JP2010135132A - Sample stage for focused ion beam processing device, and method for making transmission type electron microscope plane-observed semiconductor thin sample - Google Patents

Sample stage for focused ion beam processing device, and method for making transmission type electron microscope plane-observed semiconductor thin sample Download PDF

Info

Publication number
JP2010135132A
JP2010135132A JP2008308346A JP2008308346A JP2010135132A JP 2010135132 A JP2010135132 A JP 2010135132A JP 2008308346 A JP2008308346 A JP 2008308346A JP 2008308346 A JP2008308346 A JP 2008308346A JP 2010135132 A JP2010135132 A JP 2010135132A
Authority
JP
Japan
Prior art keywords
sample
ion beam
sample stage
focused ion
mesh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008308346A
Other languages
Japanese (ja)
Inventor
Yoichi Makibuchi
陽一 巻渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2008308346A priority Critical patent/JP2010135132A/en
Publication of JP2010135132A publication Critical patent/JP2010135132A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sample stage for a focused ion beam processing device, using an easy method for inexpensively making a plane-observed semiconductor thin sample, and to provide a method using the same for making the transmission type electron microscope plane-observed semiconductor thin sample. <P>SOLUTION: The sample stage face has an inclined groove for holding a mesh on the sample stage face. With the emission of focused ion beams, a micro sample piece is cut out of a sample substrate, and separated and picked out by a microprobe, and then the mesh held in the inclined groove of the sample stage face is inclined so that the side face of the mesh is directed perpendicular to the focused ion beams. The micro sample piece adheres to the end face of the mesh so that its observed plane is directed perpendicular to the focused ion beams, and then the inclined sample stage is rotated 180° around the rotational axis. The focused ion beams are emitted to make the transmission type electron microscope plane-observed semiconductor thin sample. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、集束イオンビーム加工装置(FIB装置)を用いてマイクロサンプリング法で透過型電子顕微鏡(TEM)の平面観察用半導体薄片試料を作製する方法に係わり、特に、半導体基板や半導体チップの平面観察用半導体薄片試料の作製のためのFIB装置の試料ステージに関する。 The present invention relates to a method for producing a semiconductor thin-film sample for planar observation of a transmission electron microscope (TEM) by a microsampling method using a focused ion beam processing apparatus (FIB apparatus), and more particularly, a planar surface of a semiconductor substrate or a semiconductor chip. The present invention relates to a sample stage of an FIB apparatus for producing a semiconductor thin piece sample for observation.

TEMで試料を観察するためには、試料を電子線が透過することが可能な厚さ(0.1μm以下)に薄片化する必要があるが、特にシリコン基板(シリコンウエハ)などの半導体基板を用いて製造される半導体素子においては近年FIB装置を用いて薄片化することが一般的になっている。試料ステージ上に平置きされたシリコンウエハやチップなどの形の大きい試料基板にFIB装置に装備されるマイクロプローブを接着後、集束イオンビームによって一辺が数十μmサイズの微小試料片を切り出し、前記マイクロプローブにより前記微小試料片を分離摘出し、同じ試料ステージ面内に設置されるメッシュと呼ばれる薄板状の試料片保持板の端面に接着した後、この微小試料片を、集束イオンビームの照射により薄片化する方法はマイクロサンプリング法と呼ばれている。通常、FIB装置によるTEM観察用半導体薄片試料の作製は半導体素子基板の主平面に垂直な縦断面の観察用半導体薄片試料の作製を主目的とするが、主平面に平行な横断面で観察した方が的確に観察対象を捉えられ、観察目的に適う場合も多く、横断面(以降、平面と略記)観察用半導体薄片試料の作製のニーズも多い。前記マイクロサンプリング法でも平面観察用の半導体薄片試料を作製する方法が公開されている(特許文献1)。この特許文献1に記載のマイクロサンプリング法によれば、平面観察用の半導体薄片試料を作製するためには、工程の途中でメッシュ(試料片保持板)を90度向きを変えてメッシュに接着された微小試料片の切断方向を90度変え、縦断面切断を横断面切断に変える必要がある。先ず、試料ステージ上に平置きされたウエハやチップなどの試料基板の表面の微小試料片の切り出し予定箇所にマイクロプローブに接着させた後、集束イオンビームを照射し平面観察用の半導体薄片試料に加工すべき領域を含む微小試料片を切り出す。この微小試料片を前記試料基板から分離摘出し、薄板状のメッシュ(試料片保持板)端面に移載する。この時、前記切り出されてマイクロプローブに接着された微小試料片の向きはこの段階では変えられないので、そのままの向きで、試料ステージ面に垂直に立設するメッシュの端面に接着させる。その後、集束イオンビームを照射して前記微小試料片を薄片化すると、縦断面の半導体薄片試料が作製されるが、横断面(平面)の半導体薄片試料はそのままでは作製できない。そこで、図10(a)のメッシュ端部の拡大断面図に示すように、一旦、前記薄板状メッシュ2の向きを試料ステージ面と平行に変えてから、前記微小試料片5を前記メッシュ2の端面に接着させる。次に、集束イオンビームの照射方向(矢印)は試料ステージ面に垂直方向に固定されているので、図10(b)に示すようにメッシュ2に接着された前記微小試料片5の向きを90度変えて、破線で示す観察平面8が集束イオンビームの照射方向(矢印)と平行になるようにして、薄片化する必要がある。
特許第3805547号公報
In order to observe a sample with a TEM, it is necessary to slice the sample to a thickness (0.1 μm or less) through which an electron beam can pass. In particular, a semiconductor substrate such as a silicon substrate (silicon wafer) is used. In recent years, it has become common to thin a semiconductor element manufactured by using an FIB apparatus. After bonding the microprobe mounted on the FIB apparatus to a large sample substrate such as a silicon wafer or a chip placed flat on the sample stage, a small sample piece with a side of several tens of μm is cut out by a focused ion beam, The micro sample piece is separated and extracted by a microprobe and bonded to the end face of a thin plate-like sample piece holding plate called a mesh placed in the same sample stage surface, and then the micro sample piece is irradiated with a focused ion beam. The thinning method is called a microsampling method. Usually, the preparation of a semiconductor thin film sample for TEM observation using an FIB apparatus is mainly aimed at the preparation of a semiconductor thin film sample for observation of a vertical section perpendicular to the main plane of the semiconductor element substrate, but was observed in a cross section parallel to the main plane. In many cases, the observation target can be accurately grasped and is suitable for the purpose of observation, and there is a great need for manufacturing a semiconductor thin film sample for observation of a cross section (hereinafter abbreviated as a plane). A method for producing a semiconductor thin-film sample for planar observation is disclosed by the microsampling method (Patent Document 1). According to the micro-sampling method described in Patent Document 1, in order to produce a semiconductor thin piece sample for planar observation, the mesh (sample piece holding plate) is turned 90 degrees in the middle of the process and bonded to the mesh. It is necessary to change the cutting direction of the minute sample piece by 90 degrees and change the longitudinal section cut to the transverse section cut. First, after attaching a microprobe to a portion to be cut out of a fine sample piece on the surface of a sample substrate such as a wafer or chip placed flat on the sample stage, a focused ion beam is irradiated to form a semiconductor thin piece sample for planar observation. A small sample piece including a region to be processed is cut out. The micro sample piece is separated and extracted from the sample substrate and transferred to the end face of a thin plate-like mesh (sample piece holding plate). At this time, since the direction of the micro sample piece cut out and bonded to the microprobe cannot be changed at this stage, the micro sample piece is bonded to the end face of the mesh erected perpendicularly to the sample stage surface in the same direction. Thereafter, when the fine sample piece is thinned by irradiating with a focused ion beam, a semiconductor thin piece sample having a longitudinal section is produced, but a semiconductor thin piece sample having a transverse section (plane) cannot be produced as it is. Therefore, as shown in the enlarged cross-sectional view of the mesh end in FIG. 10A, the direction of the thin mesh 2 is once changed to be parallel to the sample stage surface, and then the minute sample piece 5 is moved to the mesh 2. Adhere to the end face. Next, since the irradiation direction (arrow) of the focused ion beam is fixed in the direction perpendicular to the sample stage surface, the direction of the minute sample piece 5 bonded to the mesh 2 is set to 90 as shown in FIG. It is necessary to change the thickness so that the observation plane 8 indicated by the broken line is parallel to the irradiation direction (arrow) of the focused ion beam.
Japanese Patent No. 3805547

