JP2009216478A - Method of manufacturing thin-film sample for observing transmission electron microscope - Google Patents

Method of manufacturing thin-film sample for observing transmission electron microscope Download PDF

Info

Publication number
JP2009216478A
JP2009216478A JP2008058899A JP2008058899A JP2009216478A JP 2009216478 A JP2009216478 A JP 2009216478A JP 2008058899 A JP2008058899 A JP 2008058899A JP 2008058899 A JP2008058899 A JP 2008058899A JP 2009216478 A JP2009216478 A JP 2009216478A
Authority
JP
Japan
Prior art keywords
sample
observation
thin film
electron microscope
transmission electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008058899A
Other languages
Japanese (ja)
Inventor
Yoichi Makibuchi
陽一 巻渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2008058899A priority Critical patent/JP2009216478A/en
Publication of JP2009216478A publication Critical patent/JP2009216478A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a thin-film sample for transmission electron microscopes can set a sample having not less than one observation place located at a deep region of not less than 10 μm from the surface to be an appropriate thin-film sample for TEM observation by an inexpensive and simple process. <P>SOLUTION: The manufacturing method of a thin-film sample for TEM observation includes: an extraction/fixation process of a minute sample piece 1 for extracting the minute sample piece from a sample 1 including an observation place inside at a depth of not less than 10 μm from the surface for adhering to a sample stand for TEM observation; and a thinning process for machining as a thin-film sample for TEM observation by focused ion beam irradiation machining in a direction vertical to the surface of the minute sample piece. In the manufacturing method of a thin-film sample for TEM observation, before the extraction process, an oblique cutting process is inserted to cut an upper-layer section 2 at the observation place of the sample 1 to not more than 10 μm from an oblique upper surface by the focused ion beam irradiation machining 7. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、集束イオンビーム(以下、FIB:Focused Ion Beam)を用いて透過型電子顕微鏡(以下、TEM:Transmission Electron Microscope)用観察試料の作製方法に係わり、特にFIBによる試料の薄膜化の際の前処理方法に関する。   The present invention relates to a method for preparing an observation sample for a transmission electron microscope (hereinafter referred to as TEM) using a focused ion beam (hereinafter referred to as FIB: Focused Ion Beam), and in particular, in the case of thinning a sample by FIB. This relates to a pre-processing method.

半導体ウエハや半導体チップなどの試料の微細箇所の不良解析、欠陥解析には、高倍率観察をするために透過電子顕微鏡(TEM)観察が有効である。TEM観察の際には、電子線が試料を透過できるように試料を厚さ0.1μm以下の極薄に薄膜化する必要がある。このようなTEM観察を可能にする極薄に試料を薄膜化する手段については、近年FIBを用いることが一般的になっている。しかしながら、このFIBは、時間をかければ数10μm以上の深さの加工も可能であるが、TEM観察に適した厚さと表面状態を有する良好な薄膜試料とするための加工という意味では、通常は深さ10μm程度の加工が限界である。
FIBによる透過型電子顕微鏡(TEM)観察用の薄膜試料の作製方法には、二つの方法が知られている。その一は、ダイヤモンドソーなどを用いたダイシングにより半導体ウエハや半導体チップなどをTEM装置に搭載可能な大きさの試料ブロック14に切り出し、その後、観察箇所近傍のみFIBで薄膜化する方法である。この方法では、試料の表面から10μm以上の深い領域に観察箇所がある場合は、前述したFIBの加工能力の限界のため、図4の斜視図に示すように、上層部2と観察層3と観察箇所4と下層部6からなる切り出し試料ブロック1(図4(a))に対しては、FIBによる加工前に厚さ10μm以上の上層部2を平面研磨や、エッチングで除去し、図4(b)の示すように斜線で示す観察箇所4を試料表面1−1から10μm以内に位置させてから、図4(c)に示すようにFIB7の照射により加工してTEM観察用薄膜試料15とする必要がある。あるいは、上層部2の除去が困難な場合は、図5(a)、(b)に示すように一旦、観察箇所4近傍の断面を作製し、その断面を表面としてFIB7照射加工により点線で示すように削って、図5(c)に示すようにTEM観察用薄膜試料15を作製することが必要である(非特許文献1)。
Transmission electron microscope (TEM) observation is effective for high-magnification observation for defect analysis and defect analysis of a fine portion of a sample such as a semiconductor wafer or semiconductor chip. In TEM observation, it is necessary to thin the sample to an extremely thin thickness of 0.1 μm or less so that the electron beam can pass through the sample. In recent years, it has become common to use FIB as a means for thinning a sample so as to enable such TEM observation. However, this FIB can be processed to a depth of several tens of μm or more over time, but in the sense of processing to obtain a good thin film sample having a thickness and surface state suitable for TEM observation, Processing at a depth of about 10 μm is the limit.
Two methods are known for producing a thin film sample for observation with a transmission electron microscope (TEM) by FIB. One of them is a method in which a semiconductor wafer, a semiconductor chip, or the like is cut into a sample block 14 of a size that can be mounted on a TEM apparatus by dicing using a diamond saw or the like, and then thinned by FIB only in the vicinity of the observation location. In this method, when there is an observation place in a deep region of 10 μm or more from the surface of the sample, as shown in the perspective view of FIG. For the cut sample block 1 (FIG. 4 (a)) consisting of the observation location 4 and the lower layer portion 6, the upper layer portion 2 having a thickness of 10 μm or more is removed by planar polishing or etching before processing by FIB. As shown in FIG. 4B, the observation point 4 indicated by hatching is positioned within 10 μm from the sample surface 1-1, and then processed by irradiation with FIB 7 as shown in FIG. It is necessary to. Or when removal of the upper layer part 2 is difficult, as shown to Fig.5 (a), (b), once the cross section of observation location 4 vicinity is produced, and the cross section is made into the surface, and it shows with a dotted line by FIB7 irradiation processing Thus, it is necessary to prepare the thin film sample 15 for TEM observation as shown in FIG. 5C (Non-patent Document 1).

