JP2008070155A - Preparation method for observing sample for transmission electron microscope - Google Patents

Preparation method for observing sample for transmission electron microscope Download PDF

Info

Publication number
JP2008070155A
JP2008070155A JP2006246881A JP2006246881A JP2008070155A JP 2008070155 A JP2008070155 A JP 2008070155A JP 2006246881 A JP2006246881 A JP 2006246881A JP 2006246881 A JP2006246881 A JP 2006246881A JP 2008070155 A JP2008070155 A JP 2008070155A
Authority
JP
Japan
Prior art keywords
sample
observation
fib
tem
electron microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006246881A
Other languages
Japanese (ja)
Inventor
Hideshi Yamaguchi
秀史 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2006246881A priority Critical patent/JP2008070155A/en
Publication of JP2008070155A publication Critical patent/JP2008070155A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To correct surface inclination errors of an observation sample, in the installation of the sample on FIB processing sample stand, with high accuracy, in the manufacture of the sample for TEM for thinning a plate by the FIB processing. <P>SOLUTION: Linear marks are respectively provided to the surface of the sample to be observed and the oblique surface part in the vicinity thereof; and when the marks are not related linearly or the marks are not set in parallel relation, an FIB processing surface is set, inclined from a predetermined position, with respect to the linear positional relation of the marks of respective parts; and by adjusting the linear positional relation so that the relation is connected linearly, by using the rotary mechanism of the sample stand, inclination of the surface of the sample is corrected. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、透過型電子顕微鏡(TEM;Transmission Electron Microscope)を用いて観察するための観察試料の作製方法に関し、特に、対象とする試料の表面の、加工用集束イオンビーム(FIB;Focused Ion Beam)に対する傾斜を補正し、このFIBによって、所期の目的に合わせた正確なTEM用の薄板状観察領域を観察試料中に形成するための方法に関する。   The present invention relates to a method for producing an observation sample for observation using a transmission electron microscope (TEM), and in particular, a focused ion beam (FIB) for processing on the surface of a target sample. The present invention relates to a method for forming a thin TEM observation region for an accurate TEM in an observation sample according to an intended purpose by using the FIB.

これまで、FIBを用いた透過型電子顕微鏡用観察試料作製方法(TEM用試料作製法)については、主に次に述べる2種類の方法が行われてきた。   Up to now, the following two types of methods have been mainly performed for the observation sample preparation method (TEM sample preparation method) for a transmission electron microscope using FIB.

一つは、対象とする試料を、高速回転外周刃加工装置(ダイシングソー、ダイサー)により10〜数10μm程度の試料の厚み加工を行った後、更にその薄くした場所を集束荷電粒子ビーム(集束イオンビーム、FIB)により数10〜100nm程度の厚みまで加工して更に薄板化する方法(ここでは、この方法を、ダイシングソー法と称する)である(例えば、特許文献1、2、3)。   One is that the target sample is processed to a thickness of about 10 to several tens of μm by a high-speed rotating outer peripheral blade processing device (dicing saw, dicer), and then the thinned portion is focused on a focused charged particle beam (focusing). This is a method of further thinning by processing to a thickness of several tens to 100 nm by an ion beam (FIB) (here, this method is called a dicing saw method) (for example, Patent Documents 1, 2, and 3).

このダイシングソー法を、図1を用いて説明する。図1(a)において、例えば半導体デバイスなどから、ダイシングソーで断面凸の字状のTEM試料1を切り出す。TEM試料1の側面部2の長さaを例えば、1.5mm、断面凸部3の断面厚さbを例えば、0.04mm(40μm)とする。こういったTEM試料1を、TEM用試料支持台であるメッシュ4(例えば、3mmφの金属製メッシュ)に、接着剤を用いて貼りつける。次に、本TEM試料1を、この断面凸部3における所期の観察場所5を、FIBを用いて所期の方向に薄板化加工を行うべく、FIB装置内でTEM試料の傾斜を、例えば試料回転機構6などにより調整する。   This dicing saw method will be described with reference to FIG. In FIG. 1A, a TEM sample 1 having a convex cross section is cut out from a semiconductor device, for example, with a dicing saw. The length a of the side surface portion 2 of the TEM sample 1 is 1.5 mm, for example, and the cross-sectional thickness b of the cross-sectional convex portion 3 is 0.04 mm (40 μm), for example. Such a TEM sample 1 is attached to a mesh 4 (for example, a metal mesh of 3 mmφ) which is a TEM sample support using an adhesive. Next, in order to thin the TEM sample 1 in a desired direction using the FIB in the desired observation place 5 in the cross-sectional convex part 3, the inclination of the TEM sample in the FIB apparatus, for example, Adjustment is performed by the sample rotation mechanism 6 or the like.

図1(b)に観察場所5の近傍拡大図を示す。本図において、断面凸部3(断面厚さb)の観察箇所5に対して、図中Aで示すようなFIB(例えば集束Gaイオンビーム)の走査処理による断面凸部3の表面から深さ方向へ、断面凸部の側面部7の所定の位置を両面エッチング加工することにより、厚さc(例えば50nm)、深さdの薄板部8が形成される。ここにおいて、薄板部8に垂直方向BからTEM観察が行われる。   FIG. 1B shows an enlarged view of the vicinity of the observation place 5. In this figure, the depth from the surface of the convex section 3 by the FIB (for example, focused Ga ion beam) scanning process as shown by A in the figure with respect to the observation portion 5 of the convex section 3 (cross section thickness b). The thin plate portion 8 having a thickness c (for example, 50 nm) and a depth d is formed by performing a double-side etching process on a predetermined position of the side surface portion 7 of the convex section in the direction. Here, TEM observation is performed on the thin plate portion 8 from the vertical direction B.

もう一つのFIBを用いた従来のTEM用試料作製に関する方法は、半導体デバイスなどの任意の箇所を分離する場合、上記のようなダイシングソーや割る手段などを用いず、当初からFIBの三次元加工技術で所要箇所を分離・加工する方法(ここでは、この方法を、マイクロサンプリング法と称する)である(例えば、特許文献4)。   Another method related to TEM sample preparation using FIB is that when separating any part such as a semiconductor device, three-dimensional processing of FIB from the beginning without using the above-mentioned dicing saw or means for breaking. This is a method of separating and processing a required portion by a technique (here, this method is referred to as a microsampling method) (for example, Patent Document 4).

このマイクロサンプリング法を、図2、3を用いて説明する。図2(a)の試料配置模式図において、FIB装置内の試料台上9にTEM試料10をセットする。Aで示したFIB(例えば集束Gaイオンビーム)を用い、TEM試料10中のTEM観察位置11を含む周囲を照射・エッチングする。図2(b)の照射・エッチング後のSIM(Scanning Ion Microscope;走査イオン顕微鏡)で得られた図に示すように、TEM観察場所11を含む周囲を4つの角穴で孤立した長さe(例えば、20μm)の分離試料12を画定し(この際、例えば、図中のDで示す箇所に、底部打ち抜き後の分離試料を保持するためのブリッジ部Dを形成しておき)、図2(c)のSIM図で示すように、TEM試料10を、例えば45度ないし60度傾斜させて分離試料12の底部13をFIBで打ち抜く。   This microsampling method will be described with reference to FIGS. In the sample arrangement schematic diagram of FIG. 2A, a TEM sample 10 is set on a sample stage 9 in the FIB apparatus. Using the FIB (for example, focused Ga ion beam) indicated by A, the periphery including the TEM observation position 11 in the TEM sample 10 is irradiated and etched. As shown in the figure obtained by the SIM (Scanning Ion Microscope) after irradiation / etching in FIG. 2B, the length e () in which the periphery including the TEM observation place 11 is isolated by four square holes. For example, a separation sample 12 of 20 μm is defined (in this case, for example, a bridge portion D for holding the separation sample after punching the bottom is formed at a position indicated by D in the drawing), and FIG. As shown in the SIM diagram of c), the TEM sample 10 is inclined by 45 to 60 degrees, for example, and the bottom 13 of the separated sample 12 is punched out by FIB.