しかしながら、一般的なFIB装置は、前述のように縦断面を観察するための半導体薄片試料の作製を主な目的とし、試料ステージ面上に水平に平置きした試料基板の表面に対し、垂直な方向に集束イオンビームが入射する構成となっている。試料基板に傾斜した集束イオンビームを照射する際には集束イオンビームを傾斜させるのではなく、試料ステージを傾斜させる機構になっている。試料ステージは前記傾斜角制御機構の他に、軸回転機構、位置制御機構(X−Yマニュピュレータ)も備えている。試料ステージにメッシュを固定する方法も縦断面加工を前提としているので、試料ステージ面に設けられる垂直な溝に薄板状メッシュを挟み込み、メッシュを試料ステージ面に対して垂直に保持する構造にされている。この結果、薄板状メッシュの端面に接着された微小試料片の観察平面に対して、集束イオンビームの照射方向は垂直になる。従って、そのまま、集束イオンビーム照射によって微小試料片を薄片化すると、縦断面の薄片試料が作製されるのである。また、試料ステージには、その下部に取り付けられる基部によって基部と一体になって働く傾斜機構が設けられているが、断面を斜め上方から観察、切断することが目的であるため、通常は一方向のみに45〜60度程度までしか傾斜しない機構が多い。従って、このような限定的な傾斜角制御機構の装置では、前述の特許文献1の記載のようには、平面観察用半導体薄片試料の作製に必要な傾斜角度(90度)にメッシュの向きを変えることができない。平面観察用半導体薄片試料の作製のためにメッシュの向きを90度以上の傾斜角度にすることが可能な機構を備えた前記特許文献1に記載されたようなFIB装置は通常、極めて高価である。   However, a general FIB apparatus is mainly intended to produce a semiconductor thin piece sample for observing a longitudinal section as described above, and is perpendicular to the surface of a sample substrate placed horizontally on a sample stage surface. A focused ion beam is incident in the direction. When irradiating the sample substrate with the tilted focused ion beam, the sample stage is not tilted but the sample stage is tilted. In addition to the tilt angle control mechanism, the sample stage also includes an axis rotation mechanism and a position control mechanism (XY manipulator). The method of fixing the mesh to the sample stage is also premised on vertical cross section processing, so a thin mesh is sandwiched in a vertical groove provided on the sample stage surface and the mesh is held perpendicular to the sample stage surface. Yes. As a result, the irradiation direction of the focused ion beam becomes perpendicular to the observation plane of the minute sample piece adhered to the end face of the thin plate mesh. Therefore, if a minute sample piece is thinned by focused ion beam irradiation as it is, a thin piece sample having a longitudinal section is produced. In addition, the sample stage is provided with a tilt mechanism that works integrally with the base by a base attached to the lower part of the sample stage. There are many mechanisms that only tilt to about 45 to 60 degrees. Therefore, in such a device having a limited tilt angle control mechanism, as described in Patent Document 1 described above, the mesh direction is set to the tilt angle (90 degrees) necessary for the production of the semiconductor thin film sample for plane observation. I can't change it. The FIB apparatus described in Patent Document 1 having a mechanism capable of setting the mesh direction to an inclination angle of 90 degrees or more for producing a semiconductor thin-film sample for planar observation is usually very expensive. .