その二は、半導体ウエハあるいは半導体チップからFIBにより数μm〜数十μmサイズの微小試料片を摘出し、FIBに装備されるマイクロプローブ(金属微小針)を微小試料片の表面に接触させた後、プラチナやタングステンなどの導電性元素を成分に含む化合物生成ガスを射出しながら、イオンビームとの化学反応で導電性膜を微小試料片に堆積させてマイクロプローブと微小試料片を接着する。次にマイクロプローブと微小試料片を移動させ、TEM試料を載せるメッシュに前述と同様な接着手法により固定した後、マイクロプローブを微小試料片から切り離す。さらに、FIB照射加工で、TEM観察用に極薄の薄膜試料を作製する方法(この方法をマイクロサンプリング法によるTEM観察用薄膜試料の作製方法とする)である(特許文献1)。
いずれにしてもTEM観察用薄膜試料として適切な厚さと表面状態となるように、FIBで加工できるのは、前述のように通常深さ10μm程度であり、それ以上深い観察領域をFIBで良好に薄膜化することは難しい。
前述のマイクロサンプリング法は、下記特許文献1によれば、半導体ウエハ等の表面から観察部所を含む部分をイオンビームで、たとえば5μm×20μm、深さ15μmという微小試料片にして切り出すとともに、マイクロプローブをマイクロマニュピュレータとして微小移動させ、ピンセットのように使い、その微小試料片を直接摘出することができるので、試料中の微小な観察箇所を特定することも容易である。このように、目的の観察箇所を機械的な力を加えずに数十ミクロンサイズの大きさで取り出す特許文献1に記載のマイクロサンプリング法によれば、機械加工などによる観察箇所の破壊の惧れを懸念することなくTEM観察試料を作製できる。
平坂 雅男,朝倉 健太郎 「電子顕微鏡研究者のためのFIB・イオンミリング技法Q&A」 アグネ承風社 2002 P59 特開平5−52721号公報
Second, after extracting a micro sample piece of several μm to several tens of μm in size from a semiconductor wafer or semiconductor chip and bringing the micro probe (metal micro needle) equipped on the FIB into contact with the surface of the micro sample piece. While injecting a compound forming gas containing a conductive element such as platinum or tungsten as a component, a conductive film is deposited on the micro sample piece by a chemical reaction with an ion beam, and the micro probe and the micro sample piece are bonded. Next, the microprobe and the micro sample piece are moved and fixed to the mesh on which the TEM sample is placed by the same adhesion method as described above, and then the micro probe is separated from the micro sample piece. Furthermore, it is a method for producing an ultrathin thin film sample for TEM observation by FIB irradiation processing (this method is referred to as a method for producing a thin film sample for TEM observation by a microsampling method) (Patent Document 1).
In any case, the FIB can be processed so that the thickness and surface state are appropriate as a thin film sample for TEM observation. As described above, the depth is usually about 10 μm, and an observation region deeper than that is excellent with the FIB. Thinning is difficult.
According to the above-described microsampling method, according to the following Patent Document 1, a portion including an observation portion is cut out from a surface of a semiconductor wafer or the like by using an ion beam, for example, as a micro sample piece of 5 μm × 20 μm and a depth of 15 μm. Since the probe can be moved minutely as a micromanipulator and used like tweezers to directly extract the minute sample piece, it is also easy to specify a minute observation location in the sample. As described above, according to the microsampling method described in Patent Document 1 in which a target observation location is extracted with a size of several tens of microns without applying mechanical force, there is a risk of destruction of the observation location due to machining or the like. A TEM observation sample can be produced without concern.
Masao Hirasaka, Kentaro Asakura “FIB / Ion Milling Techniques for Electron Microscope Researchers Q & A” Agne Jofusha 2002 P59 JP-A-5-52721

しかしながら、前記非特許文献1に記載のその一の方法は、深い領域に観察箇所がある試料に対して平面研磨やエッチングなどにより上層部の除去処理後に、FIBで薄膜化するので、それらの上層部の除去処理が観察箇所に及ぼす悪影響が懸念される。さらに、この薄膜化方法では、深さが異なる複数の観察箇所を有する試料に対しては、対応することが難しい。また、一旦、観察箇所近傍の断面を作製し、その断面を表面としてFIB照射加工による薄膜化を行う方法の場合も、断面作製時の機械加工の影響が懸念され、さらに試料形状によっては機械加工による断面の作製が困難な場合もある。加えて前述したどちらの方法も試料を切断や研磨で破壊しなければならず、試料作製時間も少なからず増加する。
一方、前記特許文献1に記載のその二の方法では、観察箇所が試料表面から10μm以内の浅い位置にある場合には適しているが、10μm以上に深い場合は、やはり何らかの方法で、予め観察箇所を表面から10μm以内に加工しておく必要があるので、そのプロセスに時間がかかること、またはその加工による観察箇所への悪影響の懸念が残るという問題がある。
本発明は上述の問題に鑑みてなされたものであり、本発明の目的は、観察箇所が表面から10μm以上深い領域に一つ以上ある試料に対して、安価に簡易な工程で透過型電子顕微鏡観察用として良好な薄膜試料とすることができる透過型電子顕微鏡観察用薄膜試料の作製方法の提供である。
However, according to the one method described in Non-Patent Document 1, the upper layer portion is thinned by FIB after removing the upper layer portion by planar polishing or etching on a sample having an observation portion in a deep region. There is a concern about the adverse effect of the removal process on the observation site. Furthermore, with this thinning method, it is difficult to cope with a sample having a plurality of observation locations having different depths. Also, in the case of a method in which a cross section in the vicinity of an observation point is once prepared and thinned by FIB irradiation processing using the cross section as a surface, there is a concern about the influence of machining during the cross section preparation. In some cases, it may be difficult to produce a cross-section. In addition, in either of the methods described above, the sample must be destroyed by cutting or polishing, and the sample preparation time increases considerably.
On the other hand, the second method described in Patent Document 1 is suitable when the observation location is at a shallow position within 10 μm from the sample surface, but when it is deeper than 10 μm, it is also observed in advance by some method. Since it is necessary to process the part within 10 μm from the surface, there is a problem that the process takes time or there is a concern that the processing may have an adverse effect on the observation part.
The present invention has been made in view of the above-described problems, and an object of the present invention is to perform a transmission electron microscope on a sample having one or more observation sites in a region deeper than 10 μm from the surface by a simple and inexpensive process. An object of the present invention is to provide a method for producing a thin film sample for observation with a transmission electron microscope, which can be a good thin film sample for observation.