次いで図2(d)のSIM図に示すように、TEM試料10の傾斜を元に戻し、金属製のプローブ14の先端を分離試料12の、例えば右端表面の接触部Eに接触させ、FIBのビーム誘起堆積膜の形成機能によって、接触部Eに例えばタングステン、カーボン、あるいは白金の堆積膜を形成し、プローブ14と分離試料12を接続する。その後、ブリッジ部DをFIB加工により切断して、プローブ14の先端に取り付けられた形の分離試料12をTEM試料10から分離する。   Next, as shown in the SIM diagram of FIG. 2 (d), the inclination of the TEM sample 10 is returned to the original position, and the tip of the metal probe 14 is brought into contact with the contact portion E of the separated sample 12, for example, the right end surface. A deposited film of, for example, tungsten, carbon, or platinum is formed at the contact portion E by the function of forming the beam-induced deposited film, and the probe 14 and the separated sample 12 are connected. Thereafter, the bridge portion D is cut by FIB processing, and the separation sample 12 attached to the tip of the probe 14 is separated from the TEM sample 10.

こうして得られた分離試料12を、図3(e)の模式図に示すように、端面が平坦化されたメッシュ15上にプローブ14を用いて運搬し、メッシュの端面16に接触させる。図3(f)の図は、メッシュ15の端面16を上方から観察したSIM図であるが、本図に示すように、図中、分離試料12の上側の側面及び端面16の一部に、先と同様に、堆積膜Fを形成することで、ここにおいてメッシュ15に固定する。   As shown in the schematic diagram of FIG. 3E, the separated sample 12 thus obtained is transported by using the probe 14 on the mesh 15 whose end face is flattened and brought into contact with the end face 16 of the mesh. 3 (f) is a SIM view of the end face 16 of the mesh 15 observed from above, but as shown in this figure, the upper side surface of the separation sample 12 and a part of the end face 16 are shown in FIG. Similarly to the above, the deposited film F is formed and fixed to the mesh 15 here.

次いで、プローブ14を、例えば、図中の切断場所Gにおいて、FIB加工にて分離試料12から切断する。図3(g)の模式図に、メッシュ15の端面16上に、分離試料12の側面と端面16の一部に形成された堆積膜Fにより固定した様子を示す。   Next, the probe 14 is cut from the separated sample 12 by FIB processing, for example, at a cutting place G in the drawing. The schematic diagram in FIG. 3G shows a state in which the deposited film F formed on the side surface of the separation sample 12 and a part of the end surface 16 is fixed on the end surface 16 of the mesh 15.

そして、図1(b)に示したものと同様に、分離試料12をFIB加工により、例えば、厚さ50nmの薄板部を形成することで、TEM観察場所を有するTEM用試料が作製される。
特開平5−180739号公報 特開平8−261894号公報 特開平8−261898号公報 特開平5−52721号公報
Then, as in the case shown in FIG. 1B, the TEM sample having the TEM observation place is produced by forming a thin plate portion of, for example, a thickness of 50 nm from the separation sample 12 by FIB processing.
Japanese Patent Laid-Open No. 5-180739 JP-A-8-261894 JP-A-8-261898 Japanese Patent Laid-Open No. 5-52721

ダイシングソー法においては、TEM用試料はメッシュに接着剤で固定されるが、一般に、試料側面とメッシュ面とが必ずしも平行ではない(あるいは、試料表面とメッシュ面が必ずしも直角ではない)ため、TEM用試料の所要とする向きがFIB加工の向きに対して適性とは必ずしもならない。つまり、FIBのイオンビーム方向軸とTEM観察方向軸の両者に対して、垂直となるべき軸が、傾いて試料が配置される場合があり、その結果、FIB加工後の薄板のTEM観察面が、試料の表面から加工深さが増加するにつれて、所要の観察面とはずれた面となる場合がある。   In the dicing saw method, the TEM sample is fixed to the mesh with an adhesive, but in general, the sample side surface and the mesh surface are not necessarily parallel (or the sample surface and the mesh surface are not necessarily perpendicular). The required direction of the sample for use is not necessarily suitable for the direction of FIB processing. In other words, the sample may be arranged with the axis that should be perpendicular to both the ion beam direction axis and the TEM observation direction axis of the FIB being inclined, and as a result, the TEM observation surface of the thin plate after the FIB processing is As the processing depth increases from the surface of the sample, the surface may deviate from the required observation surface.

従来は、ダイシングソー法で切り出されたTEM試料の切断面である側面部(つまり、図1(a)におけるTEM試料側面部2ないし断面凸部3の側面部7であって、同図中の斜線部に相当)を参照面として、試料の傾き6を補正していた。図1(b)における薄板部8の深さdが、例えば1μm程度ないしそれ以下と浅い場合で観察するときは、観察試料の深さ方向に関する(薄板部の)TEM観察結果は、さしたる支障は無かった。   Conventionally, it is a side surface portion that is a cut surface of a TEM sample cut by a dicing saw method (that is, the side surface portion 2 of the TEM sample side surface 2 or the cross-sectional convex portion 3 in FIG. The inclination 6 of the sample was corrected using the reference plane as the reference plane. When the depth d of the thin plate portion 8 in FIG. 1B is as shallow as about 1 μm or less, for example, the TEM observation result (of the thin plate portion) in the depth direction of the observation sample is There was no.

しかし、例えば、トレンチキャパシタ型DRAMで、とくに、近時、開発・製品化されているアスペクト比の大きなトレンチキャパシタを有する製品に関し、そのトレンチキャパシタ部の形成状況を深さ方向断面にてTEM観察しようとする場合を考える。図4は、典型的なトレンチキャパシタ型DRAMのトレンチキャパシタ形成部の深さ方向断面を模式的に示した図である。トレンチキャパシタ17は、Si基板に、例えば深さf(例えば10μm)、例えば直径200nmの細孔を形成し、その孔の側壁に例えばONO膜で数nm厚で覆った後、例えば多結晶シリコンを充填してトレンチ型キャパシタとし、これが所定の間隔をおいて周期的に形成される。   However, for example, with regard to a trench capacitor type DRAM, in particular, a product having a trench capacitor with a large aspect ratio that has been developed and commercialized recently, let's observe the formation state of the trench capacitor part in a cross section in the depth direction. Consider the case. FIG. 4 is a diagram schematically showing a cross section in the depth direction of a trench capacitor forming portion of a typical trench capacitor type DRAM. The trench capacitor 17 is formed, for example, by forming a pore having a depth of f (for example, 10 μm), for example, a diameter of 200 nm on a Si substrate and covering the sidewall of the hole with, for example, an ONO film with a thickness of several nanometers. Filled to form a trench type capacitor, which is periodically formed at a predetermined interval.

