JP4037023B2 - Incision processing method and preparation method of transmission electron microscope sample - Google Patents

Incision processing method and preparation method of transmission electron microscope sample Download PDF

Info

Publication number
JP4037023B2
JP4037023B2 JP32818899A JP32818899A JP4037023B2 JP 4037023 B2 JP4037023 B2 JP 4037023B2 JP 32818899 A JP32818899 A JP 32818899A JP 32818899 A JP32818899 A JP 32818899A JP 4037023 B2 JP4037023 B2 JP 4037023B2
Authority
JP
Japan
Prior art keywords
sample
thin
section
electron microscope
transmission electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32818899A
Other languages
Japanese (ja)
Other versions
JP2001141620A (en
JP2001141620A5 (en
Inventor
秀和 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
SII NanoTechnology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SII NanoTechnology Inc filed Critical SII NanoTechnology Inc
Priority to JP32818899A priority Critical patent/JP4037023B2/en
Publication of JP2001141620A publication Critical patent/JP2001141620A/en
Publication of JP2001141620A5 publication Critical patent/JP2001141620A5/en
Application granted granted Critical
Publication of JP4037023B2 publication Critical patent/JP4037023B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、集束イオンビーム装置を使用した透過型電子顕微鏡(TEM)用試料の加工技術に関するものである。
【0002】
【従来の技術】
TEM観察用の断面試料を、集束イオンビーム装置を用いた薄片化加工によって作成することは周知であり、ウェハ状の試料から機械的に小片を切り出しそれを加工する方法と、ウェハのままエッチング加工して薄片化された試料を取り出す方法とが知られている。前者の加工法は図4−Aに示したように試料とするウェハからまず500μm〜2mm幅、長さ3mm程の小ブロック11を切り取り、更に上部を50μm以下に削るという機械加工を要し、この小ブロックに図4−Bに示したようにガス銃5によりW(CO)6を加工部分に吹き付けて保護膜6を形成させる。その後図4−Cに示すように集束イオンビームを照射して薄片化加工を施し、図4−Dに示すように電子ビームを透過させてTEM観察用の断面試料として用いられる。後者の加工法は機械加工をしないで直接ウェハから集束イオンビーム加工を実行するものである。本発明は後者の方法に関するもので、この方法は図3に示すように加工部分にまずガス銃により保護膜を形成させて、試料1の面上方から集束イオンビームを照射し観察断面の両側をエッチング加工により削り取り、集束イオンビーム装置で観察断面薄片部2の両側に四角い穴3,4を空ける。該穴の大きさは前方穴3が試料台をチルトして観察断面を走査イオン顕微鏡で観察できる程度の大きさに、後方穴4は幅は前方穴3と同じで奥行きは2/3程度に穿設される。図3中Aは加工部分を上部より観察した図であり、Bは断面の観察図そしてCは斜め上方からの顕微鏡観察像である。Bに図示したように試料面をチルトして観察断面として薄片化加工された試料の周辺部に、矢印のように集束イオンビームを走査させて切り込み加工を行うのであるが、その際の該切り込み加工によって試料面にダメージを与えてしまうため、再度試料断面を研磨しなくてはならない。この仕上げ加工時に薄片化した試料の位置ずれを防ぐため、前記の切り込み加工はBに図示したように一部周辺部に未加工部分(図では左肩部分)を残しておく必要があった。そして、該切り込み加工の後、試料面を再びもとに戻し試料面上方よりビームを照射して薄片化加工の仕上げを行い、最後にマニピュレータにより操作されるガラスプローブによって該薄片試料を保持させ、メッシュ上に移動し付着させてTEM観察試料を完成させるのであるが、この薄片化された試料は一部切り込み加工がなされていない連結部分が残っているため、ガラスプローブはその部分を折って切片試料を運ぶことになる。該プローブは主として静電力によって試料片を保持しているが、その切片試料を折る際に該切片試料が撥ねてプローブから離れ失ってしまうことが儘生じていた。一旦遺失してしまうと極微小片であるため発見は不可能であり、一連の作業が水泡に帰してしまうことになる。
【0003】
【発明が解決しようとする課題】
本発明の課題は、上記の問題を解決するもの、すなわち薄片化仕上げ加工の後ガラスプローブを用いてメッシュ上に確実に運搬載置してTEM観察用の試料を作成できる加工法を提供することである。
【0004】
【課題を解決するための手段】
ウェハ状の試料に試料面上方より集束イオンビームを照射して観察断面の両側をエッチングし、薄片化が適度に進んだ状態で試料面をチルトして薄片化加工された試料に集束イオンビームを走査させて少なくともその底辺部の切り込み加工を行い、試料面を元に戻し集束イオンビームを上方より照射して薄片化仕上げ加工を行う。該仕上げ加工が終了したところで切り込み加工がなされていない両辺部に対し試料面上方より集束イオンビームを照射し、切り込み加工を実行する。
【0005】
【発明の実施の形態】
本発明は加工部分にまずガス銃により保護膜を形成させて、試料面上方から集束イオンビームを照射し観察断面部の両側をエッチング加工により削り取り、走査イオン顕微鏡で断面が観察できる程度の四角い穴を空けるところまでは従来加工と同様である。次に試料台をチルトして観察断面として薄片化加工された試料2の周辺部に集束イオンビームを走査させて切り込み加工を行うのであるが、その際の切り込み加工は観察断面に対し60度程度の深い角度のビーム照射であるため、試料面に深いダメージを与えてしまう。従って、再度試料断面を研磨しなくてはならないことは従来と同じであるが、本発明は図1Aに示したように切り込み加工を薄片化加工された試料2の底辺部に対して、まず矢印aのようにビームを走査し実行する点に特徴がある。これは少なくとも底辺部分の切り込み加工は試料面をチルトした状態でないと実行できないためである。この切り込み加工の後も薄片化加工された試料2は両側辺部でウェハ本体1と連結状態を保っている。従って、次なる仕上げ加工時に薄片化した試料2は安定した固定状態が担保されており位置ずれを起こすようなことはない。そして、該切り込み加工の後試料台を再びもとの角度に戻し、試料面上方よりビームを照射して薄片化加工の仕上げを行い薄片化加工を終了する。しかしこの薄片化された試料2はいまだ両側辺部でウェハ本体との連結状態を保っている。本発明においては切り込み加工がなされていないこの両側辺部の連結部分に対し、試料面をチルトすることなく試料面上方すなわち薄片面方向からのビームを照射して、今度は図1Bに矢印b,cで示したように薄片化された試料の両側辺部に対し切り込み加工を実行する。この部分は薄片化加工が終了し十分に薄くなっているため面延長方向からのビーム照射で簡単に切り込みが入るし、エッチングにより飛散する素材も微少であって、しかも観察断面に対してビームの入射角が浅いことによりこの切り込み加工によるダメージは無視できる程度である。最後にこの薄片化加工された試料は図1C,Dに示すようにマニピュレータ(図示していない)により操作されるガラスプローブ7によって切片試料21を保持させ、図2−A,Bに示すようにメッシュ8上に移動付着させてTEM観察試料を完成させるのであるが、ガラスプローブ7は切り込み加工によって試料本体1から切り離された切片試料21を運ぶことになり、従来のように試料本体から折って運ぶ必要はないため、静電力による試料片の保持であってもその際に試料が弾け飛んでプローブから離れ失ってしまうようなことはない。
【0006】
本発明のポイントは、深い角度からのビーム照射は試料へのダメージが大きいため、薄片面方向からのビーム照射により切り込み加工が可能である両側辺部の切り込み加工は薄片化仕上げ加工がなされた後に回して、試料をチルトして深い角度の入射角で加工しなければならない底辺部の加工をまず先に実行するようにした点にある。このことにより、仕上げ加工は両側を保持した形態で実行できるので位置保持安定性は従来の一点保持に較べ高くなり、加工精度を上げることにも貢献する。そして完全切り離しがなされた状態で試料片をピックアップすることになるため試料が撥ねて遺失してしまう従来の問題点は解決できるものである。すなわち、切り込み加工に際し連結部を大きく取れば仕上げ加工の際の位置保持機能は確保されるものの、最後の試料片ピックアップに際し撥ねる力が大きくなり薄片化した試料を遺失してしまう確率が高くなるという狭間で、従来はその兼合いに苦労していたが、本発明はその問題を一気に解決することができた。