本発明は上述の問題に鑑みてなされたものであり、簡易な方法で安価に平面観察用半導体薄片試料を作製することを可能にする集束イオンビーム加工装置の試料ステージおよび透過型電子顕微鏡平面観察用半導体薄片試料の作製方法を提供することを目的とする。   The present invention has been made in view of the above-described problems, and provides a planar observation of a sample stage and a transmission electron microscope of a focused ion beam processing apparatus that enables a semiconductor thin-film sample for planar observation to be produced at low cost by a simple method. An object of the present invention is to provide a method for producing a semiconductor thin film sample.

特許請求の範囲の請求項1記載の発明によれば、集束イオンビームに対向する状態で半導体基板試料の主面を載置する面と、透過型電子顕微鏡平面観察用半導体薄片試料を作製するために、前記半導体基板試料から前記集束イオンビームで切り出される微小試料片を保持するメッシュを挟持するための傾斜溝とを有することにより、前記本発明の目的は達成される。   According to the first aspect of the present invention, in order to produce the surface on which the main surface of the semiconductor substrate sample is placed in a state of facing the focused ion beam and the semiconductor thin film sample for transmission electron microscope plane observation Further, the object of the present invention is achieved by having an inclined groove for holding a mesh for holding a micro sample piece cut out from the semiconductor substrate sample by the focused ion beam.

特許請求の範囲の請求項2記載の発明によれば、前記傾斜溝の傾斜方向と前記半導体基板試料を載置する面との成す角度が20〜70°である特許請求の範囲の請求項1の集束イオンビーム加工装置の試料ステージとする。
特許請求の範囲の請求項3記載の発明によれば、特許請求の範囲の請求項1または2記載の集束イオンビーム加工装置の試料ステージを支持し、該試料ステージの位置制御と傾斜および軸回転の制御機構を有する基部を備える特許請求の範囲の集束イオンビーム装置とする。
According to a second aspect of the present invention, the angle formed by the inclined direction of the inclined groove and the surface on which the semiconductor substrate sample is placed is 20 to 70 °. The sample stage of the focused ion beam processing apparatus.
According to the third aspect of the present invention, the sample stage of the focused ion beam processing apparatus according to the first or second aspect of the present invention is supported, and the position control of the sample stage and the tilt and rotation of the sample stage are supported. The focused ion beam apparatus according to the claims is provided with a base having the control mechanism.

特許請求の範囲の請求項4記載の発明によれば、特許請求の範囲の請求項1または2記載の集束イオンビーム加工装置の試料ステージに載置され、固定され、前記集束イオンビームの照射方向に対して垂直な観測平面を有する半導体基板試料にマイクロプローブを接着後、集束イオンビームを照射して微小試料片を切り出す工程、メッシュを傾斜溝に挟持させた前記試料ステージを傾斜させて前記メッシュ側面を前記集束イオンビームの照射方向に対して垂直にする工程、前記メッシュの端面に前記集束イオンビームの照射方向に対して垂直な観測平面を有する前記微小試料片を接着して前記マイクロプローブを切り離す工程、前記試料ステージを回転軸を中心に180度回転させ、前記微小試料片の前記観測平面を前記集束イオンビームの照射方向と平行にする工程、前記微小試料片の観測平面に平行に前記集束イオンビームを照射して薄片化する工程を有する透過型電子顕微鏡平面観察用半導体薄片試料の作製方法とすることができる。   According to the invention described in claim 4, the irradiation direction of the focused ion beam is placed and fixed on the sample stage of the focused ion beam processing apparatus according to claim 1 or 2. A step of cutting a micro sample piece by irradiating a focused ion beam after attaching a microprobe to a semiconductor substrate sample having an observation plane perpendicular to the surface, and tilting the sample stage with a mesh held in an inclined groove A step of making a side surface perpendicular to the irradiation direction of the focused ion beam, and attaching the microprobe by adhering the micro sample piece having an observation plane perpendicular to the irradiation direction of the focused ion beam to an end surface of the mesh. Separating the sample stage, rotating the sample stage 180 degrees around the rotation axis, and setting the observation plane of the micro sample piece to the focused ion beam It is possible to provide a method for producing a semiconductor thin film sample for plane observation of a transmission electron microscope, which includes a step of making it parallel to the irradiation direction and a step of thinning by irradiating the focused ion beam parallel to the observation plane of the minute sample piece. .