この図4のトレンチキャパシタ部の深さ方向断面図は、図1(b)の図中のCで示した方向から断面凸部5を見た場合と同じ断面構成であって、トレンチキャパシタ17が断面凸部5の凸部表面から下方向に向かい、深く、周期的の形成されているものとする。このとき、図1(b)において、深さdをトレンチキャパシタの深さf(例えば10μm程度)の深さまでに薄板部8を形成してトレンチキャパシタ17の深さ方向の断面をTEM観察しようとする場合、このトレンチキャパシタ17の深さ方向断面が深さf(10μm程度)にわたって均一に現れるよう、この試料のより正確な(対FIBの)傾斜角度調整を行って、FIBで加工する必要がある。   4 is a cross-sectional view in the depth direction of the trench capacitor portion, which has the same cross-sectional configuration as when the cross-sectional convex portion 5 is viewed from the direction indicated by C in FIG. It is assumed that they are formed deeply and periodically from the convex surface of the convex section 5 in the downward direction. At this time, in FIG. 1B, the thin plate portion 8 is formed to a depth d equal to the depth f of the trench capacitor (for example, about 10 μm), and a cross section in the depth direction of the trench capacitor 17 is to be observed by TEM. In this case, it is necessary to adjust the inclination angle of this sample more accurately (to FIB) and to process with FIB so that the cross section in the depth direction of the trench capacitor 17 appears uniformly over the depth f (about 10 μm). is there.

仮に、図4に示すように、例えば薄板部の厚さc(例えば50nm厚)のTEM観察用の薄板部8の深さ方向が、トレンチキャパシタ17の深さ方向とずれて形成されたとすると、表面近傍Hではトレンチキャパシタ17断面のTEM観察が可能であっても、深いところでのそのTEM観察はできなくなる。つまり、この様な、特にアスペクト比の高い観察箇所を、比較的幅広くTEM観察するためのFIBによる試料作製においては、より正確なFIB軸に対する試料配置角度の調整が重要になる。   If the depth direction of the thin plate portion 8 for TEM observation of the thickness c (for example, 50 nm thickness) of the thin plate portion is shifted from the depth direction of the trench capacitor 17 as shown in FIG. Even if the TEM observation of the cross section of the trench capacitor 17 is possible in the vicinity of the surface H, the TEM observation in a deep place cannot be performed. That is, in the preparation of a sample by FIB for TEM observation of such an observation portion having a particularly high aspect ratio, a more accurate adjustment of the sample arrangement angle with respect to the FIB axis is important.

この正確なFIB軸に対する試料配置角度の調整が重要である事情は、マイクロサンプリング法を用いた作製法でも同じ様に生じる。図3(e)、(f)、(g)において、分離試料12をメッシュ15に堆積膜で固定するとき、先に、「TEM試料10を、例えば45度ないし60度傾斜させて分離試料12の底部13をFIBで打ち抜く」と記したように、分離試料12の底面は斜めに切断されている。このことから、分離試料12の表面に対して、FIBが入射する加工軸が正確に垂直となるように直立させてメッシュの端面16に固定することは困難な作業であり、実際上、傾いた状況で固定される場合が多い。   The situation that the adjustment of the sample arrangement angle with respect to the accurate FIB axis is important also occurs in the manufacturing method using the microsampling method. 3 (e), (f), and (g), when the separation sample 12 is fixed to the mesh 15 with a deposited film, first, the “TEM sample 10 is inclined by 45 to 60 degrees, for example, and the separation sample 12 is tilted. The bottom surface of the separated sample 12 is cut obliquely as described in “Punching the bottom 13 of the substrate with FIB”. For this reason, it is difficult to stand upright and fix to the end face 16 of the mesh so that the processing axis on which the FIB is incident is accurately perpendicular to the surface of the separated sample 12, and it is actually inclined. It is often fixed by the situation.

従って、ダイシングソー法の場合で述べたように、表面から深く形成された(アスペクト比の高い)素子の深さ方向断面を、深さ方向全域でカバーできるように、TEM観察用の薄板部をFIBで正確に加工することは非常に困難となる。つまり、この様な場合に有効な、TEM観察方向とTEM観察範囲が正確に確保できる、FIB入射軸に対する試料の傾斜角度調整のための手段が重要になる。   Therefore, as described in the case of the dicing saw method, the thin plate portion for TEM observation is provided so that the cross section in the depth direction of the element formed deep from the surface (high aspect ratio) can be covered in the entire depth direction. It becomes very difficult to process accurately with FIB. That is, a means for adjusting the tilt angle of the sample with respect to the FIB incident axis, which can ensure the TEM observation direction and the TEM observation range accurately, which is effective in such a case, is important.

そこで、本発明の課題は、FIBでのTEM用観察試料の作製法において、特に観察試料の表面に直線的あるいは周期的に、目印(マーク)がSIMなどで検知可能に配置されている場合などにおいて、その目印をもとに、特に表面から深さ方向に深く行うFIB加工方向に対する加工試料の傾斜角度を、高精度加工の要請に足る、補正調整する方法を提供することにある。   Therefore, an object of the present invention is to prepare a TEM observation sample in FIB, particularly when a mark is arranged on the surface of the observation sample linearly or periodically so that it can be detected by a SIM or the like. In view of the above, there is provided a method for correcting and adjusting the tilt angle of the processed sample with respect to the FIB processing direction, which is deep in the depth direction from the surface, in accordance with the demand for high-precision processing.

この方法を適用することで、特にTEM試料形成のためにFIB加工が表面より深く行われる場合でも、観察試料の傾斜を補正することで正確にFIB方向を定めて加工することができるため、所要のTEM観察面を深さ方向に長いスパンにわたって(例えば、深く埋め込まれたトレンチキャパシタの深さ方向断面などを、表面近傍からキャパシタ底部近傍まで)TEM観察可能となる。   By applying this method, even when FIB processing is performed deeper than the surface for forming a TEM sample, it is possible to accurately determine the FIB direction by correcting the tilt of the observation sample. The TEM observation surface can be observed over a long span in the depth direction (for example, a depth direction cross section of a deeply buried trench capacitor from the vicinity of the surface to the vicinity of the capacitor bottom).

本発明の目的は、
集束イオンビームによる、透過型電子顕微鏡用観察試料作製方法において、
平面部と段差部を有する観察対象試料の各々の表面に、直線状に連結した又は離散した目印を有し、
前記それぞれの目印の位置関係から、前記観察対象試料表面の前記集束イオンビームに対する傾斜を補正することを特徴とする透過型電子顕微鏡用観察試料作製方法、によって可能となる。
The purpose of the present invention is to
In the observation sample preparation method for a transmission electron microscope using a focused ion beam,
On each surface of the observation target sample having a flat portion and a stepped portion, it has a linearly connected or discrete mark,
This is made possible by a method for preparing an observation sample for a transmission electron microscope, in which the inclination of the surface of the observation target sample with respect to the focused ion beam is corrected from the positional relationship of the respective marks.

さらに、前記段差部は、斜面あるいは段差底面である。   Further, the step portion is a slope or a step bottom surface.

また、前記観察対象試料は半導体装置であり、前記目印は半導体基板に形成されたデバイス形成用領域である。   The sample to be observed is a semiconductor device, and the mark is a device formation region formed on a semiconductor substrate.

そして、前記目印は、予め前記互いに隣り合う平面部と段差部に加工形成された溝または孔である。   And the said mark is the groove | channel or hole previously processed and formed in the said mutually adjacent plane part and level | step difference part.

