、TEM用の測定試料の作製方法及びTEMの測定方法に関する。
【0002】
【従来の技術】
従来、半導体装置の特定箇所の断面TEM観察用試料作製には収束イオンビーム(FIB)法とリソグラフィー法が知られている。
【0003】
FIB法では、先ず、ダイシングソーで観察対象とする薄膜や半導体集積回路パターンを有する観察対象領域を約0.2mm×1.5mm角の大きさに切り出し、切り出した試料を、冶具に接着剤で固定する。その後、5〜30keVの集束したGaイオンビームで切り出した試料の一部をスパッタリングすることにより観察対象薄膜若しくは半導体集積回路パターンを100nm程度に薄片化することでTEM試料を作製する(非特許文献1参照。)。
【0004】
一方、リソグラフィー法は、リソグラフィーと反応性エッチング(RIE)法を用いてTEM試料を作製する方法である。リソグラフィー法では、先ず、半導体基板に電子線が透過する300nm以下の幅のマスクを形成する。このマスクを用いて、RIE法によりマスクの周囲の領域を除去しマスク直下を残する。この結果、マスクと同等の幅の厚さをもつ薄片化部を形成され、TEM試料が作製される(非特許文献2参照。)。
【0005】
【特許文献1】
特開平9−145567号公報
【0006】
【非特許文献1】
平坂雅男・朝倉健太郎共偏、「FIB・イオンミリング技法Q&A」、p.42〜47(2002年)
【0007】
【非特許文献2】
ヒュン・ジン・チョウ(Hyun−Jin Cho),ピータBグリフィン(Peter B, Griffin), 及びジェームスDプラマー(James D. Plummer),材料研究学会・シンポジウム予稿集(Mat. Res. Soc. Symp. Proc.),第480巻,p.217(1997年)
【0008】
【発明が解決しようとする課題】
上述したように、FIB法では前処理として半導体基板の観察対象領域をダイシングソーで0.2mm×1.5mm程度に切り出す。しかし、FIB加工するためには切り出した試料を固定する保持冶具に接着剤で固定する必要がある。また、観察対象領域を薄片化する際には観察対象領域の表面とGaイオンビームの入射方向とが互いに垂直になるように方位を合わせる必要がある。しかしながら、接着剤の厚みにより観察対象領域の表面と冶具の接着面とを垂直にすることが困難である。更には、Gaイオンビームの方向と観察対象領域表面との垂直合わせをしなければならない。また、TEM観察する場合に接着剤から発生するガスにより、電子線を照射した箇所がカーボン汚染する欠点があった。
【0009】
一方、リソグラフィー法は、イオンエッチングの後工程としてダイシングソーによる観察対象領域の切り出し加工がある。しかしながら、薄片化された観察対象薄膜やパターンは脆く、切り出し加工時の切削屑による試料損傷を防止するためにイオンエッチング後の観察対象領域を有機溶剤に溶解可能なレジストやワックスを保護膜として塗布してから切り出さなければならない。しかしながら、レジストやワックスを塗布する工程及びレジストやワックスを溶剤で除去する工程で薄片化領域を損傷する可能性がある。更には、溶剤やレジストの残渣がTEM観察する場合にガスを放出し、電子線を照射した箇所がカーボン汚染する欠点があった。
【0010】
上記のような問題点を鑑み、本発明は、TEM観察用試料を簡便に作製できるペデスタル基板、TEM観察する際に溶剤やレジストの残渣に起因したガス放出のない電子顕微鏡用測定治具及びTEM用の測定試料組み立て体、更にはこの様なTEM用の測定試料の作製方法、更には、これらの治具や組み立て体を用いたTEMの測定方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記目的を達成するために、本発明の第1の特徴は(イ)頂部に電子顕微鏡観察用の試料を搭載する観察対象領域を有する試料保持部と、(ロ)観察対象領域に垂直方向に測った試料保持部の厚さよりも薄い厚さを有し、この試料保持部の観察対象領域を定義する立体形状を構成する複数の側壁の少なくとも1の側壁に接続された梁部と、(ハ)この梁部に接続され、試料保持部の底面の面積よりも大きく、且つ試料保持部の底面と同一平面レベルの底面を有する治具作製用ボディとを備えるペデスタル基板であることを要旨とする。
本発明の第2の特徴は、互いに対向する側面間で固定部厚さを定義された裾部、及びこの裾部の上部において電子線透過厚みで側面に平行方向に走行するリッジ部を有する試料保持部と、このリッジ部に搭載され、電子線透過厚みで側面に平行方向に走行する試料とを含む積層体を搭載するための電子顕微鏡用測定治具に関する。即ち、本発明の第2の特徴に係る電子顕微鏡用測定治具は、(イ)固定部厚さと同等以下の深さで、積層体の厚さよりも大きな幅を有した試料載置溝を有し、且つこの試料載置溝に積層体の側面とこの試料載置溝の底面が平行になるように載置した状態における試料の中心位置において、積層体の厚さ方向に測った試料の厚みよりも大きな奥行きと、リッジ部の長さ方向に測った積層体の長さよりも小さな幅を有する電子線通過窓を有する試料ホルダと、(ロ)試料載置溝に積層体を載置した状態において、リッジ部の長さ方向の端部において裾部に接触し、試料載置溝に積層体を固定する試料押さえとを備えることを要旨とする。
【0012】
本発明の第3の特徴は、(イ)互いに対向する側面間で固定部厚さを定義された裾部、及びこの裾部の上部において電子線透過厚みで側面に平行方向に走行するリッジ部を有する試料保持部と、このリッジ部に搭載され、電子線透過厚みで側面に平行方向に走行する試料とを含む積層体と、(ロ)固定部厚さと同等以下の深さで、積層体の厚さよりも大きな幅を有した試料載置溝を有し、且つこの試料載置溝に積層体の側面とこの試料載置溝の底面が平行になるように載置した状態における試料の中心位置において、積層体の厚さ方向に測った試料の厚みよりも大きな奥行きと、リッジ部の長さ方向に測った積層体の長さよりも小さな幅を有する電子線通過窓を有する試料ホルダと、(ハ)試料載置溝に積層体を載置した状態において、リッジ部の長さ方向の端部において裾部に接触し、試料載置溝に積層体を固定する試料押さえとを備える測定試料組み立て体であることを要旨とする。
本発明の第4の特徴は、(イ)観察対象領域を有する試料保持部、この試料保持部の厚さよりも薄い厚さでこの試料保持部の側壁に接続された梁部、この梁部に接続され、試料保持部の底面の面積よりも大きく、且つ試料保持部の底面と同一平面レベルの底面を有する治具作製用ボディとを備えたペデスタル基板を用意する工程と、(ロ)観察対象領域に被測定薄膜を堆積する工程と、(ハ)被測定薄膜の表面に、電子線が透過可能な電子線透過厚みで定義される線幅のマスクを形成する工程と、(ニ)このマスクを用いて、被測定薄膜と被測定薄膜の下部の試料保持部の一部を選択的にエッチングし、被測定薄膜と試料保持部からなるリッジ構造を形成する工程と、(ホ)梁部において、治具作製用ボディから試料保持部を分離し、互いに対向する側面間で電子線透過厚みより厚い固定部厚さを定義された裾部、及びこの裾部の上部にリッジ構造を有する積層体を得る工程とを含む測定試料の作製方法であることを要旨とする。
【0013】
本発明の第5の特徴は、(イ)基板の表面に被測定薄膜を堆積する工程と、(ロ)被測定薄膜の表面に、電子線が透過可能な電子線透過厚みで定義される線幅のマスクを形成する工程と、(ハ)このマスクを用いて、被測定薄膜と被測定薄膜の下部の基板の一部を選択的にエッチングし、被測定薄膜と基板からなるリッジ構造を形成する工程と、(ニ)基板の一部に分離溝を形成し、この分離溝により、試料保持部、この試料保持部の厚さよりも薄い厚さでこの試料保持部の側壁に接続された梁部、この梁部に接続され、試料保持部の底面の面積よりも大きく、且つ試料保持部の底面と同一平面レベルの底面を有する治具作製用ボディとを備えたペデスタル基板構造を形成する工程と、(ホ)梁部において、治具作製用ボディから試料保持部を分離し、互いに対向する側面間で電子線透過厚みより厚い固定部厚さを定義された裾部、及びこの裾部の上部にリッジ構造を有する積層体を得る工程とを含む測定試料の作製方法であることを要旨とする。
【0014】
本発明の第6の特徴は、(イ)観察対象領域を有する試料保持部、この試料保持部の厚さよりも薄い厚さでこの試料保持部の側壁に接続された梁部、この梁部に接続され、試料保持部の底面の面積よりも大きく、且つ試料保持部の底面と同一平面レベルの底面を有する治具作製用ボディとを備えたペデスタル基板を用意する工程と、(ロ)観察対象領域に被測定薄膜を堆積する工程と、(ハ)被測定薄膜の表面に、電子線が透過可能な電子線透過厚みで定義される線幅のマスクを形成する工程と、(ニ)このマスクを用いて、被測定薄膜と被測定薄膜の下部の試料保持部の一部を選択的にエッチングし、被測定薄膜と試料保持部からなるリッジ構造を形成する工程と、(ホ)梁部において、治具作製用ボディから試料保持部を分離し、互いに対向する側面間で電子線透過厚みより厚い固定部厚さを定義された裾部、及びこの裾部の上部にリッジ構造を有する積層体を得る工程と、(へ)固定部厚さと同等以下の深さで、積層体の厚さよりも大きな幅を有した試料載置溝を有し、且つこの試料載置溝に積層体の側面とこの試料載置溝の底面が平行になるように載置した状態における試料の中心位置において、積層体の厚さ方向に測った試料の厚みよりも大きな奥行きと、リッジ部の長さ方向に測った積層体の長さよりも小さな幅を有する電子線通過窓を有する試料ホルダを用意する工程と、(ト)試料載置溝に積層体の側面とこの試料載置溝の底面が平行になるように載置する工程と、(チ)試料押さえの一部をリッジ部の長さ方向の端部において裾部に接触させ、試料載置溝に積層体を固定する工程と、(リ)電子線通過窓に電子線が通過するように電子線を照射し、試料の透過電子線像を得る工程とを含む測定方法であることを要旨とする。
【0015】
本発明の第7の特徴は、(イ)基板の表面に被測定薄膜を堆積する工程と、(ロ)被測定薄膜の表面に、電子線が透過可能な電子線透過厚みで定義される線幅のマスクを形成する工程と、(ハ)このマスクを用いて、被測定薄膜と被測定薄膜の下部の基板の一部を選択的にエッチングし、被測定薄膜と基板からなるリッジ構造を形成する工程と、(ニ)基板の一部に分離溝を形成し、この分離溝により、試料保持部、この試料保持部の厚さよりも薄い厚さでこの試料保持部の側壁に接続された梁部、この梁部に接続され、試料保持部の底面の面積よりも大きく、且つ試料保持部の底面と同一平面レベルの底面を有する治具作製用ボディとを備えたペデスタル基板構造を形成する工程と、(ホ)梁部において、治具作製用ボディから試料保持部を分離し、互いに対向する側面間で電子線透過厚みより厚い固定部厚さを定義された裾部、及びこの裾部の上部にリッジ構造を有する積層体を得る工程と、(ヘ)固定部厚さと同等以下の深さで、積層体の厚さよりも大きな幅を有した試料載置溝を有し、且つこの試料載置溝に積層体の側面とこの試料載置溝の底面が平行になるように載置した状態における試料の中心位置において、積層体の厚さ方向に測った試料の厚みよりも大きな奥行きと、リッジ部の長さ方向に測った積層体の長さよりも小さな幅を有する電子線通過窓を有する試料ホルダを用意する工程と、(ト)試料載置溝に積層体の側面とこの試料載置溝の底面が平行になるように載置する工程と、(チ)試料押さえの一部をリッジ部の長さ方向の端部において裾部に接触させ、試料載置溝に積層体を固定する工程と、(リ)電子線通過窓に電子線が通過するように電子線を照射し、試料の透過電子線像を得る工程とを含む測定方法であることを要旨とする。
【0016】
【発明の実施の形態】
次に、図面を参照して、本発明の第1及び第2の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。但し、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。また図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
【0017】
また、以下に示す第1及び第2の実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。この発明の技術的思想は、特許請求の範囲において、種々の変更を加えることができる。
【0018】
(第1の実施の形態)
<ペデスタル基板>
本発明の第1の実施の形態に係るペデスタル基板は図1に示すように、試料保持部3、梁部8及び治具作製用ボディ4とを備える。試料保持部3は、頂部に電子顕微鏡観察用の試料を搭載する観察対象領域1を有する。梁部8は、観察対象領域1に垂直方向に測った試料保持部3の厚さよりも薄い厚さを有し、この試料保持部3の観察対象領域1を定義する立体形状を構成する複数の側壁の少なくとも1の側壁に接続されている。治具作製用ボディ4は、この梁部8に接続され、試料保持部3の底面の面積よりも大きく、且つ試料保持部3の底面と同一平面レベルの底面を有する治具作製用ボディ4とを備える。梁部8は、試料保持部3と治具作製用ボディ4とを分離する分離溝21の底部に形成された残存部により狭窄構造として形成されている。ペデスタル基板の材料としては、金属、半導体、絶縁体のいずれもが使用可能である。後述するように梁部8において劈開する場合は、単結晶基板が望ましいことは勿論である。半導体としてはシリコン(Si)等の単元素半導体でも、ガリウムヒ素(GaAs)等の化合物半導体でも構わない。
【0019】
治具作製用ボディ4の長さLはピンセットではなく手で扱える長さ、例えばL=3mm〜30mm程度に選ぶことが可能である。より好ましくは、L=5mm〜20mm程度に選べばよい。即ち、代表的な、治具作製用ボディ4の大きさは、L=10mmとして、1.5mm×10mm程度あると扱い易くなる。しかし、治具作製用ボディ4の大きさは、エッチング装置に導入できる程度の大きさならばどんな大きさでもよいとする。