本発明の試料ステージは、試料ステージ上に平置き固定された試料基板から微小試料片を集束イオンビームで切り出し、マイクロプローブで分離摘出するための試料ステージ面と、該試料ステージ面に対して斜め(たとえば45度)形成された薄板状メッシュ挟持用の傾斜溝を有する。集束イオンビームと垂直な向きの前記試料ステージ面に固定された試料基板から微小試料片を切り出し、分離摘出後、前記試料ステージ面に対して(たとえば45度の)傾斜角を有する傾斜溝に挟み込まれた薄板状メッシュを、メッシュの側面が前記集束イオンビームと垂直な向きとなるように、前記試料ステージ面を(たとえば45度)傾ける。試料基板から分離摘出した微小試料片の観察平面が集束イオンビームと垂直な向きとなるようにメッシュの端面に移載し接着する。微小試料片をメッシュ端面に移載接着後、傾斜した試料ステージを回転軸の周りに180度回転させる。傾斜角度を調節して(メッシュの傾斜角が45度の場合は不要)薄板状メッシュを集束イオンビームと平行な向きにする。この状態では微小試料片の観察平面と集束イオンビームは平行な向きとなるので、集束イオンビームによる観察平面の薄片化が容易となり、平面観察用の半導体薄片試料の作製が容易になる。   The sample stage of the present invention includes a sample stage surface for cutting out a small sample piece from a sample substrate flatly fixed on the sample stage with a focused ion beam, and separating and extracting with a microprobe, and oblique to the sample stage surface. An inclined groove for sandwiching the formed thin mesh (for example, 45 degrees) is provided. A micro sample piece is cut out from a sample substrate fixed on the sample stage surface in a direction perpendicular to the focused ion beam, separated and extracted, and then sandwiched in an inclined groove having an inclination angle (for example, 45 degrees) with respect to the sample stage surface. The sample stage surface is tilted (for example, 45 degrees) in the thin plate-shaped mesh so that the side surface of the mesh is in a direction perpendicular to the focused ion beam. The micro sample piece separated and extracted from the sample substrate is transferred and bonded to the end face of the mesh so that the observation plane is perpendicular to the focused ion beam. After the micro sample piece is transferred and bonded to the end face of the mesh, the tilted sample stage is rotated 180 degrees around the rotation axis. The tilt angle is adjusted (not necessary if the mesh tilt angle is 45 degrees) so that the thin mesh is oriented parallel to the focused ion beam. In this state, the observation plane of the micro sample piece and the focused ion beam are parallel to each other, so that it is easy to make the observation plane thin with the focused ion beam, and it becomes easy to produce a semiconductor thin sample for plane observation.

前述の本発明によれば、簡易な方法で安価に平面観察用半導体薄片試料を作製することができる集束イオンビーム加工装置の試料ステージおよび透過型電子顕微鏡平面観察用半導体薄片試料の作製方法を提供することができる。   According to the above-described present invention, there is provided a sample stage of a focused ion beam processing apparatus and a method for producing a semiconductor thin film sample for plane observation of a transmission electron microscope, which can produce a semiconductor thin film sample for flat observation with a simple method at low cost. can do.

図1は本発明のFIB装置の試料ステージであり、(a)は概略平面図、(b)は(a)のA−A’線断面図である。図3〜図8は本発明の試料ステージを用いたTEM平面観察用半導体薄片試料の作製方法を説明するための図であり、各図の(a)は概略平面図、各図の(b)は(a)のA−A’線断面図である。図9は本発明の試料ステージを用いたTEM平面観察用半導体薄片試料の作製方法にかかり、(a)はメッシュの端部に接着した薄片化前の微小試料片の拡大断面図、(b)は同じく、薄片化後の半導体薄片試料の拡大断面図である。図11は本発明にかかる試料ステージを装着したFIB装置の概略透視斜視図である。   1A and 1B show a sample stage of an FIB apparatus of the present invention, in which FIG. 1A is a schematic plan view, and FIG. 1B is a cross-sectional view taken along line A-A ′ of FIG. 3 to 8 are views for explaining a method for producing a semiconductor thin film sample for TEM plane observation using the sample stage of the present invention, wherein (a) in each figure is a schematic plan view and (b) in each figure. FIG. 3 is a cross-sectional view taken along line AA ′ in FIG. FIG. 9 is related to a method for producing a semiconductor thin film sample for TEM plane observation using the sample stage of the present invention, (a) is an enlarged cross-sectional view of a micro sample piece before thinning bonded to the end of a mesh, and (b). FIG. 3 is an enlarged cross-sectional view of a semiconductor thin piece sample after thinning. FIG. 11 is a schematic perspective view of an FIB apparatus equipped with a sample stage according to the present invention.

以下、本発明の集束イオンビーム加工装置の試料ステージとこの試料ステージを用いた平面観察用半導体薄片試料の作製方法にかかる実施例について、図面を用いて詳細に説明する。本発明はその要旨を超えない限り、以下に説明する実施例の記載に限定されるものではない。   Hereinafter, an embodiment according to a sample stage of a focused ion beam processing apparatus of the present invention and a method for producing a planar thin film sample for observation using the sample stage will be described in detail with reference to the drawings. The present invention is not limited to the description of the examples described below unless it exceeds the gist.

本発明の一実施例にかかる試料ステージを示す平面図を図1(a)に、この図1(a)のA−A’線断面図を図1(b)にそれぞれ示す。従来の試料ステージを示す平面図を図2(a)に、図2(a)のB−B’線断面図を図2(b)に示す。本発明にかかる試料ステージ1は図1に示すように、試料ステージ面1aと薄板状メッシュ2の傾斜溝1b、この傾斜溝1bの幅を調整するための溝幅調整ネジ1cからなる。従来の試料ステージ101は図2に示すように、試料基板の試料ステージ面101aに対して垂直方向に溝101bが形成されているのに対し、本発明にかかる試料ステージ1は図1に示すように、試料ステージ面1aに対しては斜めに傾斜溝1bが形成されていることが異なる。本発明の試料ステージ面1aと傾斜溝1bの成す角度は、この傾斜溝1bに挟持されるメッシュ2の傾きを、使用するFIB装置20(図11)の試料ステージ1が備えるX−Y方向位置制御機能と傾斜機能と軸回転機能を用いて、集束イオンビーム10の照射方向(矢印−図11)に対して垂直な方向および平行な方法となるように制御できる範囲で、種々の傾斜角とすることができる。特に好ましい傾斜角は20〜70度である。傾斜溝1bの幅は薄板状メッシュ2を挟み込み固定するための溝幅調整ネジ1cによって微調整が可能である(図1、図11)。試料ステージ1の材質はアルミ、真鍮等の金属が用いられるが特に限定されない。   FIG. 1A is a plan view showing a sample stage according to one embodiment of the present invention, and FIG. 1B is a cross-sectional view taken along the line A-A ′ of FIG. FIG. 2A is a plan view showing a conventional sample stage, and FIG. 2B is a cross-sectional view taken along line B-B ′ of FIG. As shown in FIG. 1, the sample stage 1 according to the present invention comprises a sample stage surface 1a, an inclined groove 1b of a thin plate-like mesh 2, and a groove width adjusting screw 1c for adjusting the width of the inclined groove 1b. As shown in FIG. 2, the conventional sample stage 101 has grooves 101b formed in a direction perpendicular to the sample stage surface 101a of the sample substrate, whereas the sample stage 1 according to the present invention is shown in FIG. In addition, the inclined groove 1b is formed obliquely with respect to the sample stage surface 1a. The angle formed by the sample stage surface 1a and the inclined groove 1b according to the present invention is the position in the XY direction of the sample stage 1 of the FIB apparatus 20 (FIG. 11) that uses the inclination of the mesh 2 sandwiched between the inclined grooves 1b. By using the control function, the tilt function, and the shaft rotation function, various tilt angles can be controlled within a range that can be controlled in a direction perpendicular to the irradiation direction of the focused ion beam 10 (arrow-FIG. 11) and in a parallel manner. can do. A particularly preferable inclination angle is 20 to 70 degrees. The width of the inclined groove 1b can be finely adjusted with a groove width adjusting screw 1c for sandwiching and fixing the thin mesh 2 (FIGS. 1 and 11). The material of the sample stage 1 is not particularly limited, although metals such as aluminum and brass are used.