特許請求の範囲の請求項1記載の発明によれば、前記本発明の目的を達成するために、表面から10μm以上の深さの内部に観察箇所を含む試料から微小試料片を摘出し、透過型電子顕微鏡観察用試料台に接着させる微小試料片の摘出、固定工程と該微小試料片表面に垂直な集束イオンビーム照射加工によって透過型電子顕微鏡観察用薄膜試料として加工する薄膜化工程とを有する透過型電子顕微鏡観察用薄膜試料の作製方法において、前記摘出工程の前に、前記試料の観察箇所の上層部を斜め上方表面からの集束イオンビーム照射加工によって10μm以下の厚さに削る、斜め切削工程を挿入する透過型電子顕微鏡観察用薄膜試料の作製方法とする。
特許請求の範囲の請求項2記載の発明によれば、前記微小試料片の摘出、固定工程が、集束イオンビーム照射加工によって、内部に観察箇所を含む微小試料片を切り出す第一工程、金属微小針を前記微小試料片の表面に接触させる第二工程、導電性元素を成分に含む化合物生成ガスを射出しながら化学反応で導電性膜を微小試料片に堆積させて前記金属微小針と前記微小試料片を接着する第三工程、金属微小針を移動させて透過型電子顕微鏡観察用試料台に前記微小試料片を接触させ、前記第三工程と同様の方法で接着させてから前記金属微小針を前記微小試料片から切り離す第四工程を有する特許請求の範囲の請求項1記載の透過型電子顕微鏡観察用薄膜試料の作製方法とすることが好ましい。
According to the first aspect of the present invention, in order to achieve the object of the present invention, a micro sample piece is extracted from a sample including an observation site within a depth of 10 μm or more from the surface and transmitted. A step of extracting and fixing a micro sample piece to be adhered to a sample stage for observation with a scanning electron microscope, and a thinning step of processing as a thin film sample for transmission electron microscope observation by focused ion beam irradiation processing perpendicular to the surface of the micro sample piece In the manufacturing method of a thin film sample for transmission electron microscope observation, before the extraction step, the upper layer portion of the observation portion of the sample is cut to a thickness of 10 μm or less by focused ion beam irradiation processing from an oblique upper surface. A method for producing a thin film sample for observation with a transmission electron microscope into which a process is inserted is used.
According to the second aspect of the present invention, the extraction and fixing step of the micro sample piece includes a first step of cutting out a micro sample piece including an observation portion by focused ion beam irradiation processing, a metal micro A second step in which a needle is brought into contact with the surface of the micro sample piece; a conductive film is deposited on the micro sample piece by a chemical reaction while injecting a compound forming gas containing a conductive element as a component; The third step of bonding the sample piece, the metal microneedle is moved, the fine sample piece is brought into contact with the transmission electron microscope observation sample stage and bonded in the same manner as in the third step, and then the metal microneedle The thin film sample for observation with a transmission electron microscope according to claim 1, which has a fourth step of separating the sample from the minute sample piece.

特許請求の範囲の請求項3記載の発明によれば、前記微小試料片の摘出、固定工程の前に、前記試料の複数の異なる深さを有する観察箇所の上層部を、それぞれ斜め上方表面からの集束イオンビーム照射加工によって10μm以下の厚さに削る斜め切削工程を挿入する特許請求の範囲の請求項2記載の透過型電子顕微鏡観察用薄膜試料の作製方法とすることができる。
特許請求の範囲の請求項4記載の発明によれば、前記斜め切削工程が、集束イオンビーム照射加工によって数μm以下の厚さに削る工程である特許請求の範囲の請求項1乃至3のいずれか一項に記載の透過型電子顕微鏡観察用薄膜試料の作製方法とすることが好適である。
特許請求の範囲の請求項5記載の発明によれば、前記斜め上方表面からの集束イオンビーム照射加工の角度が、前記試料表面に対し30°乃至60°である特許請求の範囲の請求項1乃至4のいずれか一項に記載の透過型電子顕微鏡観察用薄膜試料の作製方法とすることがより好ましい。
According to the third aspect of the present invention, before the step of extracting and fixing the micro sample piece, the upper layer portion of the observation portion having a plurality of different depths of the sample is respectively inclined from the upper surface. The method for producing a thin film sample for observing a transmission electron microscope according to claim 2, wherein an oblique cutting step of cutting to a thickness of 10 μm or less is inserted by the focused ion beam irradiation processing.
According to the invention described in claim 4, the oblique cutting process is a process of cutting to a thickness of several μm or less by focused ion beam irradiation processing. It is preferable to use the method for producing a thin film sample for observation with a transmission electron microscope according to any one of the above items.
According to the invention of claim 5, the angle of the focused ion beam irradiation processing from the oblique upper surface is 30 ° to 60 ° with respect to the sample surface. It is more preferable to use the method for producing a thin film sample for observation with a transmission electron microscope according to any one of items 1 to 4.

本発明によれば、観察箇所が表面から10μm以上深い領域に一つ以上ある試料に対して、安価に簡易な工程で透過型電子顕微鏡観察用として良好な薄膜試料とする透過型電子顕微鏡観察用薄膜試料の作製方法を提供することができる。   According to the present invention, for a sample having one or more observation points in a region deeper than 10 μm from the surface, the transmission electron microscope can be obtained as an excellent thin film sample for transmission electron microscope observation by a simple and inexpensive process. A method for manufacturing a thin film sample can be provided.