TEM試料形成のためにFIB加工が、特に、表面より深く行われ、そのとき深い加工個所でも所要の観察場所の表出が正確求められる場合でも、本発明の方法を適用することによって観察試料の傾斜を補正することでき、正確にFIB方向を定めて加工することができる。このため、例えば、深く埋め込まれたトレンチキャパシタの深さ方向断面などを、表面近傍からキャパシタ底部近傍まで、深さ方向に長いスパンにわたってTEM観察可能となる。   FIB processing for TEM sample formation is carried out particularly deeper than the surface, and even when the required processing location is accurately expressed even at a deep processing location, the observation sample can be obtained by applying the method of the present invention. The inclination can be corrected, and the FIB direction can be accurately determined and processed. For this reason, for example, the depth direction cross section of the deeply buried trench capacitor can be observed by TEM over a long span in the depth direction from the vicinity of the surface to the vicinity of the bottom of the capacitor.

(第1の実施例)
トレンチキャパシタ型DRAMのトレンチキャパシタの深さ方向断面のTEM観察用試料の作製する場合について、図5を用いて述べる。
(First embodiment)
The case where a sample for TEM observation of the cross section in the depth direction of the trench capacitor of the trench capacitor type DRAM is described with reference to FIG.

トレンチキャパシタは、通常、チップ表面から基板内に深く、かつ表面から見て周期的に配置されている。図1を用いて述べたように、ダイシングソー法でこのDRAM試料の観察場所(その深さ方向断面が観察できるように切り出されるトレンチキャパシタ部)を切り出し、メッシュに貼り付けた後、TEM観察場所(薄板化加工する場所)から離れた場所において、FIBを用いて、その表面に斜面形成エッチングを行う。   The trench capacitors are usually arranged deeply from the chip surface into the substrate and periodically as viewed from the surface. As described with reference to FIG. 1, an observation place of the DRAM sample (a trench capacitor portion cut out so that a cross section in the depth direction can be observed) is cut out by a dicing saw method, and pasted on a mesh, and then a TEM observation place Using a FIB, slope formation etching is performed on the surface at a place away from the (thin plate processing place).

具体例を図5(a)に示す。図5(a)は、図4で示したものと同様な、トレンチキャパシタ17部の断面の模式図であり、TEM観察場所の延長にあって、かつその場所より離れた箇所、例えば、図1(a)において、断面凸部3の端部近傍を示しているものとする。そして、図1(b)のようにメッシュに貼付後、これをFIB装置内で、FIB加工によって薄板部8を形成する前に、断面凸部3の端部を切り欠く様に、FIBで斜め加工を行い、図5(a)に示す様に、表面領域18と隣接した斜面領域19を形成する。   A specific example is shown in FIG. FIG. 5A is a schematic diagram of a cross section of the trench capacitor 17 portion similar to that shown in FIG. 4, which is an extension of the TEM observation place and is away from the place, for example, FIG. In (a), it is assumed that the vicinity of the end of the convex section 3 is shown. Then, after affixing to the mesh as shown in FIG. 1 (b), before forming the thin plate portion 8 by FIB processing in the FIB apparatus, the end portion of the cross-sectional convex portion 3 is diagonally cut by the FIB. Processing is performed to form a slope region 19 adjacent to the surface region 18 as shown in FIG.

斜面領域19の加工角度や加工長さ(範囲)は、後の角度調整の判定に足る範囲で行えば良い。   The processing angle and processing length (range) of the slope region 19 may be set within a range sufficient for the subsequent angle adjustment determination.

次に、図5(b)、(c)は、図5(a)の表面側を、試料の真上から(つまり、FIBの入射面を)観察したときの模式図を示す。   Next, FIGS. 5B and 5C are schematic views when the surface side of FIG. 5A is observed from directly above the sample (that is, the FIB incident surface).

試料をFIB加工するための装置には、通常、試料台上に載置した試料の状況を観察するために、集束イオンビームの試料表面への走査照射によって放出される二次粒子(イオンや電子)を検知して、試料観察像を得る機能を有している。即ち、SIM(走査イオン顕微鏡)やSEM(走査電子顕微鏡)の機能である。これらの機能を用いることで、基板上でのトレンチキャパシタ17(配列方向の断面)の存在箇所を、模式的の示した図5(b)、(c)のように観察することは容易である。つまり、図5(b)、(c)は、FIB照射方向に垂直な面から観察された、表面領域18と、一部深さ方向に斜め加工された斜面領域19とを含む、トレンチキャパシタの周期的配置方向断面を示す試料面の観察像である。   In order to observe the state of the sample placed on the sample stage, the apparatus for FIB processing of the sample usually has secondary particles (ions and electrons) emitted by scanning irradiation of the sample surface with a focused ion beam. ) To obtain a sample observation image. That is, it is a function of SIM (scanning ion microscope) or SEM (scanning electron microscope). By using these functions, it is easy to observe the location of the trench capacitor 17 (cross section in the arrangement direction) on the substrate as shown schematically in FIGS. 5B and 5C. . That is, FIGS. 5B and 5C show a trench capacitor including a surface region 18 and a slope region 19 partially processed in the depth direction, which are observed from a plane perpendicular to the FIB irradiation direction. It is an observation image of a sample surface showing a periodic arrangement direction cross section.

斜面領域19における各トレンチキャパシタ17の観察断面は、図中、左方向(表面領域18と隣接した斜面領域19との境界から離れる方向)にあるものほど、表面から深い個所における断面を見ていることになる。   The observed cross section of each trench capacitor 17 in the slope region 19 is seen in a deeper section from the surface as it is in the left direction (the direction away from the boundary between the surface region 18 and the adjacent slope region 19). It will be.

従って、図5(b)において記した、表面領域18において観察されるトレンチキャパシタの周期的に配置された断面の並び方向線(仮想線)L1と、斜面領域19のそれの並び方向線(仮想線)L2が、同図のように一直線上にある場合は、トレンチキャパシタ17が周期的に並んだこの領域において、各トレンチキャパシタ17の深さ方向は、観察している試料表面に対し垂直方向(即ち、FIBの入射方向)と一致していることになる。   Therefore, the arrangement direction line (virtual line) L1 of the periodically arranged cross section of the trench capacitor observed in the surface region 18 and the arrangement direction line (imaginary line) of the slope region 19 shown in FIG. When the line L2 is on a straight line as shown in the figure, in this region where the trench capacitors 17 are periodically arranged, the depth direction of each trench capacitor 17 is perpendicular to the sample surface being observed. (I.e., the FIB incident direction).

しかし、図5(c)に示すように、表面領域18において観察されるトレンチキャパシタの周期的に配置された断面の並び方向線L1と、斜面領域19のそれの並び方向線L2が、同図のように一直線上に無い場合、各トレンチキャパシタ17の深さ方向は、観察している試料表面に対し垂直方向(即ち、FIBの入射方向)と一致しておらず、トレンチキャパシタ17の深さ方向に深くなるに従って、FIBの入射位置とのずれの幅が大きくなる。   However, as shown in FIG. 5C, the alignment direction line L1 of the periodically arranged cross-sections of the trench capacitors observed in the surface region 18 and the alignment direction line L2 of the inclined region 19 are shown in FIG. In the case where they are not in a straight line, the depth direction of each trench capacitor 17 does not coincide with the direction perpendicular to the observed sample surface (that is, the incident direction of the FIB), and the depth of the trench capacitor 17 As the direction becomes deeper, the width of the deviation from the FIB incident position becomes larger.

この様な状況で、TEM観察場所をFIBによる薄板部加工を深く行うと、図4で説明した状況、つまり、薄板部の深い場所でトレンチキャパシタ17の深さ方向の断面のTEM観察ができなくなるといった状況が生じることとなる。   If the thin plate portion processing by FIB is performed deeply in the TEM observation place in such a situation, the situation described in FIG. 4, that is, the TEM observation of the cross section in the depth direction of the trench capacitor 17 cannot be performed in the deep portion of the thin plate portion. Such a situation will occur.