試料ステージ1の基部4(図3〜図8に示す)はFIB装置20(図11)の一部であり、平面X−Y移動や軸回転角度、傾斜角度の制御機能を、この基部4上に保持固定される試料ステージ1に伝達する。試料ステージ1は前記FIB装置20の基部4の上面にしっかりと固定されているが、この試料ステージ1を基部4から取り外すこともできる。
以下、本発明の試料ステージ1を用いた平面観察用半導体薄片試料の作製方法の例を、図3〜9を参照しながら説明する。図3〜図8の(a)は平面図で集束イオンビーム(図示せず)の照射方向は図面手前から奥の方向である。図3〜図8の(b)は、前記図3〜図8の(a)のそれぞれA−A’線断面図で集束イオンビーム(図示せず)の照射方向は図面の上から下である。図9は微小試料片5の薄片化の様子を示すための図であり、メッシュ2の端面に微小試料片5を接着させた部分の拡大断面図である。この場合、集束イオンビーム(図示せず)の照射方向は図面の上から下である。
(試料の概要)
試料基板3として半導体デバイスのチップを用い、このデバイスの表面に形成されている層間絶縁膜に円形状の貫通する開口を設けて、層間絶縁膜直下の所定の半導体領域を露出させ、金属導体を埋め込み、半導体領域から必要な電気的接続を層間絶縁膜表面に引き出す機能を有するコンタクト構造部の金属導体の埋め込み状態を調べるために、コンタクト構造部を輪切り状に平面観察することを目的とする。
(本発明の試料ステージの概要)
図3に示すように、本発明の試料ステージ1は、真鍮製で40mm×30mm×5mm(横×縦×厚さ)のサイズである。試料ステージ1を上部から見て、試料ステージ1の端部から5mmのところに試料ステージ面1aと45度の角度を成す傾斜溝1bがある。傾斜溝1bの幅は溝幅調整ネジ1cにより0から1mmまで調節できる。
(FIB装置による加工)
先ず、図3のように、試料ステージ面1aに試料基板3を図示しないカーボンテープで固定する。メッシュ2を傾斜溝1bに挟んで溝幅調整ネジ1cを締めることで保持する。試料ステージ1は基部4の表面に固定される。基部4は図示しない軸回転および傾斜制御機構およびステージ位置制御機構を備えるFIB装置20(図11)内の装置である。
The base 4 (shown in FIGS. 3 to 8) of the sample stage 1 is a part of the FIB apparatus 20 (FIG. 11), and functions for controlling the plane XY movement, the shaft rotation angle, and the tilt angle are provided on the base 4. Is transmitted to the sample stage 1 which is held and fixed to the substrate. Although the sample stage 1 is firmly fixed to the upper surface of the base 4 of the FIB apparatus 20, the sample stage 1 can be removed from the base 4.
Hereinafter, an example of a method for producing a planar thin film sample for observation using the sample stage 1 of the present invention will be described with reference to FIGS. 3A to 8A are plan views, and the irradiation direction of the focused ion beam (not shown) is from the front to the back of the drawing. FIGS. 3 to 8B are cross-sectional views taken along line AA 'of FIGS. 3 to 8A, respectively, and the irradiation direction of the focused ion beam (not shown) is from the top to the bottom of the drawings. . FIG. 9 is a view for showing a state of thinning the minute sample piece 5, and is an enlarged sectional view of a portion where the minute sample piece 5 is bonded to the end face of the mesh 2. In this case, the irradiation direction of the focused ion beam (not shown) is from the top to the bottom of the drawing.
(Sample outline)
A chip of a semiconductor device is used as the sample substrate 3, a circular through-hole is provided in the interlayer insulating film formed on the surface of the device, a predetermined semiconductor region directly under the interlayer insulating film is exposed, and the metal conductor is exposed. In order to investigate the embedded state of the metal conductor in the contact structure portion having a function of drawing out necessary electrical connection from the buried semiconductor region to the surface of the interlayer insulating film, the object is to planarly observe the contact structure portion in a ring shape.
(Outline of the sample stage of the present invention)
As shown in FIG. 3, the sample stage 1 of the present invention is made of brass and has a size of 40 mm × 30 mm × 5 mm (horizontal × vertical × thickness). When the sample stage 1 is viewed from above, there is an inclined groove 1 b that forms an angle of 45 degrees with the sample stage surface 1 a at a position 5 mm from the end of the sample stage 1. The width of the inclined groove 1b can be adjusted from 0 to 1 mm by the groove width adjusting screw 1c.
(Processing using FIB equipment)
First, as shown in FIG. 3, the sample substrate 3 is fixed to the sample stage surface 1a with a carbon tape (not shown). The mesh 2 is held between the inclined grooves 1b by tightening the groove width adjusting screw 1c. The sample stage 1 is fixed to the surface of the base 4. The base 4 is an apparatus in the FIB apparatus 20 (FIG. 11) provided with a shaft rotation and tilt control mechanism and a stage position control mechanism (not shown).