以下、本発明の透過型電子顕微鏡観察用薄膜試料の作製方法について、図面を参照して詳細に説明する。本発明はその要旨を超えない限り、以下に説明する実施例の記載に限定されるものではない。
本発明のTEM観察用薄膜試料の作製方法として、前述のダイシングによる試料の切り出しと、FIB照射加工による薄膜化によりTEM観察用薄膜試料とする作製方法や、前述のマイクロサンプリング法によるTEM観察用薄膜試料作製方法などの前処理として、斜め上方表面からのFIB照射加工によって表面から10μm以上の深い内部の観察箇所の上層部を除去する工程を追加する内容について詳細に説明する。
図1は本発明のTEM観察用薄膜試料の作製方法における特徴部分のFIB照射加工による斜め切削工程に関して、試料1に対して、斜め上方表面から矢印方向に沿った斜めFIB照射および垂直FIB照射により切り欠き凹部を形成したことを示す概略斜視図である。下層部6、観察層3、上層部2の積層からなる試料1の試料表面1−1に対し、斜めFIB照射加工7および垂直照射を加えて目的の観察箇所の上方に傾斜面を有する切り欠き凹部12を形成する。試料表面1−1に対するFIBの照射角度を変える際には、実際にはFIB照射方向を固定し、図示しない被照射試料を載せる台(ステージ)を傾けることにより角度制御をする方法がとられる。照射角度は試料表面1−1に対して30〜60°の角度が好ましい。試料表面1−1との角度が30°より小さすぎる場合は、除去する上層部の厚さに対し加工する距離が長くなり時間がかかりすぎるので、好ましくない。60°を超えて90°に近くなると断面加工に近くなり、薄膜化時に目的の深さの領域を狙い難くなるので、好ましくない。
Hereinafter, a method for producing a thin film sample for observation with a transmission electron microscope of the present invention will be described in detail with reference to the drawings. The present invention is not limited to the description of the examples described below unless it exceeds the gist.
As a method for producing a thin film sample for TEM observation of the present invention, a method for producing a thin film sample for TEM observation by cutting out the sample by dicing as described above and thinning by FIB irradiation processing, or a thin film for TEM observation by the micro sampling method described above. As a pretreatment such as a sample preparation method, details of adding a step of removing an upper layer portion of an observation portion deep inside 10 μm or more from the surface by FIB irradiation processing from the oblique upper surface will be described in detail.
FIG. 1 shows an oblique cutting process by FIB irradiation processing of a characteristic portion in the method for producing a thin film sample for TEM observation of the present invention, by oblique FIB irradiation and vertical FIB irradiation along the arrow direction from the oblique upper surface to the sample 1. It is a schematic perspective view which shows having formed the notch recessed part. A notch having an inclined surface above the target observation location by applying oblique FIB irradiation processing 7 and vertical irradiation to the sample surface 1-1 of the sample 1 composed of a stack of the lower layer portion 6, the observation layer 3, and the upper layer portion 2. A recess 12 is formed. When changing the FIB irradiation angle with respect to the sample surface 1-1, in practice, the FIB irradiation direction is fixed, and the angle is controlled by tilting a stage (stage) on which the irradiated sample (not shown) is placed. The irradiation angle is preferably 30 to 60 ° with respect to the sample surface 1-1. If the angle with the sample surface 1-1 is less than 30 °, the distance to be processed becomes longer with respect to the thickness of the upper layer portion to be removed, which is not preferable. If it exceeds 60 ° and is close to 90 °, it becomes close to cross-section processing, and it becomes difficult to aim at a target depth region when thinning the film.

目的の観察箇所が1箇所の場合について、本発明のTEM観察用薄膜試料の作製方法の一例を図2および図6−1、図6−2に示す。観察箇所が2箇所の場合について、本発明のTEM観察用薄膜試料の作製方法の例を図3および図7−1、図7−2に示す。図2および図3のうち、(a)、(c)、(e)はそれぞれ試料表面および該試料表面側からみた切り欠き凹部近傍の位置の平面図であり、(b)、(d)、(f)はそれぞれ試料の断面図および斜めFIB照射加工で形成された切り欠き凹部内の傾斜面近傍の断面図である。図6−1、図6−2、図7−1、図7−2はそれぞれ半導体チップなどの試料に対して、斜め上方表面からのFIB照射加工を追加することによって、目的の観察箇所が試料表面から10μm以上深いところにある場合でも、容易にTEM観察用薄膜試料を作製することができる方法の主要工程示す斜視図である。図2(g)と図3(g)は、図2(e)と図3(e)をそれぞれTEM観察の方向から見たTEM観察用薄膜試料の断面図である。
本発明によれば、厚さが10μm以上の上層部2と、観察層3と下層部6からなる試料であって、図2に示すように観察層3の一部に、ある深さの観察箇所4を有する試料であっても斜めFIB照射加工によりTEM観察用薄膜試料の作製ができることが特徴である。従来のマイクロサンプリング法によれば、そのような厚い上層部2を有する試料に対しては、この上層部を予め、FIB照射加工とは異なる方法または手段により上層部の厚さを10μm以下に加工しておかなければ、FIB照射加工によるTEM観察用薄膜試料の作製が困難であった。ところが、前記FIBとは異なる方法または手段による上層部の切除加工には観察箇所に及ぼす悪影響の懸念があった。またさらに、本発明によれば、図3に示すように試料の観察層3に、異なる深さの第一の観察箇所4と第二の観察箇所5がある場合でも問題なくTEM観察用薄膜試料の作製が可能である。但し、本発明にかかるTEM観察用薄膜試料の作製方法について、観察箇所の最大数を2箇所に限定するものではない。
An example of a method for producing a thin film sample for TEM observation according to the present invention in the case where the target observation location is one location is shown in FIG. 2, FIG. 6-1, and FIG. An example of a method for producing a thin film sample for TEM observation according to the present invention in the case where there are two observation locations is shown in FIGS. 2 and 3, (a), (c), and (e) are plan views of the position of the sample surface and the vicinity of the notch recess viewed from the sample surface side, respectively (b), (d), (F) is sectional drawing of a sample, and sectional drawing of the inclination surface vicinity in the notch recessed part formed by diagonal FIB irradiation processing, respectively. 6-1, FIG. 6-2, FIG. 7-1, and FIG. 7-2 each add a FIB irradiation process from a diagonally upper surface to a sample such as a semiconductor chip, so that the target observation location is the sample. It is a perspective view which shows the main processes of the method which can produce the thin film sample for TEM observation easily even when it exists in the place deeper than 10 micrometers from the surface. FIGS. 2G and 3G are cross-sectional views of the thin film sample for TEM observation when FIGS. 2E and 3E are viewed from the TEM observation direction, respectively.
According to the present invention, a sample composed of an upper layer portion 2 having a thickness of 10 μm or more, an observation layer 3 and a lower layer portion 6, and an observation at a certain depth in a part of the observation layer 3 as shown in FIG. It is a feature that a thin film sample for TEM observation can be produced by oblique FIB irradiation processing even for a sample having the location 4. According to the conventional microsampling method, for a sample having such a thick upper layer portion 2, the upper layer portion is processed in advance to a thickness of 10 μm or less by a method or means different from FIB irradiation processing. Otherwise, it was difficult to produce a thin film sample for TEM observation by FIB irradiation processing. However, the excision of the upper layer by a method or means different from that of the FIB has a concern about an adverse effect on the observation site. Furthermore, according to the present invention, as shown in FIG. 3, even when the observation layer 3 of the sample has the first observation location 4 and the second observation location 5 having different depths, the thin film sample for TEM observation is satisfactory. Can be manufactured. However, the maximum number of observation points is not limited to two in the method for producing a thin film sample for TEM observation according to the present invention.