なお、観察断面に対して深い角度からの切り込み加工は底辺部だけに限らず、両側辺部の一部を加工しておいてもよい。要は薄片部が試料本体との連結状態で保持安定性が確保できれば良いということであり、ダメージが少ない薄片面方向からのビーム照射であっても薄片化仕上げ加工後のビーム加工は最小限にしたいという場合には安定保持に必要な部分だけ残しておくという形態がよい。
【0007】
【実施例1】
本発明によってウェハ状の64M DRAM 試料からTEM観察用試料を作成した実施例を説明する。集束イオンビーム装置の試料台にウェハ状の64M DRAMを載置し、ウェハ面上方よりビームを照射したとき照射位置にTEM観察用の試料となる特定部分がくるように位置決めをする。そして、ガス銃5からW(CO)6若しくはフェナントレン等を加工部分に吹き付けて保護膜6を形成させた後、ウェハ面上方からのイオンビーム照射により特定した観察断面の両側を図3に示した形態(前方穴3は幅20μm×奥行き20μm×深さ10μm,後方穴4は幅20μm×奥行き10μm×深さ10μm程度)にエッチング穿孔する。この加工を終えるときの観察断面の薄片加工部2の厚さは約0.5μmである。この状態で試料台を60度チルトし観察断面の前方より集束イオンビームを走査し、図1Aに示すように観察断面の底辺部に切込みaを入れる。この切り込み加工は観察断面に対し60度の深い角度からのビーム照射となるため、試料へのダメージは無視出来ない。そこで、この切り込み加工が終了したところで試料台をもとの位置に戻し、再びウェハ面上方からの集束イオンビームによって、観察断面薄片化の仕上げ加工を実行する。この仕上げ加工は先の切り込み加工時に飛散付着した素材を研磨して除去するだけでなく、更なる薄片化を実行するものであり、仕上げ加工は観察断面の薄片加工部2の厚さが0.1μmになるまで実行される。薄片化加工が完了したところで、集束イオンビームの照射位置を薄片試料の両端近傍に固定し、薄片面延長方向からのビームを照射する。この加工は観察断面に対し0度の浅い角度からのビーム照射となる上、薄片の厚さは0.1μmであるため簡単に切り込みが進み飛散する素材の量も極めて少ないため、この切り込み加工による試料へのダメージは無視出来る。図1Bに示すように薄片試料の両側辺部にb,cの切り込みが深さ方向に入れられ、先の底辺部の切り込み位置まで達してこの薄片化加工試料2は切片試料21としてウェハ状の試料本体1から完全に分離されたことになる。これまでの作業時間は約60分で実行できる。
【0008】
図に示していないマニピュレータを操作してガラスプローブ7を図2−Aに示したように切片試料21に接触させる。切片試料21はウェハ状の試料本体1から完全に分離されているため、弾けることなく静電力によりプローブ7に保持され、確実にピックアップされる。引き続きマニピュレータを操作してこの切片試料21をコロジオン膜張付けメッシュ(150メッシュ)8上に移動させ、載置する。メッシュ8に切り出した切片試料21が付着し、TEM観察用の試料作成を完了する。なお、この切片試料21のピックアップとメッシュ8への張付け作業は10分程で実行できる。
【0009】
【発明の効果】
本発明は、従来の加工法と同様にウェハ状の試料に対し試料面上方からの集束イオンビームによって薄片化加工するステップを踏むが、次のステップでは試料台をチルトして深い角度からのビーム照射により薄片の底辺部に切り込み加工を施し、少なくとも両側辺部の一部にはこの時点では切り込み加工を行わない。そして試料台を元に戻し試料表面の仕上げ加工を施した後で、薄片面方向のビームの照射位置を薄片両端部近傍に位置決めし、残りの両側辺の切り込み加工を実行するものであるため、切片試料をピックアップする際には該切片試料がウェハから完全に分離された状態になっており、接続部を折ってピックアップする必要はないものである。したがって、従来のように切片試料が撥ね飛んで失うような問題はなく、それまでの作業を無駄にすることなく、透過電子顕微鏡用試料の安定して確実な製作が可能となった。
【0010】
また仕上げ加工において薄片化加工部が両側辺で固定保持された状態で実行できるため、精度のよい加工が可能となった。従来のように連結部を大きく取れば仕上げ加工の際の位置保持機能は確保されるものの、最後の試料片ピックアップに際し撥ねる力が大きくなり薄片化した試料を遺失してしまう確率が高くなるという狭間で、その兼合いに苦労する必要はない。
【図面の簡単な説明】
【図1】本発明の薄片化試料の切りだし形態を示す図。
【図2】本発明の切片試料をピックアップ形態を示す図。
【図3】ウェハら直接薄片化加工を実行する形態を示す図。
【図4】機械加工をしてから薄片化加工を実行する形態を示す図。
【符号の説明】
1 ウェハ状試料 a 底辺部切り込み加工
11 試料小ブロック b、c 両辺部切り込み加工
2 薄片部
21 切片試料
3 前方穴
4 後方穴
5 ガス銃
6 ガラスプローブ
8 メッシュ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique for processing a sample for a transmission electron microscope (TEM) using a focused ion beam apparatus.
[0002]
[Prior art]
It is well known that a cross-sectional sample for TEM observation is made by thinning using a focused ion beam apparatus. A method of cutting a small piece mechanically from a wafer-like sample and processing it, and etching the wafer as it is Then, a method of taking out a thinned sample is known. As shown in FIG. 4-A, the former processing method requires a machining process in which a small block 11 having a width of 500 μm to 2 mm and a length of 3 mm is first cut from a wafer as a sample, and the upper portion is further cut to 50 μm or less. As shown in FIG. 4B, the protective film 6 is formed on the small block by spraying W (CO) 6 onto the processed portion by the gas gun 5. Thereafter, the focused ion beam is irradiated as shown in FIG. 4-C to perform slicing processing, and the electron beam is transmitted as shown in FIG. 4-D to be used as a cross-sectional sample for TEM observation. The latter processing method executes focused ion beam processing directly from the wafer without machining. The present invention relates to the latter method. In this method, as shown in FIG. 3, first, a protective film is formed on a processed portion by a gas gun, and a focused ion beam is irradiated from above the surface of the sample 1 to illuminate both sides of the observation cross section. Scraping is performed by etching, and square holes 3 and 4 are formed on both sides of the observation cross-section thin piece 2 with a focused ion beam device. The size of the hole is such that the front hole 3 tilts the sample stage and the observation cross section can be observed with a scanning ion microscope. The rear hole 4 has the same width as the front hole 3 and the depth is about 2/3. Drilled. In