次に、図4、5のように、試料基板3表面で、埋め込み金属導体を有するコンタクト構造部を含む微小試料片5の表面にタングステン製のマイクロプローブ6を接着した後、試料基板3からガリウムイオンビーム10で切り出し分離する。次に、図6のように試料ステージ1を45度傾斜させ、メッシュ2を集束イオンビーム10の照射方向に垂直にする。この状態で、マイクロプローブ6に接着した微小試料片5をメッシュ2の端面に接着し、マイクロプローブ6と微小試料片5をガリウムイオンビーム10で切り離す(図7)。マイクロプローブ6と微小試料片5、微小試料片5とメッシュ2の接着は図11に示すプラチナのイオンビームアシストデポジション装置9を用いた。タングステンのイオンビームアシストデポジション装置9’を用いて微小試料片5とメッシュ2の接着を行ってもよい。この後、図7に破線で示す試料ステージ1の回転軸に対し基部4を180度回転させることで、図8に示すようにメッシュ2を集束イオンビーム10の照射方向と平行にする(傾斜角が45度の場合)。さらに必要に応じて、メッシュ2を集束イオンビーム10の照射方向と平行になるように、試料ステージ1を微調整する。そして、微小試料片5を図9(b)に示すように、ガリウムイオンビーム10を用いて電子線が透過する0.1μm以下の厚さに薄片化し、平面観察用の半導体薄片試料とする。
(TEM観察)
微小試料片5を薄片化した平面観察用半導体薄片試料7を作製した後、試料ステージ1の傾斜溝1bからメッシュ2を外し、図示しないTEMの試料ホルダーにセットしてTEM観察を行ったところ、埋め込み金属導体を有するコンタクト構造部の平面像が明瞭に観察でき、埋め込み金属導体の状態や空洞や鬆の有無が確認できた。
Next, as shown in FIGS. 4 and 5, a tungsten microprobe 6 is bonded to the surface of the micro sample piece 5 including the contact structure portion having the embedded metal conductor on the surface of the sample substrate 3, and then the gallium is removed from the sample substrate 3. The ion beam 10 is cut out and separated. Next, as shown in FIG. 6, the sample stage 1 is inclined 45 degrees, and the mesh 2 is made perpendicular to the irradiation direction of the focused ion beam 10. In this state, the micro sample piece 5 adhered to the microprobe 6 is adhered to the end face of the mesh 2, and the micro probe 6 and the micro sample piece 5 are separated by the gallium ion beam 10 (FIG. 7). Adhesion between the microprobe 6 and the minute sample piece 5 and between the minute sample piece 5 and the mesh 2 was performed using a platinum ion beam assisted deposition apparatus 9 shown in FIG. The fine sample piece 5 and the mesh 2 may be bonded using a tungsten ion beam assisted deposition apparatus 9 '. Thereafter, the base 4 is rotated by 180 degrees with respect to the rotation axis of the sample stage 1 shown by a broken line in FIG. 7, so that the mesh 2 is parallel to the irradiation direction of the focused ion beam 10 as shown in FIG. Is 45 degrees). Further, if necessary, the sample stage 1 is finely adjusted so that the mesh 2 is parallel to the irradiation direction of the focused ion beam 10. Then, as shown in FIG. 9B, the micro sample piece 5 is thinned to a thickness of 0.1 μm or less through which an electron beam is transmitted using a gallium ion beam 10 to obtain a semiconductor thin sample for plane observation.
(TEM observation)
After producing the semiconductor thin sample 7 for plane observation in which the micro sample piece 5 was made into a thin piece, the mesh 2 was removed from the inclined groove 1b of the sample stage 1 and set on a sample holder of a TEM (not shown), and TEM observation was performed. The planar image of the contact structure having the embedded metal conductor could be clearly observed, and the state of the embedded metal conductor and the presence or absence of voids or voids could be confirmed.