【0020】
観察対象領域1を頂部に有する試料保持部3は、後述するように、治具作製用ボディ4と分離することでTEM装置の測定チャンバに導入できる程度の大きさとする。観察対象領域1はFIB法の際に切り出すペデスタルの大きさと同等の0.2mm×1.5mm程度とするが、TEM装置の測定チャンバに導入することが可能ならばどのような大きさでもよい。
【0021】
図1は試料保持部3と治具作製用ボディ4とを接続する梁部8の上部に分離溝21を有するが、図8に示すように、試料保持部3の周囲に4本の分離溝22a,22b,22c,22dを、分離溝21と同等の深さで形成してもよい。梁部8の厚さ、即ち、分離溝21の底部からペデスタル基板の裏面までの厚さは、劈開又は裏面から研磨することで、試料保持部3と治具作製用ボディ4とが分離可能な厚さとする。具体的には梁部8の厚さは、50μm程度であれば容易に劈開することが可能である。しかし、劈開若しくは研磨することで、試料保持部3と治具作製用ボディ4とが分離できる厚さならば、梁部8はどのような厚さでも構わない。
【0022】
本発明の第1の実施の形態に係るペデスタル基板によれば、予め、分離溝21で区分されたペデスタル基板の観察対象領域1に半導体装置(半導体集積回路)のパターン形成や被測定薄膜5等を成膜することができるので、ダイシングソーによる切り出し加工が不要となり、測定試料(TEM観察用の試料)の作製がより簡便になる。
【0023】
<ペデスタル基板を用いた測定試料の作製方法>
図1のペデスタル基板を用いた場合の本発明の第1の実施の形態に係る測定試料(TEM観察用の試料)の作製方法を、図2及び図3を用いて説明する。
【0024】
(イ)先ず、図1に示すような、観察対象領域1を有する試料保持部3、この試料保持部3の厚さよりも薄い厚さでこの試料保持部3の側壁に接続された梁部8、この梁部8に接続され、試料保持部3の底面の面積よりも大きく、且つ試料保持部3の底面と同一平面レベルの底面を有する治具作製用ボディ4とを備えたペデスタル基板を用意する;
(ロ)次に、図2(a)に示すように観察対象領域1に被測定薄膜5を堆積する。図2(a)においては、治具作製用ボディ4の表面にも、被測定薄膜5が堆積された状態を示している。また、分離溝21の内部にも被測定薄膜5が堆積されうるが、図2(a)では図示を省略している。但し、図2(a)では被測定薄膜5が観察対象領域1及び治具作製用ボディ4の表面の全面を覆っているが、観察対象領域1の一部だけ成膜するような選択的堆積(選択成長)等をしてもよい。選択的堆積には例えば、リフトオフ法を採用可能である。以下では説明を簡略化するために観察対象を被測定薄膜5で説明するが、観察対象が半導体装置(半導体集積回路)のパターンの場合、観察対象領域1にリソグラフィー技術やRIE技術を用いて、半導体装置(半導体集積回路)のパターンを作製すればよい;
(ハ)そして、図2(b)に示すように、被測定薄膜5の表面に、電子線が透過可能な電子線透過厚みdで定義される線幅のマスク6を形成する。図2(b)は被測定薄膜5の表面に、柱状(リッジ形状)のマスク6を形成した場合の斜視図である。マスク6の幅は、電子線透過厚みdを考慮して300nm以下程度とする。FIB法では、W(CO)等のタングステンを含む有機ガスをGaイオンで分解、堆積させることでマスク6を作製することができる。リソグラフィー法を用いる場合は、レジストを成膜後に感光させて現像し、マスク6を形成することができる。マスク6の材料は無機材料若しくは有機材料どちらでもよい。例えば電子線(EB)リソグラフィーの場合、レジストとしてPMMA(ポリメチルメタアクリレート)を用いて、EB描画装置で幅300nm以下の半導体装置(半導体集積回路)のパターンを描画すればよい。この場合、マスク6の形成予定部分を開口部(窓部)とするパターンをEB描画し、更に現像液で、下地が開口部(窓部)の内部に露出するように、レジストを取り除いた後に、ニッケル(Ni)やクロム(Cr)等の金属を蒸着する。そして、有機溶剤でレジストを取り除く、いわゆるリフトオフ法により、図2(b)に示すような、NiやCr等の金属からなる所望のマスク6を形成できる;
(ニ)このマスク6を用いて、被測定薄膜5と被測定薄膜5の下部の試料保持部3の一部を図2(c)に示すように選択的にエッチングし、被測定薄膜5と試料保持部3からなるリッジ構造を形成する。従来のFIB法の場合、イオンエッチング加工前に観察対象領域1の表面に対して垂直な断面を形成するために垂直合わせが必要となる。本発明の第1の実施の形態に係るTEM観察用の試料作製方法では、観察対象領域1を含む試料保持部3と治具作製用ボディ4を加えたペデスタル基板の裏面部分の面積が広く、エッチング装置の試料ホルダと観察対象領域1の表面を簡単に平行に設定できる。更に、FIB法のように、エッチング装置の試料ホルダに対してイオンビームを予め垂直に合わせておく垂直合わせの手順が不要となる。つまり、エッチング装置の試料ホルダに載せるだけでイオンビームを垂直に照射することが可能となる。イオンエッチングはFIB法の場合Gaイオンであり、リソグラフィー法の場合はフッ素や塩素系のガス、例えばClやSF等を用いてRIE法を行うか、ArやXeといった希ガスイオンを用いてもよい。マスク6の材料及び高さは、薄片化された試料保持部3からなる試料保持台(ペデスタル)を形成可能できれば、つまりイオンエッチングでマスク6が消失しなければ材料や高さを問わない;
(ホ)更に、図3に示すように梁部8において、図3(a)に示す治具作製用ボディ4から図3(b)に示すように試料保持部3を分離する。図3では、劈開によって被測定薄膜5の薄片部分を頂部に有する試料保持部3と治具作製用ボディ4とを分離している。この結果、図3(b)に示すようにし、互いに対向する側面間で電子線透過厚みdより厚い固定部厚さTを定義された裾部3s、及びこの裾部3sの上部にリッジ構造を有する積層体(3,7,6)を得る。この様に、試料保持部3と治具作製用ボディ4とを分離することで、TEM装置の測定チャンバに導入することが可能になる。
【0025】
なお、図3(c)に示すように、裾部3sが段差構造を有していても良い。この場合は段差構造の内で、最も広い幅T(T>T)が固定部厚さTを定義する。
【0026】
本発明の第1の実施の形態に係る測定試料の作製方法によれば、観察対象領域1を有する試料保持部3と治具作製用ボディ4が一体であることで測定試料の作製時の試料の扱いが容易になる。更に、底面の面積が大きな治具作製用ボディ4を備えているので、自動的にイオンビームの照射方向を予めエッチング装置のホルダに垂直に照射するようになり、観察対象領域1の垂直合わせが不要になる。加えて、第1の実施の形態に係る測定試料の作製方法によれば予め区分されたペデスタル基板に半導体装置(半導体集積回路)のパターン形成や被測定薄膜5等を成膜することでダイシングソーによる切り出し加工が不要となり試料作製がより簡便になる。
【0027】
本発明の第1の実施の形態に係る測定試料の作製方法によれば、切り出し加工時の切削屑による試料損傷を防止するためにイオンエッチング後の観察対象領域を有機溶剤に溶解可能なレジストやワックスを保護膜として塗布してから切り出す必要もない。このため、レジストやワックスを塗布する工程及びレジストやワックスを溶剤で除去する工程で薄片化領域を損傷することもない。更には、溶剤やレジストの残渣がTEM観察する場合にガスを放出し、電子線を照射した箇所がカーボン汚染する問題も生じない。
【0028】
<ペデスタル基板を用いない測定試料の作製方法>
次に、図1のペデスタル基板を用いない場合の本発明の第1の実施の形態に係る測定試料の作製方法を説明する。ペデスタル基板を用いない場合
も、図2及び図3を用いて説明可能である。
【0029】
(イ)先ず、半導体ウェハ等の基板の表面に被測定薄膜5を堆積する。半導体ウェハ等の種々の基板上に観察対象とする被測定薄膜5や半導体装置(半導体集積回路)のパターンを形成可能である;
(ロ)基板の一部に、基板の表面側から分離溝21を形成する。例えば、被測定薄膜5の一部や半導体装置(半導体集積回路)のパターンの周囲に、ダイシングソーを用いて分離溝21を形成すればよい。この分離溝21により、図2(a)に示すように、試料保持部3、この試料保持部3の厚さよりも薄い厚さでこの試料保持部3の側壁に接続された梁部8、この梁部8に接続され、試料保持部3の底面の面積よりも大きく、且つ試料保持部3の底面と同一平面レベルの底面を有する治具作製用ボディ4とを備えたペデスタル基板と同様な構造が形成される。ダイシングソーを用いた分離溝21も、図1のTEM観察用ペデスタル基板と同様に、観察対象領域1の周囲を複数の分離溝22a,22b,22c,22dで囲む構造でもよい(図8参照。)。いずれせよ、これらの分離溝は、研磨若しくは劈開で分離可能な厚さの梁部8を溝の底部に備える;
(ハ)次に、図2(b)に示すように、被測定薄膜5の表面に、電子線が透過可能な電子線透過厚みdで定義される線幅のマスク6を形成する;
(ニ)このマスク6を用いて、図2(c)に示すように、被測定薄膜5と被測定薄膜5の下部の基板の一部を選択的にエッチングし、被測定薄膜5と基板からなるリッジ構造を形成する;
(ホ)更に、図3に示すように、梁部8において、治具作製用ボディ4から試料保持部3を分離し、互いに対向する側面間で電子線透過厚みdより厚い固定部厚さTを定義された裾部3s、及びこの裾部3sの上部にリッジ構造を有する積層体(3,7,6)を得ることができる。
【0030】
なお、図1のペデスタル基板を用いない場合でも、FIB法及びリソグラフィー法のいずれによっても、マスク6を形成する工程と分離溝21を加工する工程とは前後しても構わず、図2(b)と同等の形状を得ることができる。例えば、以下のような工程でも構わない。
【0031】
(イ)基板の表面に被測定薄膜5を堆積する;
(ロ)被測定薄膜5の表面に、電子線が透過可能な電子線透過厚みdで定義される線幅のマスク6を形成し、図2(b)と同等の形状を得ることができる。但し、この段階では、分離溝21は形成されていない;
(ハ)このマスク6を用いて、被測定薄膜5と被測定薄膜5の下部の基板の一部を選択的にエッチングし、図2(c)に示すとほぼ同様なように被測定薄膜5と基板からなるリッジ構造を形成する。但し、この段階でも、未だ、分離溝21は形成されていない;
(ニ)基板の一部に分離溝21を形成し、この分離溝21により、試料保持部3、この試料保持部3の厚さよりも薄い厚さでこの試料保持部3の側壁に接続された梁部8、この梁部8に接続され、試料保持部3の底面の面積よりも大きく、且つ試料保持部3の底面と同一平面レベルの底面を有する治具作製用ボディ4とを備えたペデスタル基板構造を形成する;
(ホ)この後、図3に示すように、梁部8において、治具作製用ボディ4から試料保持部3を分離し、互いに対向する側面間で電子線透過厚みdより厚い固定部厚さTを定義された裾部3s、及びこの裾部3sの上部にリッジ構造を有する積層体(3,7,6)を得ることができる。
【0032】
リソグラフィー法の場合はレジストを成膜したペデスタル基板をダイシングソーで分離溝21を形成する工程を施し、その後でリソグラフィー工程の感光及び現像してもよい。
【0033】
ペデスタル基板を用いない場合の測定試料の作製方法においても、イオンエッチング後の観察対象領域を有機溶剤に溶解可能なレジストやワックスを保護膜として塗布してから切り出す必要もない。このため、レジストやワックスを塗布する工程及びレジストやワックスを溶剤で除去する工程で薄片化領域を損傷することもない。更には、溶剤やレジストの残渣がTEM観察する場合にガスを放出し、電子線を照射した箇所がカーボン汚染する問題も生じない。
【0034】
<測定試料組み立て体>
本発明の第1の実施の形態に係る測定試料組み立て体は、図4に示す試料ホルダ9に対し、図3(b)に示す積層体(3,7,6)を図6に示すように搭載し、図5に示す試料押さえ10を用い、図7に示すように積層体(3,7,6)を固定した構造である。
【0035】
図4に示すように、試料ホルダ9は、積層体(3,7,6)の固定部厚さTと同等以下の深さで、積層体(3,7,6)の厚さよりも大きな幅を有した試料載置溝11を有する。即ち、試料載置溝11の幅は、試料保持部3と試料7及びマスク6の合計の厚さ以上とする。試料載置溝11の深さは、試料保持部3の幅より極僅か浅いのが好ましい。具体的には観察対象領域1が0.2mm×1.5mmであった場合、試料載置溝11の深さは0.2mm以下、例えば0.19mm〜0.15mm程度に選定可能である。
【0036】
更に、試料ホルダ9は、この試料載置溝11に積層体(3,7,6)の側面とこの試料載置溝11の底面が平行になるように載置した状態(図6参照。)における試料7の中心位置において、積層体(3,7,6)の厚さ方向に測った試料7の厚みよりも大きな奥行きと、リッジ部3rの長さ方向に測った積層体(3,7,6)の長さよりも小さな幅を有する電子線通過窓12を有する。図4及び図6では、電子線通過窓12の形状は矩形で示しているが、被測定薄膜5に電子線が通過するように、電子線通過窓12が配置されていればよく、電子線通過窓12の形状はどのようなものでもよいことは勿論である。更に、試料ホルダ9には、図5に示す試料押さえ10を固定するためのネジ穴32a,32bが設けられている。
【0037】