本発明のTEM観察用薄膜試料の作製方法について、以下順次説明する。厚さが10μm以上の上層部2と、観察層3と下層部6からなる試料1に対して、前記図1の斜視図および図6−1(b)の斜視断面図に示すように、矢印7aに平行なFIB照射7によって上層部2の表面から下層部6に達する斜めFIB照射加工により形成される傾斜面11を有する切り欠き凹部12を形成する。この傾斜面11を図2(c)の平面図、図2(d)の断面図にも示す。これらの図2(c)、(d)において、試料ブロック1の各層(2、3、6)の境界と試料表面1−1からの距離を目安に、TEM観察用の薄膜試料としたときに観察箇所4が傾斜面11から少なくとも10μm以下、好ましくは数μmの深さになるように図2(c)、(d)に点線で示すTEM観察用薄膜試料の中心線13を決める。すなわち、言い換えると、この中心線13を挟んで両側に0.05μm以内の距離の傾斜面11から、FIBにより垂直方向7bに照射切断加工してTEM観察用薄膜試料を形成する際に、良好なTEM観察用薄膜試料となるように、上層部2の厚さを、少なくとも10μm以下、好ましくは数μmの深さとなるように中心線13を決めるということである。
観察箇所が2箇所の場合は、図3(c)に示す第一の斜めFIB照射加工と図3(d)に示す第二の斜めFIB照射加工を行う。このとき、図3(c)、(d)に示すように、第一の斜めFIB照射加工の斜め斜面から決定した第一の観察箇所4に対応するTEM観察用薄膜試料の中心線13上で、第二の観察箇所5が表面から少なくとも10μm以下、好ましくは数μmの深さになるように第二の斜めFIB照射加工を行う。
A method for producing a thin film sample for TEM observation according to the present invention will be sequentially described below. As shown in the perspective view of FIG. 1 and the perspective cross-sectional view of FIG. 6-1 (b) for the sample 1 consisting of the upper layer part 2 having a thickness of 10 μm or more, the observation layer 3 and the lower layer part 6, the arrow A notch recess 12 having an inclined surface 11 formed by oblique FIB irradiation processing reaching the lower layer portion 6 from the surface of the upper layer portion 2 is formed by FIB irradiation 7 parallel to 7a. This inclined surface 11 is also shown in the plan view of FIG. 2C and the cross-sectional view of FIG. 2 (c) and 2 (d), when a thin film sample for TEM observation is used with reference to the distance from the boundary between each layer (2, 3, 6) of the sample block 1 and the sample surface 1-1. The center line 13 of the thin film sample for TEM observation indicated by the dotted line in FIGS. 2C and 2D is determined so that the observation location 4 is at least 10 μm or less, preferably several μm deep from the inclined surface 11. That is, in other words, when forming a thin film sample for TEM observation by irradiating and cutting in the vertical direction 7b by FIB from the inclined surface 11 having a distance of 0.05 μm or less on both sides across the center line 13, it is good. The center line 13 is determined so that the thickness of the upper layer portion 2 is at least 10 μm or less, preferably several μm, so as to be a thin film sample for TEM observation.
When there are two observation places, the first oblique FIB irradiation processing shown in FIG. 3C and the second oblique FIB irradiation processing shown in FIG. At this time, as shown in FIGS. 3C and 3D, on the center line 13 of the TEM observation thin film sample corresponding to the first observation location 4 determined from the oblique slope of the first oblique FIB irradiation processing. The second oblique FIB irradiation processing is performed so that the second observation location 5 is at least 10 μm or less, preferably several μm deep from the surface.

次に、前記特許文献1の記載によりよく知られた方法となっているマイクロサンプリング法における工程に従って、薄膜化する試料部分の表面にプラチナやタングステン等のイオンビームアシストデポジションで保護膜を形成した後(図示せず)、図2(c)、(d)、図3(c)、(d)に示すように、前記中心線13を挟んで両側に0.5μm〜1.5μm程度の距離の位置を表面に垂直方向7bからFIB照射加工で切断して、図6(c)、(d)、(e)、図7(d)、(e)、(f)に示すように微小試料片を切り出す。図6−2(e)、図7−2(f)に示すようにマイクロプローブ(金属微小針)8を前記微小試料片の表面に接着した後、微小試料片の底面等を斜めFIB照射加工することで、図6−2(f)、図7−2(g)に示すように微小試料片10を試料1から完全に分離し、メッシュの試料台の固定面に移動し接着する(図示せず)。マイクロプローブと微小試料片、微小試料片と試料台の固定面の接着はプラチナやタングステン等のイオンビームアシストデポジションを用いることができる。この後、マイクロプローブと微小試料片をFIB照射加工で切り離し(図示せず)、図2(e)、(f)、図3(e)、(f)に示すように最終的に0.1μm以下の厚さになるように垂直方向のFIB加工を行い、TEM観察を行う。   Next, a protective film was formed on the surface of the sample portion to be thinned by ion beam assisted deposition such as platinum or tungsten according to the steps in the microsampling method, which is a well-known method described in Patent Document 1. After (not shown), as shown in FIGS. 2C, 2D, 3C, and 3D, a distance of about 0.5 μm to 1.5 μm on both sides across the center line 13 Is cut by FIB irradiation processing from the direction 7b perpendicular to the surface, as shown in FIGS. 6 (c), (d), (e), FIGS. 7 (d), (e), and (f). Cut out a piece. As shown in FIGS. 6-2 (e) and 7-2 (f), after attaching a microprobe (metal microneedle) 8 to the surface of the micro sample piece, the bottom surface of the micro sample piece is subjected to oblique FIB irradiation processing. Then, as shown in FIGS. 6-2 (f) and 7-2 (g), the micro sample piece 10 is completely separated from the sample 1, and moved to the fixed surface of the mesh sample stage and bonded (FIG. Not shown). Adhesion between the microprobe and the minute sample piece, and the fixed surface between the minute sample piece and the sample table can be performed using ion beam assisted deposition such as platinum or tungsten. Thereafter, the microprobe and the small sample piece are separated by FIB irradiation processing (not shown), and finally 0.1 μm as shown in FIGS. 2 (e), (f), 3 (e), and (f). FIB processing in the vertical direction is performed so that the thickness is as follows, and TEM observation is performed.

このTEM観察用薄膜試料はTEM観察の方向から見ると図2(g)に示すように観察箇所の上層部が除去された、または図3(g)に示すように異なった深さの2つの観察箇所についてそれぞれの上層部が除去されたTEM観察用薄膜試料となっている。前述の説明は、マイクロサンプリング法に適用する場合であるが、試料をダイシングなどにより切り出した後に、FIBでTEM観察用薄膜試料に加工する場合にも適用でき、その場合はダイシング前または後に、斜め上方表面からのFIB照射加工による上層部の除去を行えばよい。   When viewed from the direction of TEM observation, this thin film sample for TEM observation has two parts with different depths as shown in FIG. It is a thin film sample for TEM observation from which the upper layer portion is removed at the observation location. Although the above description is applied to the microsampling method, it can also be applied to the case where the sample is cut out by dicing or the like and then processed into a thin film sample for TEM observation by FIB. In that case, before or after dicing, The upper layer portion may be removed by FIB irradiation processing from the upper surface.