よって、図5(c)の様な観察がなされたときは、表面領域18において観察されるトレンチキャパシタの方向線L1と、斜面領域19のそれの並び方向線L2が一致するように、TEM観察用試料の傾斜を、メッシュが搭載された試料台機構が有する回転機構20などにより調整することで、FIB加工のための試料の表面に対するFIB入射する方向が補正され、所期の方向に深く加工された(深い位置のトレンチキャパシタ深さ方向の断面まで正しく加工された)TEM観察のための薄板部を形成することができる。   Therefore, when the observation as shown in FIG. 5C is made, the TEM observation is performed so that the direction line L1 of the trench capacitor observed in the surface region 18 and the alignment direction line L2 of the inclined region 19 coincide with each other. By adjusting the tilt of the sample for use with the rotating mechanism 20 of the sample stage mechanism on which the mesh is mounted, the direction of the FIB incident on the surface of the sample for FIB processing is corrected, and deep processing is performed in the intended direction. It is possible to form a thin plate portion for TEM observation (having been processed correctly to a cross section in the depth direction of the trench capacitor at a deep position).

以上の説明においては、表面領域18におけるトレンチキャパシタ17の並び方向(仮想)線L1と斜面領域19におけるトレンチキャパシタ17の並び方向(仮想)線L2の対比で説明したが、一定の深さにおけるトレンチキャパシタ17の並び方向(仮想)線の情報を得るためには、斜面を形成する方法に留まらないことは明らかであり、表面領域のトレンチキャパシタ(あるいは、深く形成されたマークや目印)の並び方向線と、所定の深さにステップ状に所要の広さをもつ段差面を形成し、その面でのトレンチキャパシタ(あるいは、深く形成されたマークや目印)の並び方向線を比較すれば良い。段差面は、例えば、FIBで例えば四角形や円形の垂直穴を形成しその底面を上記の段差面として用いることも可能である。   In the above description, the arrangement direction (virtual) line L1 of the trench capacitors 17 in the surface region 18 and the arrangement direction (virtual) line L2 of the trench capacitors 17 in the slope region 19 have been described. Obviously, in order to obtain information on the line (virtual) line of the capacitors 17, it is not limited to the method of forming the slope, and the line direction of the trench capacitors (or deeply formed marks and marks) in the surface region. It is only necessary to form a stepped surface having a predetermined width in a step shape at a predetermined depth and compare the line in the direction of the trench capacitor (or a deeply formed mark or mark) on that surface. As the step surface, for example, a square or circular vertical hole can be formed by FIB, and the bottom surface thereof can be used as the step surface.

(第2の実施例)
次に、前述のマイクロサンプリング法によってTEM観察試料を形成する際に、観察すべき箇所を、深さ方向において正確に調整して薄板化し、TEM観察に適したものとする例について述べる。
(Second embodiment)
Next, an example will be described in which, when a TEM observation sample is formed by the above-described microsampling method, a portion to be observed is accurately adjusted in the depth direction to be thinned and suitable for TEM observation.

まず、図2(a)、そして図2(b)に従って、ブリッジ部Dで繋がった分離試料12を画定する。次に、図2(c)のSIM図で示すように、TEM試料10を、例えば45度ないし60度傾斜させて分離試料12の底部13をFIBで打ち抜く。この様に、分離試料12の底面は斜めに切断されていることから、この分離試料12をFIBが入射する加工面が正確に垂直となるように直立させてメッシュの端面16に固定することは困難な作業であり、実際上、傾いた状況で固定される場合が多いことを述べた。   First, according to FIG. 2A and FIG. 2B, the separated sample 12 connected by the bridge portion D is defined. Next, as shown in the SIM diagram of FIG. 2 (c), the TEM sample 10 is inclined, for example, 45 degrees to 60 degrees, and the bottom 13 of the separated sample 12 is punched out by FIB. As described above, since the bottom surface of the separated sample 12 is cut obliquely, it is possible to fix the separated sample 12 to the end face 16 of the mesh by standing upright so that the processing surface on which the FIB is incident is accurately vertical. He stated that it was a difficult task and was often fixed in a tilted situation.

以下に容易に試料表面とメッシュの端面とが平行になるよう(つまり、試料表面に対してFIBが正確に垂直に入射するよう)に調整する例を示す。   An example in which the sample surface and the end face of the mesh are easily adjusted to be parallel (that is, so that the FIB enters the sample surface accurately perpendicularly) will be described below.

まずはじめに、試料台上に試料表面と試料台表面とが平行となるように固定する。図6(a)は、このときの観察状況を示したものであり、図2(b)の分離試料12がブリッジ部DでTEM試料10から分離されていない状態で、分離試料12の表面(この表面は試料台の表面と平行に固定されている)を、SIMあるいはSEMで観察したときの模式図である。このとき、TEM試料12の観察表面は試料台表面と平行(つまり、TEM試料表面に対してFIBが垂直に入射)状態である。   First, the sample surface and the sample table surface are fixed on the sample table so that they are parallel to each other. FIG. 6A shows the observation state at this time. In the state where the separation sample 12 of FIG. 2B is not separated from the TEM sample 10 by the bridge portion D, the surface ( This surface is fixed in parallel with the surface of the sample stage) and is a schematic view when observed by SIM or SEM. At this time, the observation surface of the TEM sample 12 is in a state parallel to the sample table surface (that is, FIB is incident perpendicularly to the TEM sample surface).

ここにおいて、分離試料12の、FIBで薄板化する場所である観察場所11から離れた箇所に、FIBを用いて、表面領域21に接し、これから次第に深くなる、一定領域を有する斜面領域22を形成する。この斜面領域22の幅は勿論、分離試料12の幅と同じである必要は無いし、例えば斜面状の底面を有する角穴形状でも良い。   Here, a slope region 22 having a certain region that is in contact with the surface region 21 and gradually becomes deeper is formed by using the FIB at a location away from the observation location 11 where the separation sample 12 is thinned by FIB. To do. Of course, the width of the slope region 22 does not have to be the same as the width of the separated sample 12, and may be, for example, a square hole shape having a sloped bottom surface.

この斜面領域22を形成後、FIBを用いて、図示するように、表面領域21と斜面領域22を連続して通過するように、直線的な溝をなす、溝線L3、溝線L4を形成する。その結果、図示するように、溝線L3、溝線L4は互いに連続した直線状になる。このように基準となるマーク(目印)を形成する。   After forming the slope region 22, using the FIB, as shown in the figure, the groove line L3 and the groove line L4 that form straight grooves are formed so as to pass through the surface region 21 and the slope region 22 continuously. To do. As a result, as shown in the figure, the groove line L3 and the groove line L4 are continuous straight lines. In this way, a reference mark (mark) is formed.

こうして溝線L3、L4が形成された分離試料12を、図2、図3で示した手法によってTEM試料11から分離し、メッシュ上に搭載したときの表面側を観察したときの例の模式図が、図6(b)である。この観察例においては、表面領域21の溝線L3と斜面領域22の溝線22が、境界で折れ曲がった様にSIMあるいはSEMで観察されている。   The separation sample 12 in which the groove lines L3 and L4 are thus formed is separated from the TEM sample 11 by the method shown in FIGS. 2 and 3, and a schematic view of an example when the surface side is observed when mounted on the mesh. Is FIG. 6B. In this observation example, the groove line L3 of the surface region 21 and the groove line 22 of the slope region 22 are observed with a SIM or SEM so as to be bent at the boundary.