FIG. 3, A is a view of the processed portion observed from above, B is a cross-sectional observation view, and C is a microscope observation image from obliquely above. As shown in Fig. B, the sample surface is tilted to scan the focused ion beam as shown by an arrow on the periphery of the sample that has been processed into a thin section as an observation cross section. Since the sample surface is damaged by the processing, the sample cross section must be polished again. In order to prevent the positional deviation of the thinned sample at the time of the finishing process, it is necessary to leave an unprocessed part (left shoulder part in the drawing) in the peripheral part as shown in FIG. Then, after the cutting process, the sample surface is returned to the original state, the beam is irradiated from above the sample surface to finish the thinning process, and finally the thin sample is held by a glass probe operated by a manipulator, The sample is moved and adhered onto the mesh to complete the TEM observation sample. However, since the thinned sample has a connection part that is not partly cut, the glass probe is broken into pieces. You will carry a sample. The probe holds the sample piece mainly by electrostatic force. However, when the section sample is folded, the section sample repels and is lost from the probe. Once lost, it is an extremely small piece that cannot be discovered, and a series of operations will be attributed to water bubbles.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide a processing method that solves the above-described problems, that is, a processing method that can be securely transported and placed on a mesh using a glass probe after thinning finish processing to prepare a sample for TEM observation. It is.
[0004]
[Means for Solving the Problems]
A wafer-like sample is irradiated with a focused ion beam from above the sample surface to etch both sides of the observation cross section, and the sample surface is tilted in a state where the thinning has progressed moderately, and the focused ion beam is applied to the thinned sample. Scanning is performed to cut at least the bottom of the sample, and the sample surface is returned to its original position, and a focused ion beam is irradiated from above to perform a thinning finish. When the finishing process is completed, the focused ion beam is irradiated from above the sample surface to both sides where the cutting process is not performed, and the cutting process is executed.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, a protective film is first formed on a processed portion by a gas gun, a focused ion beam is irradiated from above the sample surface, both sides of the observation cross section are etched away, and a square hole that allows a cross section to be observed with a scanning ion microscope The process is the same as in the conventional processing up to the point where the clearance is made. Next, the sample stage is tilted and the focused ion beam is scanned around the periphery of the sample 2 that has been processed into a thin slice as an observation cross section, and the cut processing is performed. Because of this deep beam irradiation, the sample surface is deeply damaged. Accordingly, it is the same as before that the cross section of the sample has to be polished again. However, the present invention starts with an arrow on the bottom of the sample 2 that has been cut into pieces as shown in FIG. 1A. It is characterized in that the beam is scanned and executed as in a. This is because the cutting process at least on the bottom side cannot be performed unless the sample surface is tilted. Even after this cutting process, the thinned sample 2 remains connected to the wafer body 1 at both sides. Therefore, the sample 2 thinned at the time of the next finishing process is secured in a stable fixed state and does not cause a positional shift. Then, after the cutting process, the sample table is returned to the original angle, and the beam is irradiated from above the sample surface to finish the thinning process, and the thinning process is completed. However, the thinned sample 2 is still connected to the wafer body at both