本発明のFIB装置の試料ステージであり、(a)は概略平面図、(b)は(a)のA−A’線断面図である。It is a sample stage of the FIB apparatus of this invention, (a) is a schematic plan view, (b) is the sectional view on the A-A 'line of (a). 従来のFIB装置の試料ステージであり、(a)は概略平面図、(b)は(a)のB―B線断面図である。It is the sample stage of the conventional FIB apparatus, (a) is a schematic plan view, (b) is the BB sectional drawing of (a). 本発明の試料ステージを用いたTEM平面観察用半導体薄片試料の作製方法を説明するための図であり、(a)は概略平面図、(b)は(a)のA−A線断面図である。It is a figure for demonstrating the preparation method of the semiconductor thin piece sample for TEM plane observation using the sample stage of this invention, (a) is a schematic plan view, (b) is the sectional view on the AA line of (a). is there. 本発明の試料ステージを用いたTEM平面観察用半導体薄片試料の作製方法を説明するための図であり、(a)は概略平面図、(b)は(a)のA−A線断面図である。It is a figure for demonstrating the preparation method of the semiconductor thin piece sample for TEM plane observation using the sample stage of this invention, (a) is a schematic plan view, (b) is the sectional view on the AA line of (a). is there. 本発明の試料ステージを用いたTEM平面観察用半導体薄片試料の作製方法を説明するための図であり、(a)は概略平面図、(b)は(a)のA−A線断面図である。It is a figure for demonstrating the preparation method of the semiconductor thin piece sample for TEM plane observation using the sample stage of this invention, (a) is a schematic plan view, (b) is the sectional view on the AA line of (a). is there. 本発明の試料ステージを用いたTEM平面観察用半導体薄片試料の作製方法を説明するための図であり、(a)は概略平面図、(b)は(a)のA−A線断面図である。It is a figure for demonstrating the preparation method of the semiconductor thin piece sample for TEM plane observation using the sample stage of this invention, (a) is a schematic plan view, (b) is the sectional view on the AA line of (a). is there. 本発明の試料ステージを用いたTEM平面観察用半導体薄片試料の作製方法を説明するための図であり、(a)は概略平面図、(b)は(a)のA−A線断面図である。It is a figure for demonstrating the preparation method of the semiconductor thin piece sample for TEM plane observation using the sample stage of this invention, (a) is a schematic plan view, (b) is the sectional view on the AA line of (a). is there. 本発明の試料ステージを用いたTEM平面観察用半導体薄片試料の作製方法を説明するための図であり、(a)は概略平面図、(b)は(a)のA−A線断面図である。It is a figure for demonstrating the preparation method of the semiconductor thin piece sample for TEM plane observation using the sample stage of this invention, (a) is a schematic plan view, (b) is the sectional view on the AA line of (a). is there. 本発明の試料ステージを用いたTEM平面観察用半導体薄片試料の作製方法にかかる(a)はメッシュの端部に接着した薄片化前の微小試料片の拡大断面図、(b)は同じく、薄片化後の半導体薄片試料の拡大断面図である。(A) is an enlarged cross-sectional view of a micro sample piece before thinning bonded to an end of a mesh, and (b) is a thin piece according to the method for producing a semiconductor thin film sample for TEM plane observation using the sample stage of the present invention. It is an expanded sectional view of the semiconductor thin piece sample after conversion. 従来のマイクロサンプリング法による平面観察用半導体薄片試料の作製方法にかかる(a)はマイクロサンプリング時のメッシュ端部と集束イオンビームの照射方向との関係を示す拡大断面図、(b)は薄片化時のメッシュ端部と集束イオンビームの照射方向との関係を示す拡大断面図である。(A) is an enlarged cross-sectional view showing the relationship between the mesh edge at the time of microsampling and the irradiation direction of the focused ion beam, and (b) is a thinned piece. It is an expanded sectional view which shows the relationship between the mesh edge part at the time, and the irradiation direction of a focused ion beam. 本発明にかかる試料ステージを装着したFIB装置の概略透視斜視図である。1 is a schematic perspective view of an FIB apparatus equipped with a sample stage according to the present invention.

符号の説明Explanation of symbols

1 試料ステージ
1a 試料ステージ面
1b 傾斜溝
1c 溝幅調整ネジ
2 メッシュ
3 試料基板
4 基部
5 微小試料片
6 マイクロプローブ
7 平面観察用半導体薄片試料
8 観察平面
9、9’ イオンビームアシストデポジション装置
10 イオンビーム
20 FIB装置

DESCRIPTION OF SYMBOLS 1 Sample stage 1a Sample stage surface 1b Inclined groove 1c Groove width adjustment screw 2 Mesh 3 Sample substrate 4 Base 5 Micro sample piece 6 Micro probe 7 Semiconductor thin film sample for plane observation 8 Observation plane 9, 9 'Ion beam assist deposition apparatus 10 Ion beam 20 FIB equipment

Claims (4)