図5はリング状の試料押さえ10を示している。この試料押さえ10には、この試料押さえ10を試料ホルダ9に対して固定するための、ネジが貫通するネジ穴(貫通孔)31a,31bが設けられている。図5ではリング状で示したが、積層体(3,7,6)の端部を押さえられ、且つ電子線の障害にならないトポロジーを有するならば、形状は問わない。試料押さえ10は、図7に示すように、試料載置溝11に積層体(3,7,6)を載置した状態において、リッジ部3rの長さ方向の端部において裾部3sに接触し、試料載置溝11に積層体(3,7,6)を固定している。試料ホルダ9のネジ穴(貫通孔)31a,31bをそれぞれ貫通する押えネジ(雄ネジ)33a,33bが、試料ホルダ9に設けられたネジ穴(雌ネジ)32a,32bに挿入され、試料載置溝11に積層体(3,7,6)が固定されている。
【0038】
本発明の第1の実施の形態に係る測定試料組み立て体においては、専用の試料ホルダ9及び試料押さえ10を用いているので、接着剤を用いて接着する工程が不要である。このため、接着剤若しくはこの溶剤からのガス放出によるカーボン汚染を防止できる。
【0039】
<TEM測定方法>
図7に示す本発明の第1の実施の形態に係る測定試料組み立て体を、TEM装置の測定チャンバに導入し、所定の到達真空度に到達したら、電子線通過窓12に電子線が通過するように電子線を照射し、試料7のTEM像を得ることができる。
【0040】
本発明の第1の実施の形態に係る測定試料組み立て体では、試料ホルダ9と試料押さえ10で積層体(3,7,6)を固定することができるため、FIB法のように試料冶具(ペデスタル)に接着剤で固定する工程が不要である。また、接着剤若しくはこの溶剤から真空中に放出されるガスもない。したがって、TEM測定(観察)時に接着剤、溶剤やレジストの残渣に起因したカーボン汚染を防止することができる。
【0041】
(第2の実施の形態)
<ペデスタル基板>
本発明の第2の実施の形態に係るペデスタル基板は図9に示すように、試料保持部3、梁部8及び治具作製用ボディ4とを備える。試料保持部3は、頂部に電子顕微鏡観察用の試料を搭載する観察対象領域1を有する。梁部8は、観察対象領域1に垂直方向に測った試料保持部3の厚さよりも薄い厚さを有し、この試料保持部3の観察対象領域1を定義する立体形状を構成する複数の側壁の少なくとも1の側壁に接続されている。治具作製用ボディ4は、この梁部8に接続され、試料保持部3の底面の面積よりも大きく、且つ試料保持部3の底面と同一平面レベルの底面を有する治具作製用ボディ4とを備える。但し、第1の実施の形態に係るペデスタル基板と異なり、梁部8は、試料保持部3と治具作製用ボディ4とを分離する上向きの分離溝23の天井部に形成された残存部により狭窄構造として形成されている。
【0042】
治具作製用ボディ4の長さLは、第1の実施の形態に係るペデスタル基板と同様に、ピンセットではなく手で扱える長さ、例えばL=3mm〜30mm程度、好ましくは、L=5mm〜20mm程度に選べばよい。第1の実施の形態に係るペデスタル基板で説明したように、観察対象領域1を頂部に有する試料保持部3は、後述するように、治具作製用ボディ4と分離することでTEM装置の測定チャンバに導入できる程度の大きさとする。
【0043】
図9は試料保持部3と治具作製用ボディ4とを接続する梁部8の上部に上向きの分離溝23を有するが、図8と同様な、試料保持部3の周囲に4本の上向き分離溝を、分離溝23と同等の深さで形成してもよい。
【0044】
本発明の第2の実施の形態に係るペデスタル基板によれば、予め、上向きの分離溝23で区分されたペデスタル基板の観察対象領域1に半導体装置(半導体集積回路)のパターン形成や被測定薄膜5等を成膜することができるので、ダイシングソーによる切り出し加工が不要となり、測定試料(TEM観察用の試料)の作製がより簡便になる。
【0045】
<ペデスタル基板を用いた測定試料の作製方法>
図9のペデスタル基板を用いた場合の本発明の第2の実施の形態に係る測定試料(TEM観察用の試料)の作製方法を、図10及び図11を用いて説明する。
【0046】
(イ)先ず、図9に示すような、観察対象領域1を有する試料保持部3、この試料保持部3の厚さよりも薄い厚さでこの試料保持部3の側壁に接続された梁部8、この梁部8に接続され、試料保持部3の底面の面積よりも大きく、且つ試料保持部3の底面と同一平面レベルの底面を有する治具作製用ボディ4とを備えたペデスタル基板を用意する;
(ロ)次に、図10(a)に示すように観察対象領域1に被測定薄膜5を堆積する。図10(a)においては、治具作製用ボディ4の表面にも、被測定薄膜5が連続的に(一様に)堆積された状態を示している。観察対象が半導体装置(半導体集積回路)のパターンの場合、観察対象領域1にリソグラフィー技術やRIE技術を用いて、半導体装置(半導体集積回路)のパターンを作製すればよい;
(ハ)そして、図10(b)に示すように、被測定薄膜5の表面に、電子線が透過可能な電子線透過厚みdで定義される線幅のマスク6を形成する。マスク6の幅は、電子線透過厚みdを考慮して300nm以下程度とする。第1の実施の形態に係る測定試料の作製方法と同様に、マスク6の形成予定部分を開口部(窓部)とするパターンをEB描画し、いわゆるリフトオフ法により、図10(b)に示すような、NiやCr等の金属からなる所望のマスク6を形成できる;
(ニ)このマスク6を用いて、被測定薄膜5と被測定薄膜5の下部の試料保持部3の一部を図10(c)に示すように選択的にエッチングし、被測定薄膜5と試料保持部3からなるリッジ構造を形成する。第2の実施の形態に係るTEM観察用の試料作製方法では、観察対象領域1を含む試料保持部3と治具作製用ボディ4を加えたペデスタル基板の裏面部分の面積が広く、エッチング装置の試料ホルダと観察対象領域1の表面を簡単に平行に設定できる。更に、FIB法のように、エッチング装置の試料ホルダに対してイオンビームを予め垂直に合わせておく垂直合わせの手順が不要となる。マスク6の材料及び高さは、薄片化された試料保持部3からなる試料保持台(ペデスタル)を形成可能できれば、つまりイオンエッチングでマスク6が消失しなければ材料や高さを問わない;
(ホ)更に、図11に示すように梁部8において、図11(a)に示す治具作製用ボディ4から図11(b)に示すように試料保持部3を分離する。図11では、劈開によって被測定薄膜5の薄片部分を頂部に有する試料保持部3と治具作製用ボディ4とを分離している。この結果、図11(b)に示すようにし、互いに対向する側面間で電子線透過厚みdより厚い固定部厚さTを定義された裾部3s、及びこの裾部3sの上部にリッジ構造を有する積層体(3,7,6)を得る。この様に、試料保持部3と治具作製用ボディ4とを分離することで、TEM装置の測定チャンバに導入することが可能になる。
【0047】
なお、図11(c)に示すように、裾部3sが段差構造を有していても良い。この場合は段差構造の内で、最も広い幅T(T>T)が固定部厚さTを定義する。
【0048】
第2の実施の形態に係る測定試料の作製方法によれば、観察対象領域1を有する試料保持部3と治具作製用ボディ4が一体であることで測定試料の作製時の試料の扱いが容易になる。更に、底面の面積が大きな治具作製用ボディ4を備えているので、自動的にイオンビームの照射方向を予めエッチング装置のホルダに垂直に照射するようになり、観察対象領域1の垂直合わせが不要になる。加えて、第2の実施の形態に係る測定試料の作製方法によれば予め区分されたペデスタル基板に半導体装置(半導体集積回路)のパターン形成や被測定薄膜5等を成膜することでダイシングソーによる切り出し加工が不要となり試料作製がより簡便になる。
【0049】
第2の実施の形態に係る測定試料の作製方法によれば、切り出し加工時の切削屑による試料損傷を防止するためにイオンエッチング後の観察対象領域を有機溶剤に溶解可能なレジストやワックスを保護膜として塗布してから切り出す必要もない。このため、レジストやワックスを塗布する工程及びレジストやワックスを溶剤で除去する工程で薄片化領域を損傷することもない。更には、溶剤やレジストの残渣がTEM観察する場合にガスを放出し、電子線を照射した箇所がカーボン汚染する問題も生じない。
【0050】
<ペデスタル基板を用いない測定試料の作製方法>
次に、図9のペデスタル基板を用いない場合の第2の実施の形態に係る測定試料の作製方法を説明する。ペデスタル基板を用いない場合
も、図10及び図11を用いて説明可能である。
【0051】
(イ)先ず、半導体ウェハ等の基板の表面に被測定薄膜5を堆積する。半導体ウェハ等の種々の基板上に観察対象とする被測定薄膜5や半導体装置(半導体集積回路)のパターンを形成可能である;
(ロ)基板の一部に基板の裏面側から、上向きの分離溝23を形成する。例えば、被測定薄膜5の一部や半導体装置(半導体集積回路)のパターンの周囲に、ダイシングソーを用いて上向きの分離溝23を形成すればよい。この上向きの分離溝23により、図10(a)に示すように、試料保持部3、この試料保持部3の厚さよりも薄い厚さでこの試料保持部3の側壁に接続された梁部8、この梁部8に接続され、試料保持部3の底面の面積よりも大きく、且つ試料保持部3の底面と同一平面レベルの底面を有する治具作製用ボディ4とを備えたペデスタル基板と同様な構造が形成される;
(ハ)次に、図10(b)に示すように、被測定薄膜5の表面に、電子線が透過可能な電子線透過厚みdで定義される線幅のマスク6を形成する;
(ニ)このマスク6を用いて、図10(c)に示すように、被測定薄膜5と被測定薄膜5の下部の基板の一部を選択的にエッチングし、被測定薄膜5と基板からなるリッジ構造を形成する;
(ホ)更に、図11に示すように、梁部8において、治具作製用ボディ4から試料保持部3を分離し、互いに対向する側面間で電子線透過厚みdより厚い固定部厚さTを定義された裾部3s、及びこの裾部3sの上部にリッジ構造を有する積層体(3,7,6)を得ることができる。
【0052】
なお、図9のペデスタル基板を用いない場合でも、FIB法及びリソグラフィー法のいずれによっても、マスク6を形成する工程と上向きの分離溝23を加工する工程とは前後しても構わず、図10(b)と同等の形状を得ることができる。
【0053】
(その他の実施の形態)
上記のように、本発明は第1及び第2の実施の形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。したがって、本発明の実施の形態に係る技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
【0054】
【発明の効果】
本発明によれば、TEM観察用試料を簡便に作製できるペデスタル基板を提供できる。
【0055】
更に、本発明によれば、TEM観察する際に溶剤やレジストの残渣に起因したガス放出のない電子顕微鏡用測定治具及びTEM用の測定試料組み立て体、更にはこの様なTEM用の測定試料の作製方法、更には、これらの治具や組み立て体を用いたTEMの測定方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係るペデスタル基板の基本構成を示す斜視図である。
【図2】本発明の第1の実施の形態に係る測定試料の作製方法の手順を示す工程図である(その1:分離前)。
【図3】本発明の第1の実施の形態に係る測定試料の作製方法の手順を示す工程図である(その2:分離後)。
【図4】本発明の第1の実施の形態に係る試料ホルダの平面図及び対応する断面図である。
【図5】本発明の第1の実施の形態に係る試料押さえの平面図である。
【図6】本発明の第1の実施の形態に係る試料ホルダにTEM試料を載置した場合の平面図及び対応する断面図である。
【図7】本発明の第1の実施の形態に係る試料ホルダにTEM試料を載置し、更に試料押さえで固定した測定試料組み立て体の平面図及び対応する断面図である。
【図8】本発明の第1の実施の形態の変形例に係るペデスタル基板の基本構成を示す斜視図である。
【図9】本発明の第2の実施の形態に係るペデスタル基板の基本構成を示す斜視図である。
【図10】本発明の第2の実施の形態に係る測定試料の作製方法の手順を示す工程図である(その1:分離前)。
【図11】本発明の第2の実施の形態に係る測定試料の作製方法の手順を示す工程図である(その2:分離後)。
【符号の説明】
1…観察対象領域
3…試料保持部
3r…リッジ部
3s…裾部
4…治具作製用ボディ
5…被測定薄膜
6…マスク
7…試料
8…梁部
9…試料ホルダ
11…試料載置溝
12…電子線透過窓
12…電子線通過窓
21,2a,22b,22c,22d、23…分離溝
31a,31b…ネジ穴(貫通孔)
32a,32b…ネジ穴
33a,33b…押えネジ(雄ネジ)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a pedestal substrate on which a sample for a transmission electron microscope (TEM) is mounted, a measurement jig for an electron microscope, a measurement sample assembly for a TEM, a method for preparing a measurement sample for a TEM, and a method for measuring a TEM.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a focused ion beam (FIB) method and a lithography method have been known for producing a cross-sectional TEM observation sample at a specific portion of a semiconductor device.