以下、本発明にかかる透過型電子顕微鏡観察用薄膜試料の作製方法にかかる実施例1について、図3および図7−1、図7−2を参照しながら説明する。
(試料ブロックの概要)
銅のフレームに二層のめっき膜が積層されているものを試料ブロック1とした。図3に示すように厚さ20μmの表面のめっき膜を上層部2、厚さ30μmの二層目のめっき膜を観察層3、銅のフレームを下層部6とする。観察層3の上層部2との界面から10μmの深さの領域が第一の観察箇所4、20μmの深さの領域が第二の観察箇所5である。
(斜めFIB照射加工による上層部の除去)
図7−1(b)、(c)と図3(c)、(d)に示すように表面に対し45°の角度で第一のFIB照射加工7を行う。傾斜面11を表面から観察し、試料表面1−1と傾斜面11が交わるAの点(図3(c))から図中で右へ27μmの点線を薄膜化の中心線13とする。この点線13では第一の観察箇所4は表面から3μmの深さになる。次に図7−1(c)に示すように第二のFIB照射加工7−1を行った。第二のFIB照射加工7−1は図3(c)に示すようにAの点から図中で10μm左まで表面に対し45°の角度で行う。これにより第二の観察箇所5も表面から3μmの深さになる。
(マイクロサンプリング)
薄膜化する部分の表面にプラチナのイオンビームアシストデポジションで3μm×15μmの面積で短辺が作製する薄膜の厚み方向になるように1μm厚さの保護膜を形成する(図示せず)。図7−2(d)、(e)に示すように表面に垂直な方向7bからのFIB照射加工7で薄膜化する部分の周辺をプラチナの保護膜端まで削り微小試料片とした。図7−2(f)に示すようにマイクロプローブ8をプラチナのイオンビームアシストデポジションで微小試料片表面9に接着した後、微小試料片の底面を斜めFIB照射加工で切断し、図7−2(g)に示すように微小試料片10を試料1から完全に分離し、メッシュの試料固定面に移動しプラチナのイオンビームアシストデポジションで接着した(図示せず)。この後、マイクロプローブ8と微小試料片10をFIB照射加工で切り離した。(図示せず)。
(FIB照射加工による薄膜化)
図3(e)、(f)に示すように、表面に垂直な方向7bのFIB照射加工7で電子線が透過するの0.1μm以下の厚さになるまでイオンビームで薄膜化した。TEM観察の方向から見ると、図3(g)に示すように第一の観察箇所4、第二の観察箇所5は表面から3μmの深さにある。
(TEM観察)
薄膜化完了したTEM観察用薄膜試料に対して、TEM観察を行ったところ第一の観察箇所4、第二の観察箇所5のどちらもめっきの組織が明瞭に観察できた(TEM観察図は図示せず)。
EXAMPLE 1 Hereinafter, Example 1 concerning the preparation method of the thin film sample for transmission electron microscope observation concerning this invention is demonstrated, referring FIG. 3, FIG. 7-1, FIG. 7-2.
(Sample block overview)
A sample block 1 was formed by laminating two layers of plating films on a copper frame. As shown in FIG. 3, the plating film on the surface with a thickness of 20 μm is the upper layer part 2, the second plating film with a thickness of 30 μm is the observation layer 3, and the copper frame is the lower layer part 6. A region having a depth of 10 μm from the interface with the upper layer portion 2 of the observation layer 3 is a first observation location 4, and a region having a depth of 20 μm is a second observation location 5.
(Removal of upper layer by oblique FIB irradiation processing)
As shown in FIGS. 7-1 (b) and (c) and FIGS. 3 (c) and (d), the first FIB irradiation processing 7 is performed at an angle of 45 ° with respect to the surface. The inclined surface 11 is observed from the surface, and the dotted line of 27 μm to the right in the drawing from the point A (FIG. 3C) where the sample surface 1-1 and the inclined surface 11 intersect is the center line 13 for thinning. At this dotted line 13, the first observation point 4 is 3 μm deep from the surface. Next, as shown in FIG. 7-1 (c), the second FIB irradiation processing 7-1 was performed. As shown in FIG. 3C, the second FIB irradiation processing 7-1 is performed at an angle of 45 ° with respect to the surface from the point A to 10 μm left in the drawing. As a result, the second observation spot 5 is also 3 μm deep from the surface.
(Micro sampling)
A protective film with a thickness of 1 μm is formed on the surface of the thinned portion by ion beam-assisted deposition of platinum so that the short side is in the thickness direction of the thin film to be produced with an area of 3 μm × 15 μm (not shown). As shown in FIGS. 7-2 (d) and (e), the periphery of the portion to be thinned by the FIB irradiation processing 7 from the direction 7b perpendicular to the surface was scraped to the edge of the platinum protective film to form a micro sample piece. As shown in FIG. 7-2 (f), after the microprobe 8 is bonded to the surface of the minute sample piece 9 by platinum ion beam assisted deposition, the bottom surface of the minute sample piece is cut by oblique FIB irradiation processing. As shown in FIG. 2 (g), the micro sample piece 10 was completely separated from the sample 1, moved to the sample fixing surface of the mesh, and adhered by ion beam assisted deposition of platinum (not shown). Thereafter, the microprobe 8 and the micro sample piece 10 were separated by FIB irradiation processing. (Not shown).
(Thinning by FIB irradiation processing)
As shown in FIGS. 3 (e) and 3 (f), the film was thinned with an ion beam until the thickness became 0.1 μm or less at which the electron beam was transmitted by the FIB irradiation processing 7 in the direction 7 b perpendicular to the surface. When viewed from the direction of TEM observation, as shown in FIG. 3G, the first observation point 4 and the second observation point 5 are at a depth of 3 μm from the surface.
(TEM observation)
When the TEM observation was performed on the thin film sample for TEM observation that had been thinned, the plating structure could be clearly observed at both the first observation location 4 and the second observation location 5 (the TEM observation figure is a figure). Not shown).