集束イオンビームに対向する状態で半導体基板試料の主面を載置する面と、透過型電子顕微鏡平面観察用半導体薄片試料を作製するために、前記半導体基板試料から前記集束イオンビームで切り出される微小試料片を保持するメッシュを挟持するための傾斜溝とを有することを特徴とする集束イオンビーム加工装置の試料ステージ。 A surface on which the main surface of the semiconductor substrate sample is placed in a state facing the focused ion beam, and a microscopic portion cut out from the semiconductor substrate sample by the focused ion beam in order to produce a semiconductor thin film sample for transmission electron microscope plane observation A sample stage of a focused ion beam processing apparatus comprising an inclined groove for holding a mesh for holding a sample piece. 前記傾斜溝の傾斜方向と前記半導体基板試料を載置する面との成す角度が20〜70°であることを特徴とする請求項1の集束イオンビーム加工装置の試料ステージ。 2. The sample stage of the focused ion beam processing apparatus according to claim 1, wherein an angle formed by an inclination direction of the inclined groove and a surface on which the semiconductor substrate sample is placed is 20 to 70 degrees. 前記請求項1または2記載の集束イオンビーム加工装置の試料ステージを支持し、該試料ステージの位置制御と傾斜および軸回転の制御機構を有する基部を備えることを特徴とする集束イオンビーム装置。 3. A focused ion beam apparatus comprising: a base portion that supports the sample stage of the focused ion beam processing apparatus according to claim 1 or 2 and that has a control mechanism for controlling the position of the sample stage and tilting and rotating the shaft. 前記請求項1または2記載の集束イオンビーム加工装置の試料ステージに載置され、固定され、前記イオンビームの照射方向に対して垂直な観測平面を有する半導体基板試料にマイクロプローブを接着後、イオンビームを照射して微小試料片を切り出す工程、メッシュを傾斜溝に挟持させた前記試料ステージを傾斜させて前記メッシュ側面を前記イオンビームの照射方向に対して垂直にする工程、前記メッシュの端面に前記イオンビームの照射方向に対して垂直な観測平面を有する前記微小試料片を接着して前記マイクロプローブを切り離す工程、前記試料ステージを回転軸を中心に180度回転させ、前記微小試料片の前記観測平面を前記イオンビームの照射方向と平行にする工程、前記微小試料片の観測平面に平行に前記イオンビームを照射して薄片化する工程を有することを特徴とする透過型電子顕微鏡平面観察用半導体薄片試料の作製方法。 3. After attaching a microprobe to a semiconductor substrate sample mounted on and fixed to the sample stage of the focused ion beam processing apparatus according to claim 1 and having an observation plane perpendicular to the ion beam irradiation direction, Irradiating a beam to cut out a minute sample piece, tilting the sample stage holding the mesh in an inclined groove to make the side surface of the mesh perpendicular to the irradiation direction of the ion beam, and an end surface of the mesh Bonding the micro sample piece having an observation plane perpendicular to the irradiation direction of the ion beam to separate the micro probe; rotating the sample stage 180 degrees about a rotation axis; and A step of making the observation plane parallel to the irradiation direction of the ion beam, the ion beam parallel to the observation plane of the micro sample piece The method for manufacturing a plain view transmission electron microscopy for the semiconductor thin sample, characterized in that it comprises a step of thinning shines.
JP2008308346A 2008-12-03 2008-12-03 Sample stage for focused ion beam processing device, and method for making transmission type electron microscope plane-observed semiconductor thin sample Pending JP2010135132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008308346A JP2010135132A (en) 2008-12-03 2008-12-03 Sample stage for focused ion beam processing device, and method for making transmission type electron microscope plane-observed semiconductor thin sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008308346A JP2010135132A (en) 2008-12-03 2008-12-03 Sample stage for focused ion beam processing device, and method for making transmission type electron microscope plane-observed semiconductor thin sample

Publications (1)

Publication Number Publication Date
JP2010135132A true JP2010135132A (en) 2010-06-17

Family

ID=42346232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008308346A Pending JP2010135132A (en) 2008-12-03 2008-12-03 Sample stage for focused ion beam processing device, and method for making transmission type electron microscope plane-observed semiconductor thin sample

Country Status (1)

Country Link
JP (1) JP2010135132A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210102872A1 (en) * 2018-05-25 2021-04-08 Mitsubishi Electric Corporation Method of producing test-sample for transmission electron microscope
CN113950704A (en) * 2019-06-07 2022-01-18 卡尔蔡司Smt有限责任公司 Cross-sectional imaging with improved 3D volumetric image reconstruction accuracy
CN114279784A (en) * 2021-12-22 2022-04-05 上海季丰电子股份有限公司 Preparation method of transmission electron microscope sample

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210102872A1 (en) * 2018-05-25 2021-04-08 Mitsubishi Electric Corporation Method of producing test-sample for transmission electron microscope
US11747243B2 (en) * 2018-05-25 2023-09-05 Mitsubishi Electric Corporation Method of producing test-sample for transmission electron microscope
CN113950704A (en) * 2019-06-07 2022-01-18 卡尔蔡司Smt有限责任公司 Cross-sectional imaging with improved 3D volumetric image reconstruction accuracy
JP2022535601A (en) * 2019-06-07 2022-08-09 カール・ツァイス・エスエムティー・ゲーエムベーハー Cross-sectional imaging with improved 3D volumetric reconstruction accuracy
JP7546001B2 (en) 2019-06-07 2024-09-05 カール・ツァイス・エスエムティー・ゲーエムベーハー Cross-sectional imaging with improved 3D volumetric image reconstruction accuracy - Patents.com
CN114279784A (en) * 2021-12-22 2022-04-05 上海季丰电子股份有限公司 Preparation method of transmission electron microscope sample

Similar Documents

Publication Publication Date Title
KR100253145B1 (en) Sample separating method &amp; analyzing method of separated sample
US8389955B2 (en) Method for thinning a sample and sample carrier for performing said method
US20170053778A1 (en) Method of preparing a plan-view transmission electron microscope sample used in an integrated circuit analysis
US20060017016A1 (en) Method for the removal of a microscopic sample from a substrate
JP2007324128A (en) Sample carrier, and sample holder
JP2009110745A (en) Specimen creating device and specimen posture switching method
US7112790B1 (en) Method to prepare TEM samples
JP2000214056A (en) Method and apparatus for fabricating planar sample
US20110291008A1 (en) Electron microscope specimen and method for preparing the same
JP2009216478A (en) Method of manufacturing thin-film sample for observing transmission electron microscope
JP2008070155A (en) Preparation method for observing sample for transmission electron microscope
JP4048210B2 (en) Sample preparation method
JP2010135132A (en) Sample stage for focused ion beam processing device, and method for making transmission type electron microscope plane-observed semiconductor thin sample
JP2009259556A (en) Electron microscope observation sample supporting member
CN113466268B (en) Combined sample and preparation method thereof
JP2001311681A (en) Method for preparing sample for transmission electron microscope observation and sampling apparatus
JP2008014899A (en) Sample preparing method
KR100744267B1 (en) specimen manufacturing method for Transmission Electron Microscope
JP2008103225A (en) Sample making device and sample making method
TWI785382B (en) Method for preparing focused ion beam sample and analyzing sample in electron microscope system
JP2004253232A (en) Sample fixing table
JP5666791B2 (en) Micro sample table and method for manufacturing micro sample table
JP2011038887A (en) Sample, sample preparing method, and sample preparing device
JP2003100245A (en) Sample holder for focused ion beam machining observation device
EP1612836B1 (en) Method for the removal of a microscopic sample from a substrate