[0003]
In the FIB method, first, an observation target area having a thin film or a semiconductor integrated circuit pattern to be observed with a dicing saw is cut into a size of about 0.2 mm × 1.5 mm square, and the cut sample is attached to a jig with an adhesive. Fix it. Thereafter, a part of the sample cut out with a focused Ga ion beam of 5 to 30 keV is sputtered to thin a thin film to be observed or a semiconductor integrated circuit pattern to about 100 nm, thereby producing a TEM sample (Non-Patent Document 1). reference.).
[0004]
On the other hand, the lithography method is a method for producing a TEM sample using lithography and reactive etching (RIE). In the lithography method, first, a mask having a width of 300 nm or less for transmitting an electron beam is formed on a semiconductor substrate. Using this mask, the area around the mask is removed by RIE, leaving the area immediately below the mask. As a result, a thinned portion having the same width as the mask is formed, and a TEM sample is manufactured (see Non-Patent Document 2).
[0005]
[Patent Document 1]
JP-A-9-145567
[0006]
[Non-patent document 1]
Masao Hirasaka / Kentaro Asakura, “FIB / Ion Milling Technique Q & A”, p. 42-47 (2002)
[0007]
[Non-patent document 2]
Hyun-Jin Cho, Peter B, Griffin, and James D. Plummer, Material Research Society Symposium Proceedings (Mat. Res. Soc. Sym. ), Vol. 480, p. 217 (1997)
[0008]
[Problems to be solved by the invention]
As described above, in the FIB method, an observation target area of a semiconductor substrate is cut into a size of about 0.2 mm × 1.5 mm by a dicing saw as preprocessing. However, in order to perform FIB processing, it is necessary to fix the cut sample to a holding jig for fixing the sample with an adhesive. Further, when thinning the observation target region, it is necessary to adjust the orientation so that the surface of the observation target region and the incident direction of the Ga ion beam are perpendicular to each other. However, it is difficult to make the surface of the observation target area perpendicular to the bonding surface of the jig due to the thickness of the adhesive. Furthermore, the direction of the Ga ion beam must be vertically aligned with the surface of the observation target area. In addition, in the case of TEM observation, there is a defect that the gas irradiated from the adhesive causes carbon contamination at a portion irradiated with the electron beam.
[0009]
On the other hand, in the lithography method, there is a process of cutting out an observation target region using a dicing saw as a process after ion etching. However, the thinned thin films and patterns to be observed are fragile, and in order to prevent damage to the sample due to cutting chips during cutting, resist or wax that can dissolve the observation area after ion etching in an organic solvent is applied as a protective film. Then you have to cut it out. However, there is a possibility that the exfoliated region may be damaged in a step of applying a resist or wax and a step of removing the resist or wax with a solvent. Further, there is a disadvantage that when the solvent or the residue of the resist is observed by TEM, the gas is released, and the portion irradiated with the electron beam is carbon-contaminated.
[0010]
In view of the above problems, the present invention provides a pedestal substrate that can easily prepare a TEM observation sample, a measurement jig for an electron microscope that does not emit gas due to a solvent or a residue of a resist when performing TEM observation, and a TEM. It is an object of the present invention to provide a method for preparing a measurement sample assembly for a TEM, a method for preparing such a TEM measurement sample, and a method for measuring a TEM using these jigs and assemblies.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, a first feature of the present invention is that (a) a sample holding section having an observation target area on which a sample for electron microscope observation is mounted at the top, and (b) a vertical direction to the observation target area. A beam portion having a thickness smaller than the measured thickness of the sample holding portion and connected to at least one of a plurality of side walls forming a three-dimensional shape defining an observation target region of the sample holding portion; The gist is that the pedestal substrate is connected to the beam portion and has a jig manufacturing body having a larger area than the bottom surface of the sample holding portion and having the same level as the bottom surface of the sample holding portion. .
A second feature of the present invention is a sample having a skirt portion having a fixed portion thickness defined between opposing side surfaces and a ridge portion running in a direction parallel to the side surface with an electron beam transmission thickness at an upper portion of the skirt portion. The present invention relates to a measurement jig for an electron microscope for mounting a stacked body including a holding portion and a sample mounted on the ridge portion and traveling in a direction parallel to a side surface with an electron beam transmission thickness. That is, the measuring jig for an electron microscope according to the second feature of the present invention has (a) a sample mounting groove having a depth equal to or less than the thickness of the fixing portion and having a width larger than the thickness of the laminate. And the thickness of the sample measured in the thickness direction of the laminate at the center position of the sample in a state where the side surface of the laminate and the bottom surface of the sample placement groove are placed parallel to the sample placement groove. A sample holder having an electron beam passing window having a greater depth and a width smaller than the length of the laminate measured in the length direction of the ridge portion, and (b) a state in which the laminate is placed in the sample mounting groove. In the above, the gist of the invention is to provide a sample holder which is in contact with the skirt at the longitudinal end of the ridge portion and fixes the laminate in the sample mounting groove.
[0012]
A third feature of the present invention is that (a) a skirt portion having a fixed portion thickness defined between the side surfaces facing each other, and a ridge portion running in a direction parallel to the side surface with an electron beam transmission thickness above the skirt portion. A laminate including a sample holder having: a sample mounted on the ridge portion and traveling in a direction parallel to the side with an electron beam transmission thickness; and (b) a laminate having a depth equal to or less than the thickness of the fixed portion. A sample mounting groove having a width larger than the thickness of the sample mounting groove, and the center of the sample in a state where the side surface of the laminated body and the bottom surface of the sample mounting groove are placed parallel to the sample mounting groove. In the position, a sample holder having a depth greater than the thickness of the sample measured in the thickness direction of the laminate, and an electron beam passing window having a width smaller than the length of the laminate measured in the length direction of the ridge portion, (C) While the laminate is placed in the sample mounting groove, Contacting the skirt at the longitudinal end of the section, and summarized in that a measurement sample assembly comprising a sample retainer for fixing the laminate on the sample mounting 置溝.
A fourth feature of the present invention is that (a) a sample holder having an observation target area, a beam connected to a side wall of the sample holder with a thickness smaller than the thickness of the sample holder, and A step of preparing a pedestal substrate which is connected and has a jig-making body having a surface area larger than the area of the bottom surface of the sample holder and having the same level as the bottom surface of the sample holder; Depositing a thin film to be measured in a region, (c) forming a mask on the surface of the thin film to be measured having a line width defined by an electron beam transmission thickness through which an electron beam can pass, and (d) this mask Forming a ridge structure composed of the thin film to be measured and the sample holder by selectively etching the thin film to be measured and a part of the sample holder below the thin film to be measured, and , The sample holder is separated from the jig body, And a step of obtaining a laminated body having a ridge structure on the upper side of the hem portion having a fixed portion thickness larger than the electron beam transmission thickness between the opposite side surfaces. Make a summary.
[0013]
A fifth feature of the present invention is that (a) a step of depositing a thin film to be measured on the surface of a substrate, and (b) a line defined by an electron beam transmission thickness through which an electron beam can pass through the surface of the thin film to be measured. Forming a mask having a width; and (c) using the mask to selectively etch a thin film to be measured and a portion of a substrate below the thin film to be measured to form a ridge structure including the thin film to be measured and the substrate. And (d) forming a separation groove in a part of the substrate, and the separation groove is used to connect the sample holding portion to the side wall of the sample holding portion with a thickness smaller than the thickness of the sample holding portion. Forming a pedestal substrate structure including a part, a jig manufacturing body connected to the beam part, having an area larger than the area of the bottom surface of the sample holding part, and having the same level as the bottom surface of the sample holding part. And (e) in the beam section, from the jig-making body to the sample holder A step of obtaining a laminate having a fixed portion having a thickness larger than the electron beam transmission thickness between the side surfaces facing each other, and obtaining a laminate having a ridge structure on the upper portion of the bottom. The gist is that
[0014]
A sixth feature of the present invention is that (a) a sample holding portion having an observation target region, a beam portion having a thickness smaller than the thickness of the sample holding portion and connected to a side wall of the sample holding portion, A step of preparing a pedestal substrate which is connected and has a jig-making body having a surface area larger than the area of the bottom surface of the sample holder and having the same level as the bottom surface of the sample holder; Depositing a thin film to be measured in a region, (c) forming a mask on the surface of the thin film to be measured having a line width defined by an electron beam transmission thickness through which an electron beam can pass, and (d) this mask Forming a ridge structure composed of the thin film to be measured and the sample holder by selectively etching the thin film to be measured and a part of the sample holder below the thin film to be measured, and , The sample holder is separated from the jig body, A step of obtaining a skirt having a fixed portion thickness larger than the electron beam transmission thickness between the opposite side surfaces, and a laminate having a ridge structure on an upper portion of the hem portion; A sample mounting groove having a depth greater than the thickness of the stacked body is provided, and the sample mounting groove is placed so that the side surface of the stacked body and the bottom surface of the sample mounting groove are parallel to each other. An electron beam passing window having a depth greater than the thickness of the sample measured in the thickness direction of the laminate, and a width smaller than the length of the laminate measured in the length direction of the ridge portion, at the center position of the sample in the sunk state. Preparing a sample holder having: (g) placing the sample mounting groove in the sample mounting groove so that the side surface of the laminated body and the bottom surface of the sample mounting groove are parallel to each other; To the skirt at the longitudinal end of the ridge and stack it on the sample mounting groove. And fixing the, and summarized in that a (re) irradiated with an electron beam so that the electron beam in the electron beam passage window passes, the measurement method comprising the steps of: obtaining a transmission electron beam image of the sample.
[0015]
A seventh feature of the present invention is that (a) a step of depositing a thin film to be measured on the surface of a substrate, and (b) a line defined by an electron beam transmission thickness through which an electron beam can pass through the surface of the thin film to be measured. Forming a mask having a width; and (c) using the mask to selectively etch a thin film to be measured and a portion of a substrate below the thin film to be measured to form a ridge structure including the thin film to be measured and the substrate. And (d) forming a separation groove in a part of the substrate, and the separation groove is used to connect the sample holding portion to the side wall of the sample holding portion with a thickness smaller than the thickness of the sample holding portion. Forming a pedestal substrate structure including a part, a jig manufacturing body connected to the beam part, having an area larger than the area of the bottom surface of the sample holding part, and having the same level as the bottom surface of the sample holding part. And (e) in the beam section, from the jig-making body to the sample holder Separating and obtaining a skirt having a fixed portion thickness larger than the electron beam transmission thickness between the opposing side surfaces, and a laminate having a ridge structure on the upper portion of the hem portion; A sample mounting groove having a width less than or equal to the thickness of the stacked body, and the side surface of the stacked body and the bottom surface of the sample mounting groove are parallel to the sample mounting groove. At the center position of the sample in the mounted state, it has a depth greater than the thickness of the sample measured in the thickness direction of the laminate, and a width smaller than the length of the laminate measured in the length direction of the ridge portion. A step of preparing a sample holder having an electron beam passing window; (g) a step of mounting the sample mounting groove so that the side surface of the laminate and the bottom surface of the sample mounting groove are parallel to each other; Part of the presser is brought into contact with the skirt at the longitudinal end of the ridge, The method includes a step of fixing the laminate in the material mounting groove and a step of (i) irradiating the electron beam so that the electron beam passes through the electron beam passing window to obtain a transmission electron beam image of the sample. That is the gist.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, first and second embodiments of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic, and the relationship between the thickness and the plane dimension, the ratio of the thickness of each layer, and the like are different from actual ones. Therefore, specific thicknesses and dimensions should be determined in consideration of the following description. In addition, it goes without saying that parts having different dimensional relationships and ratios are included between the drawings.