本発明における斜め上方表面からのFIB照射加工により切り欠き凹部を形成したことを示す試料の概略斜視図である。It is a schematic perspective view of the sample which shows having formed the notch recessed part by FIB irradiation processing from the diagonally upper surface in this invention. 本発明における観察箇所が1箇所の場合の試料表面と該試料表面側からみた切り欠き凹部近傍の位置の平面図および断面図である。It is the top view and sectional drawing of the position of the notch recessed part seen from the sample surface and the sample surface side in case the observation location in this invention is one location. 本発明における観察箇所が2箇所の場合の試料表面と該試料表面側からみた切り欠き凹部近傍の位置の平面図および断面図である。It is the top view and sectional drawing of the position of the notch recessed part vicinity seen from the sample surface and the sample surface side in case the observation location in this invention is two places. 従来の試料ブロックにTEM観察用薄膜試料を作製する方法を示す斜視図である。It is a perspective view which shows the method of producing the thin film sample for TEM observation in the conventional sample block. 従来の試料ブロックにTEM観察用薄膜試料を作製するための異なる方法を示す斜視図である。It is a perspective view which shows the different method for producing the thin film sample for TEM observation in the conventional sample block. 本発明における観察箇所が1箇所の場合のTEM観察用薄膜試料を作製する主要な工程を示す斜視図(その1)である。It is a perspective view (the 1) which shows the main processes which produce the thin film sample for TEM observation in case the observation location in this invention is one location. 本発明における観察箇所が1箇所の場合のTEM観察用薄膜試料を作製する主要な工程を示す斜視図(その2)である。It is a perspective view (the 2) which shows the main processes which produce the thin film sample for TEM observation in case the observation location in this invention is one location. 本発明における観察箇所が2箇所の場合のTEM観察用薄膜試料を作製する主要な工程を示す斜視図(その1)である。It is a perspective view (the 1) which shows the main processes which produce the thin film sample for TEM observation in case the observation location in this invention is two places. 本発明における観察箇所が2箇所の場合のTEM観察用薄膜試料を作製する主要な工程を示す斜視図(その2)である。It is a perspective view (the 2) which shows the main processes which produce the thin film sample for TEM observation in case the observation location in this invention is two locations.

符号の説明Explanation of symbols

1 試料
1−1 試料表面
2 上層部
3 観察層
4 第一の観察箇所
5 第二の観察箇所
6 下層部
7 集束イオンビーム、FIB、第一のFIB照射加工
7−1 第二のFIB照射加工
8 マイクロプローブ、金属微小針
9 微小試料片表面
10 微小試料片
11 傾斜面
12 切り欠き凹部
13 中心線
14 試料ブロック
15 TEM観察用薄膜試料


DESCRIPTION OF SYMBOLS 1 Sample 1-1 Sample surface 2 Upper layer part 3 Observation layer 4 1st observation location 5 2nd observation location 6 Lower layer 7 Focused ion beam, FIB, 1st FIB irradiation processing 7-1 2nd FIB irradiation processing 8 Microprobe, metal microneedle 9 Micro sample piece surface 10 Micro sample piece 11 Inclined surface 12 Notch recess 13 Center line 14 Sample block 15 Thin film sample for TEM observation


Claims (5)

表面から10μm以上の深さの内部に観察箇所を含む試料から微小試料片を摘出し、透過型電子顕微鏡観察用試料台に接着させる微小試料片の摘出、固定工程と該微小試料片表面に垂直な集束イオンビーム照射加工によって透過型電子顕微鏡観察用薄膜試料として加工する薄膜化工程とを有する透過型電子顕微鏡観察用薄膜試料の作製方法において、前記摘出工程の前に、前記試料の観察箇所の上層部を斜め上方表面からの集束イオンビーム照射加工によって10μm以下の厚さに削る、斜め切削工程を挿入することを特徴とする透過型電子顕微鏡観察用薄膜試料の作製方法。 Extracting a micro sample piece from a sample including an observation location within a depth of 10 μm or more from the surface, extracting the micro sample piece to be adhered to a transmission electron microscope observation sample stage, fixing step and perpendicular to the surface of the micro sample piece A thin film sample for transmission electron microscope observation having a thin film processing step for processing as a thin film sample for transmission electron microscope observation by a focused ion beam irradiation processing, before the extraction step, A method for producing a thin film sample for transmission electron microscope observation, wherein an oblique cutting step is performed in which an upper layer portion is cut to a thickness of 10 μm or less by focused ion beam irradiation processing from an oblique upper surface. 前記微小試料片の摘出、固定工程が、集束イオンビーム照射加工によって、内部に観察箇所を含む微小試料片を切り出す第一工程、金属微小針を前記微小試料片の表面に接触させる第二工程、導電性元素を成分に含む化合物生成ガスを射出しながら化学反応で導電性膜を微小試料片に堆積させて前記金属微小針と前記微小試料片を接着する第三工程、金属微小針を移動させて透過型電子顕微鏡観察用試料台に前記微小試料片を接触させ、前記第三工程と同様の方法で接着させてから前記金属微小針を前記微小試料片から切り離す第四工程を有することを特徴とする請求項1記載の透過型電子顕微鏡観察用薄膜試料の作製方法。 Extracting and fixing the micro sample piece is a first step of cutting out a micro sample piece including an observation location inside by focused ion beam irradiation processing, a second step of bringing a metal micro needle into contact with the surface of the micro sample piece, A third step of depositing a conductive film on a small sample piece by chemical reaction while injecting a compound-forming gas containing a conductive element as a component, and bonding the metal microneedle and the fine sample piece, moving the metal microneedle And a fourth step of bringing the micro sample piece into contact with a sample stage for transmission electron microscope observation and adhering it in the same manner as in the third step, and then separating the metal micro needle from the micro sample piece. The method for producing a thin film sample for transmission electron microscope observation according to claim 1. 前記微小試料片の摘出、固定工程の前に、前記試料の複数の異なる深さを有する観察箇所の上層部を、それぞれ斜め上方表面からの集束イオンビーム照射加工によって10μm以下の厚さに削る斜め切削工程を挿入することを特徴とする請求項2記載の透過型電子顕微鏡観察用薄膜試料の作製方法。 Before the step of extracting and fixing the micro sample piece, the upper layer portion of the observation portion having a plurality of different depths of the sample is cut obliquely to a thickness of 10 μm or less by focused ion beam irradiation processing from the oblique upper surface. 3. The method for producing a thin film sample for transmission electron microscope observation according to claim 2, wherein a cutting step is inserted. 前記斜め切削工程が、集束イオンビーム照射加工によって数μm以下の厚さに削る工程であることを特徴とする請求項1乃至3のいずれか一項に記載の透過型電子顕微鏡観察用薄膜試料の作製方法。 The thin film sample for transmission electron microscope observation according to any one of claims 1 to 3, wherein the oblique cutting step is a step of cutting to a thickness of several μm or less by focused ion beam irradiation processing. Manufacturing method. 前記斜め上方表面からの集束イオンビーム照射加工の角度が、前記試料表面に対し30°乃至60°であることを特徴とする請求項1乃至4のいずれか一項に記載の透過型電子顕微鏡観察用薄膜試料の作製方法。
The transmission electron microscope observation according to any one of claims 1 to 4, wherein an angle of the focused ion beam irradiation processing from the oblique upper surface is 30 ° to 60 ° with respect to the sample surface. Method for manufacturing thin film samples.
JP2008058899A 2008-03-10 2008-03-10 Method of manufacturing thin-film sample for observing transmission electron microscope Pending JP2009216478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008058899A JP2009216478A (en) 2008-03-10 2008-03-10 Method of manufacturing thin-film sample for observing transmission electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008058899A JP2009216478A (en) 2008-03-10 2008-03-10 Method of manufacturing thin-film sample for observing transmission electron microscope