sides. In the present invention, a beam from above the sample surface, that is, from the direction of the thin piece surface is irradiated to the connecting portion of both side portions that are not cut in the sample surface without tilting the sample surface. As shown by c, cutting is performed on both sides of the thinned sample. Since this part is thin enough after thinning, it can be easily cut by irradiation with the beam from the surface extension direction, and the material scattered by etching is very small. Since the incident angle is shallow, the damage caused by this cutting process is negligible. Finally, the sliced sample is held by a glass probe 7 operated by a manipulator (not shown) as shown in FIGS. 1C and 1D, and as shown in FIGS. The TEM observation sample is completed by moving and adhering to the mesh 8, but the glass probe 7 carries the section sample 21 cut from the sample body 1 by the cutting process, and is folded from the sample body as in the conventional case. Since it is not necessary to carry the sample piece, even if the sample piece is held by an electrostatic force, the sample will not fly off and be lost from the probe.
[0006]
The point of the present invention is that the beam irradiation from a deep angle causes great damage to the sample. Therefore, the incision processing on both sides can be performed by the beam irradiation from the direction of the thin slice surface. It is the point that the base is first processed first by turning the sample to tilt and processing the sample at a deep incident angle. As a result, the finishing process can be executed in a form in which both sides are held, so that the position holding stability is higher than that of the conventional one-point holding, which contributes to increasing the machining accuracy. And since the sample piece is picked up in a state of complete separation, the conventional problem that the sample repels and is lost can be solved. In other words, if the connecting portion is made large in the cutting process, the position holding function in the finishing process is ensured, but the reluctance force becomes large at the last sample piece pick-up, and the probability of losing the thinned sample increases. However, the present invention has been able to solve the problem at a stretch, although it has been difficult in the past.
Note that the cutting process from a deep angle with respect to the observation cross section is not limited to the bottom side part, and part of both side parts may be processed. The point is that it is only necessary to ensure holding stability when the flake is connected to the sample body, and even after beam irradiation from the flake surface direction with minimal damage, beam processing after the flake finish processing is minimized. If you want to do this, it is better to leave only the part necessary for stable maintenance.
[0007]
[Example 1]
An embodiment in which a sample for TEM observation is prepared from a wafer-like 64M DRAM sample according to the present invention will be described. A wafer-like 64M DRAM is placed on the sample stage of the focused ion beam apparatus, and positioning is performed so that a specific portion to be a sample for TEM observation comes to the irradiation position when the beam is irradiated from above the wafer surface. Then, after forming a protective film 6 by spraying W (CO) 6 or phenanthrene or the like from the gas gun 5 onto the processed portion, both sides of the observation cross section identified by ion beam irradiation from above the wafer surface are shown in FIG. Etching is performed in the form (front hole 3 is 20 μm wide × 20 μm deep × 10 μm deep, and rear hole 4 is about 20 μm wide × 10 μm deep × 10 μm deep). When this processing is finished, the thickness of the sliced portion 2 of the observation cross section is about 0.5 μm. In this state, the sample stage is tilted by 60 degrees, and a focused ion beam is scanned from the front of the observation section, and a cut a is made at the bottom of the observation section as shown in FIG. 1A. Since this cutting process is a beam irradiation from a deep angle of 60 degrees with respect to the observation cross section, damage