[0017]
The first and second embodiments described below exemplify an apparatus and a method for embodying the technical idea of the present invention, and the technical idea of the present invention The material, shape, structure, arrangement, etc. are not specified below. Various changes can be made to the technical concept of the present invention within the scope of the claims.
[0018]
(First Embodiment)
<Pedestal substrate>
As shown in FIG. 1, the pedestal substrate according to the first embodiment of the present invention includes a sample holding unit 3, a beam unit 8, and a jig manufacturing body 4. The sample holding unit 3 has an observation target area 1 on which a sample for electron microscope observation is mounted on the top. The beam portion 8 has a thickness smaller than the thickness of the sample holder 3 measured in a direction perpendicular to the observation target region 1, and includes a plurality of three-dimensional shapes that define the observation target region 1 of the sample holder 3. It is connected to at least one of the side walls. The jig manufacturing body 4 is connected to the beam portion 8, and has a larger area than the bottom surface of the sample holder 3 and has a bottom surface flush with the bottom surface of the sample holder 3. Is provided. The beam portion 8 is formed as a constricted structure by a remaining portion formed at the bottom of the separation groove 21 for separating the sample holding portion 3 and the jig manufacturing body 4. As the material of the pedestal substrate, any of metal, semiconductor, and insulator can be used. In the case of cleavage at the beam portion 8 as described later, it is needless to say that a single crystal substrate is desirable. The semiconductor may be a single element semiconductor such as silicon (Si) or a compound semiconductor such as gallium arsenide (GaAs).
[0019]
The length L of the jig manufacturing body 4 can be selected not to be tweezers but to be a length that can be handled by hand, for example, L = about 3 mm to 30 mm. More preferably, L may be selected to be about 5 mm to 20 mm. That is, a typical size of the jig manufacturing body 4 is about 1.5 mm × 10 mm, where L = 10 mm, so that it becomes easy to handle. However, it is assumed that the jig manufacturing body 4 may have any size as long as it can be introduced into the etching apparatus.
[0020]
The sample holding section 3 having the observation target area 1 at the top has a size such that it can be introduced into the measurement chamber of the TEM apparatus by being separated from the jig manufacturing body 4 as described later. The observation target area 1 is about 0.2 mm × 1.5 mm, which is the same as the size of a pedestal cut out in the FIB method, but may be any size as long as it can be introduced into a measurement chamber of a TEM device.
[0021]
FIG. 1 has a separation groove 21 above the beam 8 connecting the sample holder 3 and the jig manufacturing body 4, and as shown in FIG. 22a, 22b, 22c, and 22d may be formed at the same depth as the separation groove 21. The thickness of the beam 8, that is, the thickness from the bottom of the separation groove 21 to the back surface of the pedestal substrate can be separated from the sample holding unit 3 and the jig manufacturing body 4 by cleavage or polishing from the back surface. Thickness. Specifically, if the thickness of the beam portion 8 is about 50 μm, it can be easily cleaved. However, the beam portion 8 may have any thickness as long as the sample holding portion 3 and the jig manufacturing body 4 can be separated by cleavage or polishing.
[0022]
According to the pedestal substrate according to the first embodiment of the present invention, the pattern formation of the semiconductor device (semiconductor integrated circuit), the thin film 5 to be measured, and the like are previously formed in the observation target region 1 of the pedestal substrate divided by the separation groove 21. Can be formed, so that a cutting process using a dicing saw is not required, and the production of a measurement sample (a sample for TEM observation) becomes simpler.
[0023]
<Method for preparing measurement sample using pedestal substrate>
A method of manufacturing a measurement sample (a sample for TEM observation) according to the first embodiment of the present invention using the pedestal substrate of FIG. 1 will be described with reference to FIGS.
[0024]
(A) First, as shown in FIG. 1, a sample holder 3 having an observation target area 1 and a beam 8 connected to a side wall of the sample holder 3 with a thickness smaller than the thickness of the sample holder 3. A pedestal substrate which is connected to the beam portion 8 and has a jig manufacturing body 4 having a larger area than the bottom surface of the sample holder 3 and having the same level as the bottom surface of the sample holder 3 is prepared. Do;
(B) Next, as shown in FIG. 2A, a thin film 5 to be measured is deposited on the observation target area 1. FIG. 2A shows a state in which the thin film 5 to be measured is also deposited on the surface of the jig manufacturing body 4. Further, the thin film 5 to be measured can be deposited inside the separation groove 21, but is not shown in FIG. In FIG. 2A, the thin film 5 to be measured covers the entire surface of the observation target region 1 and the surface of the jig manufacturing body 4, but is selectively deposited such that only a part of the observation target region 1 is formed. (Selective growth) or the like may be performed. For the selective deposition, for example, a lift-off method can be adopted. In the following, the observation target will be described with a thin film 5 to be measured for simplicity of description. However, when the observation target is a pattern of a semiconductor device (semiconductor integrated circuit), the lithography technology or the RIE technology is used for the observation target region 1. What is necessary is just to make a pattern of a semiconductor device (semiconductor integrated circuit);
(C) Then, as shown in FIG. 2B, a mask 6 having a line width defined by an electron beam transmission thickness d capable of transmitting an electron beam is formed on the surface of the thin film 5 to be measured. FIG. 2B is a perspective view when a columnar (ridge-shaped) mask 6 is formed on the surface of the thin film 5 to be measured. The width of the mask 6 is about 300 nm or less in consideration of the electron beam transmission thickness d. In the FIB method, W (CO 6 The mask 6 can be manufactured by decomposing and depositing an organic gas containing tungsten, such as), with Ga ions. In the case of using the lithography method, a mask 6 can be formed by forming a resist and exposing and developing the resist. The material of the mask 6 may be either an inorganic material or an organic material. For example, in the case of electron beam (EB) lithography, a pattern of a semiconductor device (semiconductor integrated circuit) having a width of 300 nm or less may be drawn by an EB drawing apparatus using PMMA (polymethyl methacrylate) as a resist. In this case, a pattern having an opening (window) as a portion where the mask 6 is to be formed is drawn by EB, and after removing the resist with a developing solution such that the base is exposed inside the opening (window). Then, a metal such as nickel (Ni) or chromium (Cr) is deposited. Then, by a so-called lift-off method of removing the resist with an organic solvent, a desired mask 6 made of a metal such as Ni or Cr can be formed as shown in FIG.
(D) Using the mask 6, the thin film 5 to be measured and a part of the sample holder 3 below the thin film 5 to be measured are selectively etched as shown in FIG. A ridge structure including the sample holder 3 is formed. In the case of the conventional FIB method, vertical alignment is required to form a cross section perpendicular to the surface of the observation target region 1 before ion etching. In the method for preparing a sample for TEM observation according to the first embodiment of the present invention, the area of the back surface of the pedestal substrate including the sample holding unit 3 including the observation target region 1 and the jig manufacturing body 4 is large, The sample holder of the etching apparatus and the surface of the observation target area 1 can be easily set in parallel. Further, a vertical alignment procedure for previously aligning the ion beam vertically with respect to the sample holder of the etching apparatus as in the FIB method is not required. That is, it is possible to irradiate the ion beam vertically only by placing the ion beam on the sample holder of the etching apparatus. In the case of the FIB method, the ion etching is Ga ions. In the case of the lithography method, a fluorine or chlorine-based gas such as Cl is used. 2 And SF 6 Or the like, or a rare gas ion such as Ar or Xe may be used. The material and height of the mask 6 are not limited as long as a sample holder (pedestal) including the sliced sample holder 3 can be formed, that is, as long as the mask 6 does not disappear by ion etching;
(E) Further, as shown in FIG. 3, at the beam portion 8, the sample holder 3 is separated from the jig manufacturing body 4 shown in FIG. 3A, as shown in FIG. 3B. In FIG. 3, the sample holder 3 having the thin section of the thin film 5 to be measured at the top and the jig manufacturing body 4 are separated by cleavage. As a result, as shown in FIG. 3B, a skirt 3s having a fixed portion thickness T larger than the electron beam transmission thickness d between the opposing side surfaces, and a ridge structure above the skirt 3s. To obtain a laminated body (3, 7, 6). By separating the sample holding unit 3 and the jig manufacturing body 4 in this manner, it becomes possible to introduce the sample holding unit 3 into the measurement chamber of the TEM device.
[0025]
In addition, as shown in FIG. 3C, the skirt 3s may have a step structure. In this case, the widest width T among the step structures 1 (T 1 > T 2 ) Defines the fixed part thickness T.
[0026]
According to the method for manufacturing a measurement sample according to the first embodiment of the present invention, the sample holder 3 having the observation target area 1 and the jig manufacturing body 4 are integrated, so that the sample at the time of manufacturing the measurement sample is formed. Is easier to handle. Furthermore, since the jig manufacturing body 4 having a large bottom surface area is provided, the irradiation direction of the ion beam is automatically irradiated vertically to the holder of the etching apparatus in advance, and the vertical alignment of the observation target area 1 can be performed. It becomes unnecessary. In addition, according to the method for preparing a measurement sample according to the first embodiment, a dicing saw is formed by forming a pattern of a semiconductor device (semiconductor integrated circuit) and forming a thin film 5 to be measured on a pedestal substrate that has been divided in advance. This eliminates the need for the cutting process, thereby simplifying the sample preparation.
[0027]
According to the method for preparing a measurement sample according to the first embodiment of the present invention, a resist capable of dissolving an observation target region after ion etching in an organic solvent in order to prevent sample damage due to cutting chips at the time of cutting processing, There is no need to apply wax as a protective film and then cut it out. Therefore, the exfoliation area is not damaged in the step of applying the resist or the wax and the step of removing the resist or the wax with the solvent. Further, there is no problem that the solvent or the residue of the resist emits a gas when the TEM observation is performed, and the portion irradiated with the electron beam is carbon-contaminated.
[0028]
<Method of preparing measurement sample without using pedestal substrate>
Next, a method of manufacturing a measurement sample according to the first embodiment of the present invention when the pedestal substrate of FIG. 1 is not used will be described. When not using a pedestal substrate
Can also be explained using FIG. 2 and FIG.
[0029]
(A) First, the thin film 5 to be measured is deposited on the surface of a substrate such as a semiconductor wafer. It is possible to form a pattern of a thin film 5 to be measured and a semiconductor device (semiconductor integrated circuit) to be observed on various substrates such as a semiconductor wafer;
(B) Separation grooves 21 are formed in a part of the substrate from the front side of the substrate. For example, the separation groove 21 may be formed using a dicing saw around a part of the thin film 5 to be measured or around the pattern of the semiconductor device (semiconductor integrated circuit). As shown in FIG. 2A, the sample holding portion 3 and the beam portion 8 connected to the side wall of the sample holding portion 3 with a thickness smaller than the thickness of the sample holding portion 3 are formed by the separation grooves 21. Structure similar to a pedestal substrate provided with a jig manufacturing body 4 connected to the beam portion 8 and having a larger area than the bottom surface of the sample holding portion 3 and having the same level as the bottom surface of the sample holding portion 3. Is formed. The separation groove 21 using a dicing saw may have a structure in which the periphery of the observation target area 1 is surrounded by a plurality of separation grooves 22a, 22b, 22c, and 22d, similarly to the pedestal substrate for TEM observation in FIG. 1 (see FIG. 8). ). In any case, these separation grooves are provided with beam portions 8 at the bottom of the grooves that can be separated by polishing or cleavage.
(C) Next, as shown in FIG. 2B, a mask 6 having a line width defined by an electron beam transmission thickness d capable of transmitting an electron beam is formed on the surface of the thin film 5 to be measured;
(D) Using the mask 6, as shown in FIG. 2C, the thin film 5 to be measured and a part of the substrate below the thin film 5 to be measured are selectively etched, and the thin film 5 to be measured and the substrate are removed. Forming a ridge structure
(E) Further, as shown in FIG. 3, the beam holding portion 8 separates the sample holding portion 3 from the jig manufacturing body 4 at the beam portion 8, and the fixed portion thickness T larger than the electron beam transmission thickness d between the opposing side surfaces. And a laminate (3, 7, 6) having a ridge structure above the skirt 3s.