これは、この場合の分離試料12の表面が、図6(a)で、溝線L3、L4を形成したとき(つまり、TEM試料の観察表面は試料台と平行状態)と同じでは無く、FIB加工の向きから傾いている(FIBに垂直面でない状態である)と判断される。従って、このL3、L4が一直線になるように、メッシュの回転機構23を用いて傾きを変えることで、分離試料の本来の向きの補正を行うことができる。この後、補正された分離試料12に対して観察場所11をFIB加工して薄板化を行い、適正な深さ方向を有すTEM観察用の薄板部を得る事ができる。   This is because the surface of the separation sample 12 in this case is not the same as when the groove lines L3 and L4 are formed in FIG. 6A (that is, the observation surface of the TEM sample is parallel to the sample stage). It is determined that it is tilted from the direction of processing (the surface is not perpendicular to the FIB). Therefore, the original orientation of the separated sample can be corrected by changing the inclination using the mesh rotation mechanism 23 so that L3 and L4 are in a straight line. Thereafter, the corrected separation sample 12 is subjected to FIB processing to make a thin plate, and a thin plate portion for TEM observation having an appropriate depth direction can be obtained.

上記の例においては、表面領域21に接して次第に深くなる斜面領域22を形成したが、表面領域境界から急な段差をもって底面領域を形成して、図6(a)のように溝線を両領域に連続的に形成しても良い。この場合に対応する図6(b)では、溝線L3、L4は互いに接せず、両溝線は平行しないので、回転補正によって、互いに接し、平行(直線)状となるようにする。   In the above example, the slope region 22 gradually deeper in contact with the surface region 21 is formed, but the bottom region is formed with a steep step from the boundary of the surface region, and both groove lines are formed as shown in FIG. It may be formed continuously in the region. In FIG. 6B corresponding to this case, the groove lines L3 and L4 are not in contact with each other, and the both groove lines are not in parallel, so that they are in contact with each other and become parallel (straight) by rotation correction.

また、上記の例においては、基準となる目印として、FIB加工による直線的な溝を用いたが、これに限ることは無い。基本的に、仮想的な直線をなす目印の集合であればよく、例えば円形孔を離散的に仮想的な直線をなすように形成し、この仮想線を用いて、上記の様な調整を行えば良い。   In the above example, a linear groove formed by FIB processing is used as a reference mark. However, the present invention is not limited to this. Basically, it may be a set of marks that form a virtual straight line. For example, circular holes are formed so as to form a virtual straight line discretely, and the above adjustment is performed using this virtual line. Just do it.

(第3の実施例)
第1の実施例では、トレンチキャパシタ型DRAMにおけるトレンチキャパシタ形成部の深さ方向のTEM観察を行うためのFIB加工する場合の例を示した。本実施例では、例えばトレンチキャパシタ型DRAMにおいて、デバイスの表面に周期的に形成されるゲート電極の平面方向での形成状況を、広範囲にわたって、均一の試料深さでもって、いわゆる平面TEM観察するためのFIB加工する例を示す。
(Third embodiment)
In the first embodiment, an example in which FIB processing for performing TEM observation in the depth direction of the trench capacitor forming portion in the trench capacitor type DRAM is shown. In the present embodiment, for example, in a trench capacitor type DRAM, a so-called planar TEM observation is performed over a wide range with a uniform sample depth on the formation state of the gate electrode periodically formed on the surface of the device in a planar direction. An example of FIB processing will be shown.

図7は平面TEM観察をための試料作製を説明する図である。図7(a)は図1(a)と同様に、ダイシングソー法で切り出されたTEM試料24がメッシュ4の端面に搭載された状況を模式的に示したものである。   FIG. 7 is a diagram for explaining sample preparation for planar TEM observation. FIG. 7A schematically shows a state in which the TEM sample 24 cut out by the dicing saw method is mounted on the end face of the mesh 4 as in FIG. 1A.

TEM試料24は、片側側面のみからダイサーで凸型加工されているのは、TEM試料24のゲート電極が形成された表面側を加工せず、反対側の基板側からのみ研削加工することを示す。ここで、Aは、さらに薄板加工するためのFIB入射方向を表す。図7(b)は、図7(a)の、メッシュを反対側から見たとき、つまりゲート電極が形成された平面が正面となっているときの模式図であり、観察場所25をFIBで、この切削部を裏側からのみの加工で薄板化し、薄板側面に垂直な方向BからTEM観察(平面TEM観察)を行う。   The fact that the TEM sample 24 is convexly processed with a dicer from only one side surface indicates that the surface side of the TEM sample 24 on which the gate electrode is formed is not processed, but is ground only from the opposite substrate side. . Here, A represents the FIB incident direction for further thin plate processing. FIG. 7B is a schematic diagram when the mesh of FIG. 7A is viewed from the opposite side, that is, when the plane on which the gate electrode is formed is the front, and the observation place 25 is FIB. The cutting part is thinned only by processing from the back side, and TEM observation (planar TEM observation) is performed from the direction B perpendicular to the thin plate side surface.

デバイス表面に周期的に多数形成されたゲート電極を、広範囲にわたり、均一な条件で各電極の形成状況を、表面側からTEM観察(すなわち平面TEM観察)するためには、電極形成面(表面側)は残し、裏面側(基板側)から、均一な厚さをもった薄板をFIBで正確に形成する必要がある。つまり、ゲート電極形成面(TEM観察面)に対して、FIB入射方向が正確に平行をなすように、TEM試料が配置される必要がある。   In order to perform TEM observation (that is, planar TEM observation) from the surface side of the gate electrode formed on the device surface periodically in a wide range under uniform conditions, the electrode formation surface (surface side) ), And it is necessary to accurately form a thin plate having a uniform thickness from the back side (substrate side) by FIB. That is, the TEM sample needs to be arranged so that the FIB incident direction is exactly parallel to the gate electrode formation surface (TEM observation surface).

図8(c)、(d)は、そのための方法を説明するための模式図ある。図8(c)は、図7(b)で、方向Bから見たときのデバイスのゲート電極形成面を観察したときであって、ゲート電極27が周期的に配置されていることを示す。   FIGS. 8C and 8D are schematic diagrams for explaining a method therefor. FIG. 8C shows the gate electrode formation surface of the device when viewed from the direction B in FIG. 7B and shows that the gate electrodes 27 are periodically arranged.

この状況において、FIBを用いて観察場所から離れた場所に斜面形成加工を行い、表面領域28(つまり、図7(a)のTEM試料24をA方向から見て平坦な表面状況にある領域)と斜面領域(同じく、図7(a)のTEM試料24をA方向から見て徐々に左側に行くに従い深く切れ込むように斜面加工された領域)を形成する。   In this situation, the slope formation process is performed at a place away from the observation place using the FIB, and the surface region 28 (that is, the region in which the TEM sample 24 in FIG. 7A is in a flat surface state when viewed from the A direction). And a slope region (similarly, a region in which the slope is processed so as to cut deeper as the TEM sample 24 in FIG.

図8(d)に、この様に加工された観察試料を上から(つまり、図7(a)のTEM試料24をA方向から)見たときの模式図を示す。   FIG. 8D shows a schematic diagram when the observation sample processed in this way is viewed from above (that is, the TEM sample 24 of FIG. 7A is viewed from the A direction).