Publications (1)

Publication Number Publication Date
JP2009216478A true JP2009216478A (en) 2009-09-24

Family

ID=41188494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008058899A Pending JP2009216478A (en) 2008-03-10 2008-03-10 Method of manufacturing thin-film sample for observing transmission electron microscope

Country Status (1)

Country Link
JP (1) JP2009216478A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102410947A (en) * 2010-09-19 2012-04-11 中芯国际集成电路制造(上海)有限公司 Preparation method of TEM (Transmission Electron Microscopy) sample
CN102466578A (en) * 2010-11-03 2012-05-23 中芯国际集成电路制造(上海)有限公司 Preparation method of transmission electron microscope (TEM) sample
CN103792114A (en) * 2012-11-02 2014-05-14 中芯国际集成电路制造(上海)有限公司 Preparation method for TEM (transmission electron microscope) sample
CN104297037A (en) * 2014-11-07 2015-01-21 武汉新芯集成电路制造有限公司 Preparation method of TEM sample
CN105136543A (en) * 2015-09-27 2015-12-09 上海华力微电子有限公司 Preparation method of TEM (Transmission Electron Microscope) sample
EP2743026A3 (en) * 2012-11-12 2017-10-11 Carl Zeiss Microscopy GmbH Method of processing a material-specimen
WO2019224993A1 (en) * 2018-05-25 2019-11-28 三菱電機株式会社 Preparation method for specimen for transmission electron microscope
WO2020100179A1 (en) * 2018-11-12 2020-05-22 株式会社日立ハイテク Imaging method and imaging system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102410947A (en) * 2010-09-19 2012-04-11 中芯国际集成电路制造(上海)有限公司 Preparation method of TEM (Transmission Electron Microscopy) sample
CN102466578A (en) * 2010-11-03 2012-05-23 中芯国际集成电路制造(上海)有限公司 Preparation method of transmission electron microscope (TEM) sample
CN103792114A (en) * 2012-11-02 2014-05-14 中芯国际集成电路制造(上海)有限公司 Preparation method for TEM (transmission electron microscope) sample
EP2743026A3 (en) * 2012-11-12 2017-10-11 Carl Zeiss Microscopy GmbH Method of processing a material-specimen
CN104297037A (en) * 2014-11-07 2015-01-21 武汉新芯集成电路制造有限公司 Preparation method of TEM sample
CN105136543A (en) * 2015-09-27 2015-12-09 上海华力微电子有限公司 Preparation method of TEM (Transmission Electron Microscope) sample
WO2019224993A1 (en) * 2018-05-25 2019-11-28 三菱電機株式会社 Preparation method for specimen for transmission electron microscope
JPWO2019224993A1 (en) * 2018-05-25 2021-02-18 三菱電機株式会社 Method for preparing a transmission electron microscope sample
WO2020100179A1 (en) * 2018-11-12 2020-05-22 株式会社日立ハイテク Imaging method and imaging system
TWI731467B (en) * 2018-11-12 2021-06-21 日商日立全球先端科技股份有限公司 Image forming method, image forming system and ion milling device
JPWO2020100179A1 (en) * 2018-11-12 2021-09-30 株式会社日立ハイテク Image formation method and image formation system
JP7114736B2 (en) 2018-11-12 2022-08-08 株式会社日立ハイテク Image forming method and image forming system
US11532454B2 (en) 2018-11-12 2022-12-20 Hitachi High-Tech Corporation Imaging method and imaging system

Similar Documents

Publication Publication Date Title
JP2009216478A (en) Method of manufacturing thin-film sample for observing transmission electron microscope
TWI338345B (en) Method and apparatus for sample formation and microanalysis in a vacuum chamber
US8389955B2 (en) Method for thinning a sample and sample carrier for performing said method
JP6780957B2 (en) Method for preparing a sample for microstructure diagnosis and sample for microstructure diagnosis
CN103808540B (en) Transmission electron microscope sample preparation method
KR100796829B1 (en) Tem sample slicing process
JP5138294B2 (en) Method for separating a small sample from a specimen
JP2006017729A (en) Method for taking out microscopic sample from substrate
US8481968B2 (en) Electron microscope specimen and method for preparing the same
JP2003194681A (en) Tem sample preparation method
JP2006226970A (en) Sample support built by semiconductor silicon process technique
CN114858828A (en) Preparation method of transmission electron microscope sample
TWI255339B (en) Method of applying micro-protection in defect analysis
US7208965B2 (en) Planar view TEM sample preparation from circuit layer structures
CN113466268B (en) Combined sample and preparation method thereof
US7394075B1 (en) Preparation of integrated circuit device samples for observation and analysis
JP2007163160A5 (en)
JP2007163160A (en) Focused ion beam processing method, and preparation method of transmission electron microscope sample using it
JP5666791B2 (en) Micro sample table and method for manufacturing micro sample table
JP5151288B2 (en) Sample preparation method
JP2006329723A (en) Method of manufacturing sample for electron-microscopic observation
JP2000199735A (en) Metal cutting method and method for preparing cross section sample for microscopic observation
US9360401B2 (en) Sample stack structure and method for preparing the same
KR100744267B1 (en) specimen manufacturing method for Transmission Electron Microscope
WO2002054042A1 (en) Improved method for preparing semiconductor wafer for defect analysis

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112