to the sample cannot be ignored. Therefore, when the cutting process is completed, the sample stage is returned to the original position, and the finishing process for thinning the observation cross section is executed again by the focused ion beam from above the wafer surface. This finishing process not only grinds and removes the material scattered and adhered during the previous cutting process, but also performs further thinning. The finishing process has a thickness of 0.1 μm for the sliced section 2 of the observation cross section. It is executed until it becomes. When the slicing process is completed, the irradiation position of the focused ion beam is fixed in the vicinity of both ends of the thin sample, and the beam is irradiated from the thin film surface extending direction. In this processing, the beam is irradiated from a shallow angle of 0 degrees with respect to the observation cross section, and since the thickness of the thin piece is 0.1 μm, the amount of material that is easily cut and scattered is very small. Damage to can be ignored. As shown in FIG. 1B, incisions of b and c are made in the depth direction on both side portions of the thin sample, and reach the incision position of the previous bottom portion. It is completely separated from the sample body 1. The work time so far can be executed in about 60 minutes.
[0008]
The manipulator (not shown) is operated to bring the glass probe 7 into contact with the section sample 21 as shown in FIG. Since the section sample 21 is completely separated from the wafer-like sample body 1, it is held by the probe 7 by electrostatic force without being bounced and is surely picked up. Subsequently, the manipulator is operated to move the section sample 21 onto the collodion membrane tension mesh (150 mesh) 8 and place it. The section sample 21 cut out on the mesh 8 adheres to complete the preparation of the sample for TEM observation. The section sample 21 can be picked up and attached to the mesh 8 in about 10 minutes.
[0009]
【The invention's effect】
In the present invention, as in the conventional processing method, a wafer-like sample is subjected to a thinning process using a focused ion beam from above the sample surface. In the next step, the sample stage is tilted to obtain a beam from a deep angle. The bottom part of the thin piece is cut by irradiation, and at least a part of both side parts is not cut at this point. And after putting the sample table back and finishing the sample surface, the irradiation position of the beam in the direction of the thin piece is positioned in the vicinity of both ends of the thin piece, and the remaining both sides are cut. When the section sample is picked up, the section sample is completely separated from the wafer, and there is no need to fold the connection portion to pick up. Therefore, there is no problem that the slice sample repels and loses as in the prior art, and the transmission electron microscope sample can be stably and reliably manufactured without wasting the previous work.
[0010]
In addition, the finishing process can be performed in a state in which the thinned portion is fixed and held on both sides, so that it is possible to perform highly accurate processing. If the connecting portion is made large as in the conventional case, the position holding function at the time of finishing will be ensured, but the repelling force at the time of the final sample piece pick-up will increase, and the probability that the thinned sample will be lost increases. There is no need to struggle with the trade-off between the spaces.
[Brief description of the drawings]
FIG. 1 is a diagram showing a cut-out form of a thinned sample of the present invention.
FIG. 2 is a diagram showing a form of picking up a section sample of the present invention.
FIG. 3 is a diagram showing a mode in which a thinning process is directly performed from a wafer.
FIG. 4 is a diagram showing a form in which a thinning process is performed after machining.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Wafer-like sample a Bottom part cut 11 Sample small block b, c Both sides cut 2 Thin piece 21 Section sample 3 Front hole 4 Back hole 5 Gas gun 6 Glass probe 8 Mesh