このとき、基板30上のゲート電極27の断面の配置状況を観察することができる。表面領域28でのゲート電極27の断面の方向線(仮想線)L5と、表面領域29でのゲート電極27の断面の方向線(仮想線)L6を比較することで、TEM試料25がFIB入射方向に対して正確に位置しているか否かが判定でき、各方向線が平行でない場合は、メッシュの回転機構を用いて、平行と観察できるように、試料の傾斜を補正することが可能となる。   At this time, the arrangement state of the cross section of the gate electrode 27 on the substrate 30 can be observed. By comparing the direction line (virtual line) L5 of the cross section of the gate electrode 27 in the surface region 28 with the direction line (virtual line) L6 of the cross section of the gate electrode 27 in the surface region 29, the TEM sample 25 enters the FIB. It can be determined whether or not it is accurately positioned with respect to the direction, and if each direction line is not parallel, the tilt of the sample can be corrected so that it can be observed parallel using a mesh rotation mechanism. Become.

こうして試料の傾斜補正を行い、FIB加工を正確に行うことで、図8(c)でのゲート電極27に関し、同図における下方向に多数配置されたゲート電極のTEM観察についても、同じ観察条件で平面観察を行うことができる。本例においては、斜面領域の形成について述べたが、第1の実施例で述べたのと同様に、これに限らないことはいうまでも無い。   By correcting the tilt of the sample in this way and performing the FIB processing accurately, the same observation conditions are applied to the TEM observation of the gate electrodes 27 arranged in the downward direction in FIG. Can be used for plane observation. In this example, the formation of the slope region has been described, but it goes without saying that the present invention is not limited to this, as described in the first example.

以上述べた本発明の方法を適用することにより、深さが10μmないしそれ以上の広範囲にわたってTEM観察が可能なTEM用試料を容易に作製できるようになった。   By applying the method of the present invention described above, a TEM sample capable of TEM observation over a wide range having a depth of 10 μm or more can be easily produced.

以上の実施例を含む実施の形態に関し、さらに以下の付記を開示する。   The following supplementary notes are further disclosed with respect to the embodiments including the above examples.

(付記1)
集束イオンビームによる、透過型電子顕微鏡用観察試料作製方法において、
平面部と段差部を有する観察対象試料の各々の表面に、直線状に連結した又は離散した目印を有し、
前記それぞれの目印の位置関係から、前記観察対象試料表面の前記集束イオンビームに対する傾斜を補正することを特徴とする透過型電子顕微鏡用観察試料作製方法。
(Appendix 1)
In the observation sample preparation method for a transmission electron microscope using a focused ion beam,
On each surface of the observation target sample having a flat portion and a stepped portion, it has a linearly connected or discrete mark,
An observation sample preparation method for a transmission electron microscope, wherein an inclination of the surface of the observation target sample with respect to the focused ion beam is corrected based on a positional relationship between the respective marks.

(付記2)
前記段差部は、斜面あるいは段差底面であることを特徴とする付記1記載の透過型電子顕微鏡用観察試料作製方法。
(Appendix 2)
The observation sample preparation method for a transmission electron microscope according to appendix 1, wherein the stepped portion is an inclined surface or a stepped bottom surface.

(付記3)
前記観察対象試料は半導体装置であり、前記目印は半導体基板に形成されたデバイス形成用領域であることを特徴とする付記1または2記載の透過型電子顕微鏡用観察試料作製方法。
(Appendix 3)
The observation sample preparation method for a transmission electron microscope according to appendix 1 or 2, wherein the observation target sample is a semiconductor device, and the mark is a device formation region formed on a semiconductor substrate.

(付記4)
前記目印は、予め前記互いに隣り合う平面部と段差部に加工形成された溝または孔であることを特徴とする付記1または2記載の透過型電子顕微鏡用観察試料作製方法。
(Appendix 4)
The observation sample preparation method for a transmission electron microscope according to appendix 1 or 2, wherein the mark is a groove or a hole formed in advance in the planar portion and the step portion adjacent to each other.

(付記5)
前記溝または孔は、FIBにより加工形成されたものであることを特徴とする付記4記載の透過型電子顕微鏡用観察試料作製方法。
(Appendix 5)
The observation sample preparation method for a transmission electron microscope according to appendix 4, wherein the groove or hole is processed and formed by FIB.

(付記6)
前記デバイス形成領域は、トレンチキャパシタ領域であることを特徴とする付記3記載の透過型電子顕微鏡用観察試料作製方法。
(Appendix 6)
The observation sample preparation method for a transmission electron microscope according to appendix 3, wherein the device formation region is a trench capacitor region.

(付記7)
前記デバイス形成領域は、電極領域であることを特徴とする付記3記載の透過型電子顕微鏡用観察試料作製方法。
(Appendix 7)
The observation sample preparation method for a transmission electron microscope according to appendix 3, wherein the device formation region is an electrode region.

ダイシングソー法によるTEM試料作製法を説明する図The figure explaining the TEM sample preparation method by the dicing saw method マイクロサンプリング法よるTEM試料作製法を説明する図(その1)The figure explaining the TEM sample preparation method by the micro sampling method (the 1) マイクロサンプリング法よるTEM試料作製法を説明する図(その2)Diagram explaining TEM sample preparation method by microsampling method (Part 2) トレンチキャパシタの深さ方向断面図Cross-sectional view of trench capacitor in depth direction 本発明の方法を説明する図(第1の実施例)The figure explaining the method of this invention (1st Example) 本発明の方法を説明する図(第2の実施例)Diagram for explaining the method of the present invention (second embodiment) 本発明の方法を説明する図(第3の実施例・その1)The figure explaining the method of this invention (3rd Example and the 1) 本発明の方法を説明する図(第3の実施例・その2)The figure explaining the method of this invention (3rd Example and the 2)

符号の説明Explanation of symbols

1、10、24 TEM試料
2、26 側面部
3 断面凸部
4、15 メッシュ
5、11、25 観察場所
6、20、23 試料回転機構
7 断面凸部の側面部
8 薄板部
9 試料台
12 分離試料
13 底部
14 プローブ
16 端面
17 トレンチキャパシタ
18、21、28 表面領域
19、22、29 斜面領域
27 ゲート電極
30 基板
DESCRIPTION OF SYMBOLS 1, 10, 24 TEM sample 2, 26 Side surface part 3 Section convex part 4, 15 Mesh 5, 11, 25 Observation place 6, 20, 23 Sample rotation mechanism 7 Side part of sectional convex part 8 Thin plate part 9 Sample stand 12 Separation Sample 13 Bottom 14 Probe 16 End face 17 Trench capacitor 18, 21, 28 Surface region 19, 22, 29 Slope region
27 Gate electrode 30 Substrate

Claims (5)