[0030]
Note that, even when the pedestal substrate in FIG. 1 is not used, the step of forming the mask 6 and the step of processing the separation groove 21 may be performed before or after the FIB method or the lithography method. ) Can be obtained. For example, the following steps may be used.
[0031]
(A) depositing the thin film 5 to be measured on the surface of the substrate;
(B) A mask 6 having a line width defined by an electron beam transmission thickness d capable of transmitting an electron beam is formed on the surface of the thin film 5 to be measured, and a shape equivalent to that shown in FIG. 2B can be obtained. However, at this stage, the separation groove 21 is not formed;
(C) Using the mask 6, the thin film 5 to be measured and a part of the substrate under the thin film 5 to be measured are selectively etched, and the thin film 5 to be measured is substantially similar to that shown in FIG. And a ridge structure composed of a substrate is formed. However, even at this stage, the separation groove 21 has not been formed yet;
(D) A separation groove 21 is formed in a part of the substrate, and the separation groove 21 is connected to the sample holder 3 and a side wall of the sample holder 3 with a thickness smaller than the thickness of the sample holder 3. A pedestal including a beam portion 8 and a jig manufacturing body 4 connected to the beam portion 8 and having a larger area than the bottom surface of the sample holding portion 3 and having a bottom surface flush with the bottom surface of the sample holding portion 3. Forming a substrate structure;
(E) Thereafter, as shown in FIG. 3, the sample holder 3 is separated from the jig-making body 4 at the beam portion 8, and the thickness of the fixed portion is larger than the electron beam transmission thickness d between the opposing side surfaces. It is possible to obtain a skirt 3s having a defined T and a laminate (3, 7, 6) having a ridge structure on the skirt 3s.
[0032]
In the case of the lithography method, a step of forming a separation groove 21 on a pedestal substrate on which a resist is formed by a dicing saw may be performed, and then exposure and development in a lithography step may be performed.
[0033]
In the method of preparing a measurement sample without using a pedestal substrate, it is not necessary to cut out the observation target area after ion etching after applying a resist or wax soluble in an organic solvent as a protective film. Therefore, the exfoliation area is not damaged in the step of applying the resist or the wax and the step of removing the resist or the wax with the solvent. Further, there is no problem that the solvent or the residue of the resist emits a gas when the TEM observation is performed, and the portion irradiated with the electron beam is carbon-contaminated.
[0034]
<Measurement sample assembly>
In the measurement sample assembly according to the first embodiment of the present invention, as shown in FIG. 6, the laminate (3, 7, 6) shown in FIG. The laminated body (3, 7, 6) is mounted as shown in FIG. 7 using the sample holder 10 shown in FIG.
[0035]
As shown in FIG. 4, the sample holder 9 has a depth equal to or less than the fixed portion thickness T of the laminate (3, 7, 6) and a width larger than the thickness of the laminate (3, 7, 6). And a sample mounting groove 11 having That is, the width of the sample mounting groove 11 is set to be equal to or larger than the total thickness of the sample holder 3, the sample 7, and the mask 6. The depth of the sample mounting groove 11 is preferably slightly smaller than the width of the sample holder 3. Specifically, when the observation target area 1 is 0.2 mm × 1.5 mm, the depth of the sample mounting groove 11 can be selected to be 0.2 mm or less, for example, about 0.19 mm to 0.15 mm.
[0036]
Further, the sample holder 9 is mounted on the sample mounting groove 11 such that the side surfaces of the laminates (3, 7, 6) and the bottom surface of the sample mounting groove 11 are parallel (see FIG. 6). In the center position of the sample 7 in the above, the depth larger than the thickness of the sample 7 measured in the thickness direction of the laminate (3, 7, 6) and the laminate (3, 7 , 6) having an electron beam passing window 12 having a width smaller than the length. 4 and 6, the shape of the electron beam passage window 12 is shown as a rectangle, but the electron beam passage window 12 may be arranged so that the electron beam passes through the thin film 5 to be measured. It goes without saying that the shape of the passage window 12 may be any shape. Further, the sample holder 9 is provided with screw holes 32a and 32b for fixing the sample holder 10 shown in FIG.
[0037]
FIG. 5 shows a ring-shaped sample holder 10. The sample holder 10 is provided with screw holes (through holes) 31 a and 31 b through which screws are fixed for fixing the sample holder 10 to the sample holder 9. Although shown in a ring shape in FIG. 5, the shape is not limited as long as the end of the stacked body (3, 7, 6) is pressed and has a topology that does not hinder the electron beam. As shown in FIG. 7, the sample holder 10 contacts the skirt 3s at the longitudinal end of the ridge 3r in a state where the laminate (3, 7, 6) is mounted in the sample mounting groove 11. Then, the laminate (3, 7, 6) is fixed to the sample mounting groove 11. Pressing screws (male screws) 33a, 33b passing through the screw holes (through holes) 31a, 31b of the sample holder 9 are inserted into screw holes (female screws) 32a, 32b provided in the sample holder 9, respectively. The laminate (3, 7, 6) is fixed to the placement groove 11.
[0038]
In the measurement sample assembly according to the first embodiment of the present invention, since the dedicated sample holder 9 and the sample holder 10 are used, a step of bonding using an adhesive is not required. For this reason, carbon contamination due to gas release from the adhesive or the solvent can be prevented.
[0039]
<TEM measurement method>
The measurement sample assembly according to the first embodiment of the present invention shown in FIG. 7 is introduced into a measurement chamber of a TEM device, and when a predetermined degree of vacuum is reached, the electron beam passes through the electron beam passage window 12. The electron beam is irradiated as described above, and a TEM image of the sample 7 can be obtained.
[0040]
In the measurement sample assembly according to the first embodiment of the present invention, since the laminate (3, 7, 6) can be fixed by the sample holder 9 and the sample holder 10, the sample jig (FIB method) can be used. The step of fixing the pedestal with an adhesive is unnecessary. Also, there is no gas released into the vacuum from the adhesive or this solvent. Therefore, carbon contamination due to the residue of the adhesive, the solvent and the resist at the time of TEM measurement (observation) can be prevented.
[0041]
(Second embodiment)
<Pedestal substrate>
As shown in FIG. 9, the pedestal substrate according to the second embodiment of the present invention includes a sample holder 3, a beam 8, and a jig manufacturing body 4. The sample holding unit 3 has an observation target area 1 on which a sample for electron microscope observation is mounted on the top. The beam portion 8 has a thickness smaller than the thickness of the sample holder 3 measured in a direction perpendicular to the observation target region 1, and includes a plurality of three-dimensional shapes that define the observation target region 1 of the sample holder 3. It is connected to at least one of the side walls. The jig manufacturing body 4 is connected to the beam portion 8, and has a larger area than the bottom surface of the sample holder 3 and has a bottom surface flush with the bottom surface of the sample holder 3. Is provided. However, unlike the pedestal substrate according to the first embodiment, the beam portion 8 is formed by the remaining portion formed on the ceiling portion of the upward separating groove 23 for separating the sample holding portion 3 and the jig manufacturing body 4. It is formed as a constriction structure.
[0042]
Like the pedestal substrate according to the first embodiment, the length L of the jig manufacturing body 4 is a length that can be handled by hand instead of tweezers, for example, L = about 3 to 30 mm, preferably L = 5 mm to What is necessary is just to choose about 20 mm. As described with reference to the pedestal substrate according to the first embodiment, the sample holding unit 3 having the observation target region 1 at the top is separated from the jig manufacturing body 4 as described later to measure the TEM device. The size is such that it can be introduced into the chamber.
[0043]
FIG. 9 has an upward separating groove 23 at the upper part of the beam portion 8 connecting the sample holder 3 and the jig manufacturing body 4, but four upward grooves around the sample holder 3 similar to FIG. The separation groove may be formed at the same depth as the separation groove 23.
[0044]
According to the pedestal substrate according to the second embodiment of the present invention, the pattern formation of the semiconductor device (semiconductor integrated circuit) or the thin film to be measured is previously performed in the observation target region 1 of the pedestal substrate divided by the upward separating groove 23. Since 5 and the like can be formed, a cutting process using a dicing saw is not required, and the production of a measurement sample (a sample for TEM observation) becomes easier.
[0045]
<Method for preparing measurement sample using pedestal substrate>
A method of manufacturing a measurement sample (a sample for TEM observation) according to the second embodiment of the present invention using the pedestal substrate of FIG. 9 will be described with reference to FIGS.
[0046]
(A) First, as shown in FIG. 9, a sample holder 3 having an observation target area 1 and a beam 8 connected to a side wall of the sample holder 3 with a thickness smaller than the thickness of the sample holder 3. A pedestal substrate which is connected to the beam portion 8 and has a jig manufacturing body 4 having a larger area than the bottom surface of the sample holder 3 and having the same level as the bottom surface of the sample holder 3 is prepared. Do;
(B) Next, as shown in FIG. 10A, a thin film 5 to be measured is deposited on the observation target region 1. FIG. 10A shows a state in which the thin film 5 to be measured is continuously (uniformly) deposited also on the surface of the jig manufacturing body 4. When the observation target is a pattern of a semiconductor device (semiconductor integrated circuit), a pattern of the semiconductor device (semiconductor integrated circuit) may be formed in the observation target region 1 using lithography technology or RIE technology;
(C) Then, as shown in FIG. 10B, a mask 6 having a line width defined by an electron beam transmission thickness d capable of transmitting an electron beam is formed on the surface of the thin film 5 to be measured. The width of the mask 6 is about 300 nm or less in consideration of the electron beam transmission thickness d. As in the method of manufacturing the measurement sample according to the first embodiment, a pattern in which a portion where the mask 6 is to be formed is an opening (window) is drawn by EB and shown in FIG. 10B by a so-called lift-off method. A desired mask 6 made of a metal such as Ni or Cr can be formed;
(D) Using the mask 6, the thin film 5 to be measured and a part of the sample holder 3 below the thin film 5 to be measured are selectively etched as shown in FIG. A ridge structure including the sample holder 3 is formed. In the sample manufacturing method for TEM observation according to the second embodiment, the area of the back surface of the pedestal substrate including the sample holding unit 3 including the observation target region 1 and the jig manufacturing body 4 is large, and the etching device The sample holder and the surface of the observation target area 1 can be easily set in parallel. Further, a vertical alignment procedure for previously aligning the ion beam vertically with respect to the sample holder of the etching apparatus as in the FIB method is not required. The material and height of the mask 6 are not limited as long as a sample holder (pedestal) including the sliced sample holder 3 can be formed, that is, as long as the mask 6 does not disappear by ion etching;
(E) Further, as shown in FIG. 11, the sample holder 3 is separated from the jig manufacturing body 4 shown in FIG. 11A at the beam portion 8 as shown in FIG. 11B. In FIG. 11, the sample holder 3 having the thin portion of the thin film 5 to be measured at the top and the jig manufacturing body 4 are separated by cleavage. As a result, as shown in FIG. 11B, a skirt portion 3s having a fixed portion thickness T larger than the electron beam transmission thickness d between the opposing side surfaces, and a ridge structure above the skirt portion 3s. To obtain a laminated body (3, 7, 6). By separating the sample holding unit 3 and the jig manufacturing body 4 in this manner, it becomes possible to introduce the sample holding unit 3 into the measurement chamber of the TEM device.
[0047]
Note that, as shown in FIG. 11C, the skirt 3s may have a step structure. In this case, the widest width T among the step structures 1 (T 1 > T 2 ) Defines the fixed part thickness T.
[0048]
According to the method for manufacturing a measurement sample according to the second embodiment, the sample holder 3 having the observation target area 1 and the jig manufacturing body 4 are integrated, so that the sample can be handled when the measurement sample is manufactured. It will be easier. Furthermore, since the jig manufacturing body 4 having a large bottom surface area is provided, the irradiation direction of the ion beam is automatically irradiated vertically to the holder of the etching apparatus in advance, and the vertical alignment of the observation target area 1 can be performed. It becomes unnecessary. In addition, according to the method for preparing a measurement sample according to the second embodiment, a dicing saw is formed by forming a pattern of a semiconductor device (semiconductor integrated circuit) or forming a thin film 5 to be measured on a pre-divided pedestal substrate. This eliminates the need for the cutting process, thereby simplifying the sample preparation.
[0049]
According to the method for preparing a measurement sample according to the second embodiment, the observation target area after ion etching is protected with a resist or wax that can be dissolved in an organic solvent in order to prevent damage to the sample due to cutting chips during cutting processing. There is no need to cut out after applying as a film. Therefore, the exfoliation area is not damaged in the step of applying the resist or the wax and the step of removing the resist or the wax with the solvent. Further, there is no problem that the solvent or the residue of the resist emits a gas when the TEM observation is performed, and the portion irradiated with the electron beam is carbon-contaminated.