Claims (2)

ウェハ状の試料に対し試料面上方からの集束イオンビームによって薄片化加工するステップと、試料台をチルトしてビーム照射により薄片の少なくとも底辺部に切り込み加工を施すステップと、試料台を元に戻して再度薄片化加工を実行することで前記切り込み加工によって受けたダメージを研磨し試料表面の仕上げ加工を施すステップと、薄片面方向のビームの照射位置を薄片両端部近傍に位置決めし、両端部の切り込み加工を実行するステップとからなる透過電子顕微鏡用試料の切り込み加工方法。Thinning the wafer-shaped sample with a focused ion beam from above the sample surface, tilting the sample stage and cutting at least the bottom of the thin piece by beam irradiation, and returning the sample stage to its original position a step of performing a finishing polished sample surface damages received by said rebated, the irradiation position of the thin one side direction of the beam is positioned adjacent thin end portions by executing a thinning process again Te, the both end portions A method for cutting a sample for a transmission electron microscope, comprising the step of performing the cutting process. 請求項1に記載の切り込み加工法を実施した薄片試料を、マニピュレータにより操作されるガラスプローブによりピックアップするステップと、マニピュレータの操作によりメッシュ上に移送するステップと、メッシュ上に薄片試料切片を付着させるステップとからなる透過型電子顕微鏡観察用試料の作成方法。Attaching a thin sample embodying the rebated how according to claim 1, comprising the steps of: picking up by a glass probe to be operated by a manipulator, a step of transferring on the mesh by the operation of the manipulator, a thin sample sections on the mesh A method for preparing a sample for observation with a transmission electron microscope.
JP32818899A 1999-11-18 1999-11-18 Incision processing method and preparation method of transmission electron microscope sample Expired - Lifetime JP4037023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32818899A JP4037023B2 (en) 1999-11-18 1999-11-18 Incision processing method and preparation method of transmission electron microscope sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32818899A JP4037023B2 (en) 1999-11-18 1999-11-18 Incision processing method and preparation method of transmission electron microscope sample