集束イオンビームによる、透過型電子顕微鏡用観察試料作製方法において、
平面部と段差部を有する観察対象試料の各々の表面に、直線状に連結した又は離散した目印を有し、
前記それぞれの目印の位置関係から、前記観察対象試料表面の前記集束イオンビームに対する傾斜を補正することを特徴とする透過型電子顕微鏡用観察試料作製方法。
In the observation sample preparation method for a transmission electron microscope using a focused ion beam,
On each surface of the observation target sample having a flat portion and a stepped portion, it has a linearly connected or discrete mark,
An observation sample preparation method for a transmission electron microscope, wherein an inclination of the surface of the observation target sample with respect to the focused ion beam is corrected based on a positional relationship between the respective marks.
前記段差部は、斜面あるいは段差底面であることを特徴とする請求項1記載の透過型電子顕微鏡用観察試料作製方法。   2. The observation sample preparation method for a transmission electron microscope according to claim 1, wherein the step portion is an inclined surface or a step bottom surface. 前記観察対象試料は半導体装置であり、前記目印は半導体基板に形成されたデバイス形成用領域であることを特徴とする請求項1または2記載の透過型電子顕微鏡用観察試料作製方法。   The observation sample preparation method for a transmission electron microscope according to claim 1, wherein the observation target sample is a semiconductor device, and the mark is a device formation region formed on a semiconductor substrate. 前記目印は、予め前記互いに隣り合う平面部と段差部に加工形成された溝または孔であることを特徴とする請求項1または2記載の透過型電子顕微鏡用観察試料作製方法。   3. The observation sample preparation method for a transmission electron microscope according to claim 1, wherein the mark is a groove or a hole formed in advance in the planar portion and the step portion adjacent to each other. 前記溝または孔は、FIBにより加工形成されたものであることを特徴とする請求項4記載の透過型電子顕微鏡用観察試料作製方法。   The observation sample preparation method for a transmission electron microscope according to claim 4, wherein the groove or hole is formed by processing using FIB.
JP2006246881A 2006-09-12 2006-09-12 Preparation method for observing sample for transmission electron microscope Withdrawn JP2008070155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006246881A JP2008070155A (en) 2006-09-12 2006-09-12 Preparation method for observing sample for transmission electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006246881A JP2008070155A (en) 2006-09-12 2006-09-12 Preparation method for observing sample for transmission electron microscope

Publications (1)

Publication Number Publication Date
JP2008070155A true JP2008070155A (en) 2008-03-27

Family

ID=39291876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006246881A Withdrawn JP2008070155A (en) 2006-09-12 2006-09-12 Preparation method for observing sample for transmission electron microscope

Country Status (1)

Country Link
JP (1) JP2008070155A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103645083A (en) * 2013-11-22 2014-03-19 上海华力微电子有限公司 TEM sample repreparation method
JP2014530346A (en) * 2011-09-12 2014-11-17 エフ・イ−・アイ・カンパニー Viewing angle mill
WO2016002341A1 (en) * 2014-06-30 2016-01-07 株式会社 日立ハイテクノロジーズ Pattern measurement method and pattern measurement device
CN105674921A (en) * 2016-01-27 2016-06-15 武汉新芯集成电路制造有限公司 Channel hole measurement method
CN110567994A (en) * 2019-10-12 2019-12-13 上海华力微电子有限公司 Method for extracting sample to be tested for transmission electron microscope
CN112204374A (en) * 2018-05-25 2021-01-08 三菱电机株式会社 Method for manufacturing transmission electron microscope sample
CN114460107A (en) * 2020-10-22 2022-05-10 中国科学院微电子研究所 Transmission electron microscope sample carries net
WO2023057520A1 (en) * 2021-10-07 2023-04-13 Carl Zeiss Smt Gmbh A workflow to align a semiconductor sample and/or to measure its misalignment in a fib-sem or fib-him device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014530346A (en) * 2011-09-12 2014-11-17 エフ・イ−・アイ・カンパニー Viewing angle mill
CN103645083B (en) * 2013-11-22 2016-04-27 上海华力微电子有限公司 The method that TEM sample is prepared again
CN103645083A (en) * 2013-11-22 2014-03-19 上海华力微电子有限公司 TEM sample repreparation method
JPWO2016002341A1 (en) * 2014-06-30 2017-06-01 株式会社日立ハイテクノロジーズ Pattern measuring method and pattern measuring apparatus
KR20170010840A (en) * 2014-06-30 2017-02-01 가부시키가이샤 히다치 하이테크놀로지즈 Pattern measurement method and pattern measurement device
TWI586934B (en) * 2014-06-30 2017-06-11 日立全球先端科技股份有限公司 Pattern measurement method and pattern measuring device
US10184790B2 (en) 2014-06-30 2019-01-22 Hitachi High-Technologies Corporation Pattern measurement method and pattern measurement device
KR101957007B1 (en) * 2014-06-30 2019-03-11 가부시키가이샤 히다치 하이테크놀로지즈 Pattern measurement method and pattern measurement device
WO2016002341A1 (en) * 2014-06-30 2016-01-07 株式会社 日立ハイテクノロジーズ Pattern measurement method and pattern measurement device
CN105674921A (en) * 2016-01-27 2016-06-15 武汉新芯集成电路制造有限公司 Channel hole measurement method
US11747243B2 (en) * 2018-05-25 2023-09-05 Mitsubishi Electric Corporation Method of producing test-sample for transmission electron microscope
CN112204374A (en) * 2018-05-25 2021-01-08 三菱电机株式会社 Method for manufacturing transmission electron microscope sample
JPWO2019224993A1 (en) * 2018-05-25 2021-02-18 三菱電機株式会社 Method for preparing a transmission electron microscope sample
US20210102872A1 (en) * 2018-05-25 2021-04-08 Mitsubishi Electric Corporation Method of producing test-sample for transmission electron microscope
CN112204374B (en) * 2018-05-25 2023-12-26 三菱电机株式会社 Method for manufacturing transmission electron microscope sample
CN110567994A (en) * 2019-10-12 2019-12-13 上海华力微电子有限公司 Method for extracting sample to be tested for transmission electron microscope
CN110567994B (en) * 2019-10-12 2022-03-04 上海华力微电子有限公司 Method for extracting sample to be tested for transmission electron microscope
CN114460107A (en) * 2020-10-22 2022-05-10 中国科学院微电子研究所 Transmission electron microscope sample carries net
WO2023057520A1 (en) * 2021-10-07 2023-04-13 Carl Zeiss Smt Gmbh A workflow to align a semiconductor sample and/or to measure its misalignment in a fib-sem or fib-him device
US12056865B2 (en) 2021-10-07 2024-08-06 Carl Zeiss Smt Gmbh Wafer-tilt determination for slice-and-image process

Similar Documents

Publication Publication Date Title
JP2008070155A (en) Preparation method for observing sample for transmission electron microscope
JP5101845B2 (en) Focused ion beam apparatus, sample cross section preparation method and thin piece sample preparation method using the same
JP4563049B2 (en) Ion beam processing method using FIB-SEM composite apparatus
JP2010230672A (en) Method of forming image while milling work piece
JP2004087174A (en) Ion beam device, and working method of the same
CN103094031B (en) Charged particle beam system aperture
JP2010230612A (en) Sample producing device, and controlling method for the same
JP5247761B2 (en) FIB-SEM combined device
US20190353566A1 (en) Methods for acquiring planar view stem images of device structures
CN101246132B (en) Focused ion beam equipment and focused ion beam detecting method
US10410829B1 (en) Methods for acquiring planar view stem images of device structures
CN103808552A (en) Method of processing a material-specimen
TWI255339B (en) Method of applying micro-protection in defect analysis
JP2008014899A (en) Sample preparing method
CN1841661A (en) Semiconductor manufacture method
JP2011243540A (en) Selected area aperture plate of transmission electron microscope, manufacturing method of selected area aperture plate, and observing method of selected area electron diffraction image
JPH11183339A (en) Sample preparation method for transmission electron microscope
TWI249184B (en) Method for manufacturing mask for focus monitoring, and method for manufacturing semiconductor device
JP2004253232A (en) Sample fixing table
JP2010135132A (en) Sample stage for focused ion beam processing device, and method for making transmission type electron microscope plane-observed semiconductor thin sample
JP2006343101A (en) Sample preparation method for observing fault place of semiconductor device
JP2011221023A (en) Test piece manufacturing apparatus and method
US11835492B2 (en) Method for preparing sample for wafer level failure analysis
WO2022033158A1 (en) Wafer level failure analysis sample production method
JP2011038888A (en) Sample, sample preparing method and sample preparing device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091201