[0050]
<Method of preparing measurement sample without using pedestal substrate>
Next, a method of manufacturing a measurement sample according to the second embodiment when the pedestal substrate of FIG. 9 is not used will be described. When not using a pedestal substrate
This can also be explained with reference to FIGS. 10 and 11.
[0051]
(A) First, the thin film 5 to be measured is deposited on the surface of a substrate such as a semiconductor wafer. It is possible to form a pattern of a thin film 5 to be measured and a semiconductor device (semiconductor integrated circuit) to be observed on various substrates such as a semiconductor wafer;
(B) An upward separating groove 23 is formed in a part of the substrate from the back side of the substrate. For example, an upward separating groove 23 may be formed around a part of the thin film 5 to be measured or around a pattern of a semiconductor device (semiconductor integrated circuit) using a dicing saw. As shown in FIG. 10 (a), the upward separation groove 23 allows the sample holder 3 to be connected to the side wall of the sample holder 3 with a thickness smaller than the thickness of the sample holder 3. A pedestal substrate connected to the beam portion 8 and having a jig-making body 4 having a larger area than the bottom surface of the sample holder 3 and having the same level as the bottom surface of the sample holder 3. A complex structure is formed;
(C) Next, as shown in FIG. 10B, a mask 6 having a line width defined by an electron beam transmission thickness d capable of transmitting an electron beam is formed on the surface of the thin film 5 to be measured;
(D) Using the mask 6, the thin film 5 to be measured and a part of the substrate below the thin film 5 to be measured are selectively etched as shown in FIG. Forming a ridge structure
(E) Further, as shown in FIG. 11, the sample holder 3 is separated from the jig manufacturing body 4 at the beam portion 8 and the fixed portion thickness T larger than the electron beam transmission thickness d between the opposing side surfaces. And a laminate (3, 7, 6) having a ridge structure above the skirt 3s.
[0052]
Note that, even when the pedestal substrate of FIG. 9 is not used, the step of forming the mask 6 and the step of processing the upward separation groove 23 may be performed before or after any of the FIB method and the lithography method. A shape equivalent to that of (b) can be obtained.
[0053]
(Other embodiments)
As described above, the present invention has been described with reference to the first and second embodiments. However, it should not be understood that the description and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples, and operation techniques will be apparent to those skilled in the art. Therefore, the technical scope according to the embodiment of the present invention is determined only by the matters specifying the invention according to the claims that are appropriate from the above description.
[0054]
【The invention's effect】
According to the present invention, it is possible to provide a pedestal substrate from which a TEM observation sample can be easily prepared.
[0055]
Further, according to the present invention, there is provided a measurement jig for an electron microscope and a measurement sample assembly for a TEM, in which no gas is released due to a solvent or a resist residue during TEM observation, and further, such a measurement sample for a TEM. And a method of measuring TEM using these jigs and assemblies.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a basic configuration of a pedestal substrate according to a first embodiment of the present invention.
FIG. 2 is a process chart showing a procedure of a method for producing a measurement sample according to the first embodiment of the present invention (part 1: before separation).
FIG. 3 is a process chart showing a procedure of a method for producing a measurement sample according to the first embodiment of the present invention (part 2: after separation).
FIG. 4 is a plan view and a corresponding cross-sectional view of the sample holder according to the first embodiment of the present invention.
FIG. 5 is a plan view of the sample holder according to the first embodiment of the present invention.
FIG. 6 is a plan view and a corresponding cross-sectional view when a TEM sample is placed on the sample holder according to the first embodiment of the present invention.
FIG. 7 is a plan view and a corresponding cross-sectional view of a measurement sample assembly in which a TEM sample is placed on a sample holder according to the first embodiment of the present invention and further fixed by a sample holder.
FIG. 8 is a perspective view showing a basic configuration of a pedestal substrate according to a modification of the first embodiment of the present invention.
FIG. 9 is a perspective view showing a basic configuration of a pedestal substrate according to a second embodiment of the present invention.
FIG. 10 is a process chart showing a procedure of a method for producing a measurement sample according to the second embodiment of the present invention (part 1: before separation).
FIG. 11 is a process chart showing a procedure of a method for producing a measurement sample according to the second embodiment of the present invention (part 2: after separation).
[Explanation of symbols]
1. Observation target area
3 ... Sample holder
3r… Ridge part
3s ... hem
4 ... Jig making body
5 ... thin film to be measured
6 ... Mask
7 ... sample
8 ... Beam part
9 ... Sample holder
11 ... Sample mounting groove
12 ... Electron beam transmission window
12 ... Electron beam passage window
21a, 22b, 22c, 22d, 23 ... separation groove
31a, 31b: screw holes (through holes)
32a, 32b ... screw holes
33a, 33b: Holding screw (male screw)

Claims (7)

頂部に電子顕微鏡観察用の試料を搭載する観察対象領域を有する試料保持部と、
前記観察対象領域に垂直方向に測った前記試料保持部の厚さよりも薄い厚さを有し、該試料保持部の前記観察対象領域を定義する立体形状を構成する複数の側壁の少なくとも1の側壁に接続された梁部と、
該梁部に接続され、前記試料保持部の底面の面積よりも大きく、且つ前記試料保持部の底面と同一平面レベルの底面を有する治具作製用ボディ
とを備えることを特徴とするペデスタル基板。
A sample holding unit having an observation target area on which a sample for electron microscope observation is mounted on the top,
At least one side wall of a plurality of side walls having a thickness smaller than the thickness of the sample holding unit measured in a direction perpendicular to the observation target region and forming a three-dimensional shape defining the observation target region of the sample holding unit A beam connected to the
A pedestal substrate, comprising: a jig manufacturing body connected to the beam portion and having a larger surface area than the bottom surface of the sample holding portion and having a bottom surface flush with the bottom surface of the sample holding portion.
互いに対向する側面間で固定部厚さを定義された裾部、及び該裾部の上部において電子線透過厚みで前記側面に平行方向に走行するリッジ部を有する試料保持部と、該リッジ部に搭載され、前記電子線透過厚みで前記側面に平行方向に走行する試料とを含む積層体を搭載するための測定治具であって、
前記固定部厚さと同等以下の深さで、前記積層体の厚さよりも大きな幅を有した試料載置溝を有し、且つ該試料載置溝に前記積層体を前記側面と該試料載置溝の底面が平行になるように載置した状態における前記試料の中心位置において、前記積層体の厚さ方向に測った前記試料の厚みよりも大きな奥行きと、前記リッジ部の長さ方向に測った前記積層体の長さよりも小さな幅を有する電子線通過窓を有する試料ホルダと、
前記試料載置溝に前記積層体を載置した状態において、前記リッジ部の長さ方向の端部において前記裾部に接触し、前記試料載置溝に前記積層体を固定する試料押さえ
とを備えることを特徴とする電子顕微鏡用測定治具。
A hem portion having a fixed portion thickness defined between opposing side surfaces, and a sample holding portion having a ridge portion running in a direction parallel to the side surface with an electron beam transmission thickness at an upper portion of the hem portion, Mounted, a measurement jig for mounting a laminate including a sample traveling in a direction parallel to the side surface at the electron beam transmission thickness,
A sample mounting groove having a depth equal to or less than the thickness of the fixed portion and having a width greater than the thickness of the laminate, and the side surface and the sample At a center position of the sample in a state where the bottom surface of the groove is placed so as to be parallel, a depth larger than a thickness of the sample measured in a thickness direction of the laminate and a length direction of the ridge portion are measured. A sample holder having an electron beam passing window having a width smaller than the length of the laminate,
In a state where the laminated body is placed in the sample mounting groove, the ridge portion is in contact with the skirt portion at a longitudinal end thereof, and a sample holder for fixing the laminated body to the sample mounting groove is provided. A measuring jig for an electron microscope, comprising:
互いに対向する側面間で固定部厚さを定義された裾部、及び該裾部の上部において電子線透過厚みで前記側面に平行方向に走行するリッジ部を有する試料保持部と、該リッジ部に搭載され、前記電子線透過厚みで前記側面に平行方向に走行する試料とを含む積層体と、
前記固定部厚さと同等以下の深さで、前記積層体の厚さよりも大きな幅を有した試料載置溝を有し、且つ該試料載置溝に前記積層体を前記側面と該試料載置溝の底面が平行になるように載置した状態における前記試料の中心位置において、前記積層体の厚さ方向に測った前記試料の厚みよりも大きな奥行きと、前記リッジ部の長さ方向に測った前記積層体の長さよりも小さな幅を有する電子線通過窓を有する試料ホルダと、
前記試料載置溝に前記積層体を載置した状態において、前記リッジ部の長さ方向の端部において前記裾部に接触し、前記試料載置溝に前記積層体を固定する試料押さえ
とを備えることを特徴とする測定試料組み立て体。
A hem portion having a fixed portion thickness defined between opposing side surfaces, and a sample holding portion having a ridge portion running in a direction parallel to the side surface with an electron beam transmission thickness at an upper portion of the hem portion, Mounted, a laminate including a sample traveling in a direction parallel to the side surface at the electron beam transmission thickness,
A sample mounting groove having a depth equal to or less than the thickness of the fixed portion and having a width greater than the thickness of the laminate, and the side surface and the sample At a center position of the sample in a state where the bottom surface of the groove is placed so as to be parallel, a depth larger than a thickness of the sample measured in a thickness direction of the laminate and a length direction of the ridge portion are measured. A sample holder having an electron beam passing window having a width smaller than the length of the laminate,
In a state where the laminated body is placed in the sample mounting groove, the ridge portion is in contact with the skirt portion at a longitudinal end thereof, and a sample holder for fixing the laminated body to the sample mounting groove is provided. A measurement sample assembly, comprising:
観察対象領域を有する試料保持部、該試料保持部の厚さよりも薄い厚さで該試料保持部の側壁に接続された梁部、該梁部に接続され、前記試料保持部の底面の面積よりも大きく、且つ前記試料保持部の底面と同一平面レベルの底面を有する治具作製用ボディとを備えたペデスタル基板を用意する工程と、
前記観察対象領域に被測定薄膜を堆積する工程と、
前記被測定薄膜の表面に、電子線が透過可能な電子線透過厚みで定義される線幅のマスクを形成する工程と、
該マスクを用いて、前記被測定薄膜と前記被測定薄膜の下部の前記試料保持部の一部を選択的にエッチングし、前記被測定薄膜と前記試料保持部からなるリッジ構造を形成する工程と、
前記梁部において、前記治具作製用ボディから前記試料保持部を分離し、互いに対向する側面間で前記電子線透過厚みより厚い固定部厚さを定義された裾部、及び該裾部の上部に前記リッジ構造を有する積層体を得る工程
とを含むことを特徴とする測定試料の作製方法。
A sample holder having an observation target area, a beam connected to a side wall of the sample holder with a thickness smaller than the thickness of the sample holder, connected to the beam, and an area of a bottom surface of the sample holder. Preparing a pedestal substrate having a large, and a jig manufacturing body having a bottom surface flush with the bottom surface of the sample holding unit;
Depositing a thin film to be measured in the observation target area,
On the surface of the thin film to be measured, a step of forming a mask having a line width defined by an electron beam transmission thickness through which an electron beam can pass,
Using the mask, selectively etching the thin film to be measured and a part of the sample holding portion below the thin film to be measured to form a ridge structure including the thin film to be measured and the sample holding portion; ,
In the beam part, the sample holding part is separated from the jig manufacturing body, a hem part having a thickness of a fixed part greater than the electron beam transmission thickness defined between the opposing side surfaces, and an upper part of the hem part Obtaining a laminate having the ridge structure.
基板の表面に被測定薄膜を堆積する工程と、
前記被測定薄膜の表面に、電子線が透過可能な電子線透過厚みで定義される線幅のマスクを形成する工程と、
該マスクを用いて、前記被測定薄膜と前記被測定薄膜の下部の前記基板の一部を選択的にエッチングし、前記被測定薄膜と前記基板からなるリッジ構造を形成する工程と、
前記基板の一部に分離溝を形成し、該分離溝により、試料保持部、該試料保持部の厚さよりも薄い厚さで該試料保持部の側壁に接続された梁部、該梁部に接続され、前記試料保持部の底面の面積よりも大きく、且つ前記試料保持部の底面と同一平面レベルの底面を有する治具作製用ボディとを備えたペデスタル基板構造を形成する工程と、
前記梁部において、前記治具作製用ボディから前記試料保持部を分離し、互いに対向する側面間で前記電子線透過厚みより厚い固定部厚さを定義された裾部、及び該裾部の上部に前記リッジ構造を有する積層体を得る工程
とを含むことを特徴とする測定試料の作製方法。
Depositing a thin film to be measured on the surface of the substrate;
On the surface of the thin film to be measured, a step of forming a mask having a line width defined by an electron beam transmission thickness through which an electron beam can pass,
Using the mask, selectively etching a part of the substrate under the thin film to be measured and the thin film to be measured to form a ridge structure including the thin film to be measured and the substrate;
A separation groove is formed in a part of the substrate, and the separation groove allows the sample holder to be connected to a side wall of the sample holder with a thickness smaller than the thickness of the sample holder. Forming a pedestal substrate structure having a jig manufacturing body having a bottom surface that is larger than the area of the bottom surface of the sample holding unit, and has the same level as the bottom surface of the sample holding unit;
In the beam part, the sample holding part is separated from the jig manufacturing body, a hem part having a thickness of a fixed part greater than the electron beam transmission thickness defined between the opposing side surfaces, and an upper part of the hem part Obtaining a laminate having the ridge structure.