Publications (3)

Publication Number Publication Date
JP2001141620A JP2001141620A (en) 2001-05-25
JP2001141620A5 JP2001141620A5 (en) 2005-10-27
JP4037023B2 true JP4037023B2 (en) 2008-01-23

Family

ID=18207459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32818899A Expired - Lifetime JP4037023B2 (en) 1999-11-18 1999-11-18 Incision processing method and preparation method of transmission electron microscope sample

Country Status (1)

Country Link
JP (1) JP4037023B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004191358A (en) * 2002-11-27 2004-07-08 Seiko Instruments Inc Sample preparation method and device by composite charge particle beam
JP4570980B2 (en) * 2005-02-21 2010-10-27 エスアイアイ・ナノテクノロジー株式会社 Sample stage and sample processing method
TW202229870A (en) * 2021-01-29 2022-08-01 日商日立高新技術科學股份有限公司 Sample piece relocating device

Also Published As

Publication number Publication date
JP2001141620A (en) 2001-05-25

Similar Documents

Publication Publication Date Title
US7022586B2 (en) Method for recycling a substrate
US7682937B2 (en) Method of treating a substrate, method of processing a substrate using a laser beam, and arrangement
US6849524B2 (en) Semiconductor wafer protection and cleaning for device separation using laser ablation
US5418190A (en) Method of fabrication for electro-optical devices
US6180525B1 (en) Method of minimizing repetitive chemical-mechanical polishing scratch marks and of processing a semiconductor wafer outer surface
JP3711018B2 (en) TEM sample thinning method
JP6396038B2 (en) Multiple sample attachment to nanomanipulators for high-throughput sample preparation
JP4570980B2 (en) Sample stage and sample processing method
JP4037023B2 (en) Incision processing method and preparation method of transmission electron microscope sample
JP3923733B2 (en) Sample preparation method for transmission electron microscope
CN111834273B (en) Positioning method and positioning device for target position of semiconductor chip sample
WO1999017103A2 (en) In-line fib process monitoring with wafer preservation
US6251782B1 (en) Specimen preparation by focused ion beam technique
US6927174B2 (en) Site-specific method for large area uniform thickness plan view transmission electron microscopy sample preparation
JP2004191358A (en) Sample preparation method and device by composite charge particle beam
JP2004069628A (en) Method for producing in-line test sample
JPH05180739A (en) Preparing method of sample for observation by electron microscope
JPH11183339A (en) Sample preparation method for transmission electron microscope
JP3710959B2 (en) Sample preparation method for transmission electron microscope
JP4335656B2 (en) Sample preparation method for microscope
JPH08261898A (en) Sample for transmission electron microscope and its preparation
US5993291A (en) Specimen block preparation for TEM analysis
JP4392272B2 (en) TEM sample preparation method
JPH0467650A (en) Manufacture of semiconductor device
JP4219084B2 (en) Preparation method for thin section sample for microscope

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040302

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071031

R150 Certificate of patent or registration of utility model

Ref document number: 4037023

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term