観察対象領域を有する試料保持部、該試料保持部の厚さよりも薄い厚さで該試料保持部の側壁に接続された梁部、該梁部に接続され、前記試料保持部の底面の面積よりも大きく、且つ前記試料保持部の底面と同一平面レベルの底面を有する治具作製用ボディとを備えたペデスタル基板を用意する工程と、
前記観察対象領域に被測定薄膜を堆積する工程と、
前記被測定薄膜の表面に、電子線が透過可能な電子線透過厚みで定義される線幅のマスクを形成する工程と、
該マスクを用いて、前記被測定薄膜と前記被測定薄膜の下部の前記試料保持部の一部を選択的にエッチングし、前記被測定薄膜と前記試料保持部からなるリッジ構造を形成する工程と、
前記梁部において、前記治具作製用ボディから前記試料保持部を分離し、互いに対向する側面間で前記電子線透過厚みより厚い固定部厚さを定義された裾部、及び該裾部の上部に前記リッジ構造を有する積層体を得る工程と、
前記固定部厚さと同等以下の深さで、前記積層体の厚さよりも大きな幅を有した試料載置溝を有し、且つ該試料載置溝に前記積層体を前記側面と該試料載置溝の底面が平行になるように載置した状態における前記試料の中心位置において、前記積層体の厚さ方向に測った前記試料の厚みよりも大きな奥行きと、前記リッジ部の長さ方向に測った前記積層体の長さよりも小さな幅を有する電子線通過窓を有する試料ホルダを用意する工程と、
前記試料載置溝に前記積層体を前記側面と該試料載置溝の底面が平行になるように載置する工程と、
試料押さえの一部を前記リッジ部の長さ方向の端部において前記裾部に接触させ、前記試料載置溝に前記積層体を固定する工程と、
前記電子線通過窓に電子線が通過するように電子線を照射し、前記試料の透過電子線像を得る工程
とを含むことを特徴とする測定方法。
A sample holder having an observation target area, a beam connected to a side wall of the sample holder with a thickness smaller than the thickness of the sample holder, connected to the beam, and an area of a bottom surface of the sample holder. Preparing a pedestal substrate having a large, and a jig manufacturing body having a bottom surface flush with the bottom surface of the sample holding unit;
Depositing a thin film to be measured in the observation target area,
On the surface of the thin film to be measured, a step of forming a mask having a line width defined by an electron beam transmission thickness through which an electron beam can pass,
Using the mask, selectively etching the thin film to be measured and a part of the sample holding portion below the thin film to be measured to form a ridge structure including the thin film to be measured and the sample holding portion; ,
In the beam part, the sample holding part is separated from the jig manufacturing body, a hem part having a thickness of a fixed part greater than the electron beam transmission thickness defined between the opposing side surfaces, and an upper part of the hem part Obtaining a laminate having the ridge structure,
A sample mounting groove having a depth equal to or less than the thickness of the fixed portion and having a width greater than the thickness of the laminate, and the side surface and the sample At a center position of the sample in a state where the bottom surface of the groove is placed so as to be parallel, a depth larger than a thickness of the sample measured in a thickness direction of the laminate and a length direction of the ridge portion are measured. Preparing a sample holder having an electron beam passing window having a width smaller than the length of the laminated body,
Placing the laminate in the sample mounting groove so that the side surface and the bottom surface of the sample mounting groove are parallel,
A step of contacting a part of the sample holder with the skirt at the longitudinal end of the ridge, and fixing the laminate in the sample mounting groove;
Irradiating an electron beam so that the electron beam passes through the electron beam passage window, and obtaining a transmission electron beam image of the sample.
基板の表面に被測定薄膜を堆積する工程と、
前記被測定薄膜の表面に、電子線が透過可能な電子線透過厚みで定義される線幅のマスクを形成する工程と、
該マスクを用いて、前記被測定薄膜と前記被測定薄膜の下部の前記基板の一部を選択的にエッチングし、前記被測定薄膜と前記基板からなるリッジ構造を形成する工程と、
前記基板の一部に分離溝を形成し、該分離溝により、試料保持部、該試料保持部の厚さよりも薄い厚さで該試料保持部の側壁に接続された梁部、該梁部に接続され、前記試料保持部の底面の面積よりも大きく、且つ前記試料保持部の底面と同一平面レベルの底面を有する治具作製用ボディとを備えたペデスタル基板構造を形成する工程と、
前記梁部において、前記治具作製用ボディから前記試料保持部を分離し、互いに対向する側面間で前記電子線透過厚みより厚い固定部厚さを定義された裾部、及び該裾部の上部に前記リッジ構造を有する積層体を得る工程と、
前記固定部厚さと同等以下の深さで、前記積層体の厚さよりも大きな幅を有した試料載置溝を有し、且つ該試料載置溝に前記積層体を前記側面と該試料載置溝の底面が平行になるように載置した状態における前記試料の中心位置において、前記積層体の厚さ方向に測った前記試料の厚みよりも大きな奥行きと、前記リッジ部の長さ方向に測った前記積層体の長さよりも小さな幅を有する電子線通過窓を有する試料ホルダを用意する工程と、
前記試料載置溝に前記積層体を前記側面と該試料載置溝の底面が平行になるように載置する工程と、
試料押さえの一部を前記リッジ部の長さ方向の端部において前記裾部に接触させ、前記試料載置溝に前記積層体を固定する工程と、
前記電子線通過窓に電子線が通過するように電子線を照射し、前記試料の透過電子線像を得る工程
とを含むことを特徴とする測定方法。
Depositing a thin film to be measured on the surface of the substrate;
On the surface of the thin film to be measured, a step of forming a mask having a line width defined by an electron beam transmission thickness through which an electron beam can pass,
Using the mask, selectively etching a part of the substrate under the thin film to be measured and the thin film to be measured to form a ridge structure including the thin film to be measured and the substrate;
A separation groove is formed in a part of the substrate, and the separation groove allows the sample holder to be connected to a side wall of the sample holder with a thickness smaller than the thickness of the sample holder. Forming a pedestal substrate structure having a jig manufacturing body having a bottom surface that is larger than the area of the bottom surface of the sample holding unit, and has the same level as the bottom surface of the sample holding unit;
In the beam part, the sample holding part is separated from the jig manufacturing body, a hem part having a thickness of a fixed part greater than the electron beam transmission thickness defined between the opposing side surfaces, and an upper part of the hem part Obtaining a laminate having the ridge structure,
A sample mounting groove having a depth equal to or less than the thickness of the fixed portion and having a width greater than the thickness of the laminate, and the side surface and the sample At a center position of the sample in a state where the bottom surface of the groove is placed so as to be parallel, a depth larger than a thickness of the sample measured in a thickness direction of the laminate and a length direction of the ridge portion are measured. Preparing a sample holder having an electron beam passing window having a width smaller than the length of the laminated body,
Placing the laminate in the sample mounting groove so that the side surface and the bottom surface of the sample mounting groove are parallel,
A step of contacting a part of the sample holder with the skirt at the longitudinal end of the ridge, and fixing the laminate in the sample mounting groove;
Irradiating an electron beam so that the electron beam passes through the electron beam passage window, and obtaining a transmission electron beam image of the sample.
JP2003063936A 2003-03-10 2003-03-10 Pedestal base plate, measuring holder for electron microscope, measuring sample assembly, method for producing measuring sample and measuring method Pending JP2004271393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003063936A JP2004271393A (en) 2003-03-10 2003-03-10 Pedestal base plate, measuring holder for electron microscope, measuring sample assembly, method for producing measuring sample and measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003063936A JP2004271393A (en) 2003-03-10 2003-03-10 Pedestal base plate, measuring holder for electron microscope, measuring sample assembly, method for producing measuring sample and measuring method

Publications (1)

Publication Number Publication Date
JP2004271393A true JP2004271393A (en) 2004-09-30

Family

ID=33125388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003063936A Pending JP2004271393A (en) 2003-03-10 2003-03-10 Pedestal base plate, measuring holder for electron microscope, measuring sample assembly, method for producing measuring sample and measuring method

Country Status (1)

Country Link
JP (1) JP2004271393A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226970A (en) * 2005-02-21 2006-08-31 Sii Nanotechnology Inc Sample support built by semiconductor silicon process technique
JP2007108042A (en) * 2005-10-14 2007-04-26 Hitachi High-Technologies Corp Sample analysis method, and sample machining device
JP2009156678A (en) * 2007-12-26 2009-07-16 Aoi Electronics Co Ltd Manufacturing method of fine sample stand aggregate, manufacturing method of fine sample stand, and manufacturing method of sample holder
CN116878413A (en) * 2023-09-06 2023-10-13 中国航发四川燃气涡轮研究院 Preparation method of surface speckle of blisk blade

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226970A (en) * 2005-02-21 2006-08-31 Sii Nanotechnology Inc Sample support built by semiconductor silicon process technique
JP4570980B2 (en) * 2005-02-21 2010-10-27 エスアイアイ・ナノテクノロジー株式会社 Sample stage and sample processing method
DE102006007431B4 (en) * 2005-02-21 2016-03-03 Hitachi High-Tech Science Corporation Sample carrier formed by semiconductor silicon process technology and method for production
JP2007108042A (en) * 2005-10-14 2007-04-26 Hitachi High-Technologies Corp Sample analysis method, and sample machining device
JP4520926B2 (en) * 2005-10-14 2010-08-11 株式会社日立ハイテクノロジーズ Sample analysis method
JP2009156678A (en) * 2007-12-26 2009-07-16 Aoi Electronics Co Ltd Manufacturing method of fine sample stand aggregate, manufacturing method of fine sample stand, and manufacturing method of sample holder
CN116878413A (en) * 2023-09-06 2023-10-13 中国航发四川燃气涡轮研究院 Preparation method of surface speckle of blisk blade
CN116878413B (en) * 2023-09-06 2023-11-17 中国航发四川燃气涡轮研究院 Preparation method of surface speckle of blisk blade

Similar Documents

Publication Publication Date Title
US9653309B2 (en) Method for fabrication of high aspect ratio trenches and formation of nanoscale features therefrom
US10101246B2 (en) Method of preparing a plan-view transmission electron microscope sample used in an integrated circuit analysis
JP2004095952A (en) Method for manufacturing semiconductor chip and semiconductor chip
JP4570980B2 (en) Sample stage and sample processing method
US7112790B1 (en) Method to prepare TEM samples
US6140652A (en) Device containing sample preparation sites for transmission electron microscopic analysis and processes of formation and use
US6884362B2 (en) Mass production of cross-section TEM samples by focused ion beam deposition and anisotropic etching
JP2002270658A (en) Method for preparing sample to be observed under electron microscope, and method for analyzing semiconductor device
JP3768197B2 (en) Preparation method of transmission electron microscope specimen
JP2004271393A (en) Pedestal base plate, measuring holder for electron microscope, measuring sample assembly, method for producing measuring sample and measuring method
KR101971825B1 (en) Large scale graphene liquid cell, and large scale graphene liquid cell fabrication method
JP4937896B2 (en) Method for manufacturing micro sample table assembly, method for manufacturing micro sample table, and method for manufacturing sample holder
US6927174B2 (en) Site-specific method for large area uniform thickness plan view transmission electron microscopy sample preparation
JP2004286486A (en) Bedding specimen for transmission electron microscope observation, transmission electron microscope measuring method, and transmission electron microscope device
JPH11183339A (en) Sample preparation method for transmission electron microscope
US6251782B1 (en) Specimen preparation by focused ion beam technique
JP5666791B2 (en) Micro sample table and method for manufacturing micro sample table
JP3205095B2 (en) Preparation method for transmission electron microscope sample
JP2004069628A (en) Method for producing in-line test sample
JP2004253232A (en) Sample fixing table
JP3836454B2 (en) Preparation method and preparation apparatus for electron microscope observation sample
KR20050033699A (en) Method for forming sample using analysis by tem
JP4037023B2 (en) Incision processing method and preparation method of transmission electron microscope sample
KR20050112261A (en) Method of forming sample using analysis by tem
JP2002318178A (en) Defect evaluation method for semiconductor crystal

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060725