JP2008281528A - Pretreatment method and pretreatment apparatus of thin film laminated material - Google Patents

Pretreatment method and pretreatment apparatus of thin film laminated material Download PDF

Info

Publication number
JP2008281528A
JP2008281528A JP2007128232A JP2007128232A JP2008281528A JP 2008281528 A JP2008281528 A JP 2008281528A JP 2007128232 A JP2007128232 A JP 2007128232A JP 2007128232 A JP2007128232 A JP 2007128232A JP 2008281528 A JP2008281528 A JP 2008281528A
Authority
JP
Japan
Prior art keywords
thin film
cutting
laminated material
film laminated
intermediate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007128232A
Other languages
Japanese (ja)
Other versions
JP4966732B2 (en
Inventor
Hideki Yamazaki
秀樹 山崎
Itsuo Nishiyama
逸雄 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daipura Uintesu Kk
NITTO BUNSEKI CENTER KK
NITTO BUNSEKI CT KK
Original Assignee
Daipura Uintesu Kk
NITTO BUNSEKI CENTER KK
NITTO BUNSEKI CT KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daipura Uintesu Kk, NITTO BUNSEKI CENTER KK, NITTO BUNSEKI CT KK filed Critical Daipura Uintesu Kk
Priority to JP2007128232A priority Critical patent/JP4966732B2/en
Publication of JP2008281528A publication Critical patent/JP2008281528A/en
Application granted granted Critical
Publication of JP4966732B2 publication Critical patent/JP4966732B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pretreatment method of thin film laminated material for expanding and exposing a smooth intermediate layer having no crack, nipping, or the like in an interface so that the composition of the intermediate layer of the thin film laminated material whose thickness is controlled in a range from several μm to nm level can be analyzed. <P>SOLUTION: In the pretreatment method of the thin film laminated material, the thin film laminated material is cut in the cross section direction and the intermediate layer is exposed in order to analyze the composition of the intermediate layer of the thin film laminated material having the intermediate layer. When the thin film laminated material 10 is cut using a cutting edge 1 driven relatively in the horizontal direction and perpendicular direction with respect to the surface of the thin film laminated material 10, the perpendicular cutting velocity is set to be 0.01 nm/s or higher and lower than 1 nm/s, and the cross section is cut in a diagonal direction. The cutting direction by the cutting edge 1 is set at ≥0.05° and ≤5° with respect to the surface of the thin film laminated material 10. The thin film laminated material 10 is formed of at least three or more layers, and the thickness of the intermediate layer 10b is ≤10 μm. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、中間層を有する薄膜積層材料の中間層の組成を分析するために、薄膜積層材料を断面方向に切削して中間層を露呈させる薄膜積層材料の前処理方法及びこれに用いられる前処理装置に関するものである。   In order to analyze the composition of the intermediate layer of the thin film laminate material having the intermediate layer, the present invention provides a thin film laminate material pretreatment method in which the intermediate layer is exposed by cutting the thin film laminate material in the cross-sectional direction, and before the method is used The present invention relates to a processing apparatus.

一般的に、高分子ならびに延性を有する金属を用いた薄膜積層材料は、耐久特性や光学特性などの様々な特性を付与しつつ薄膜化される傾向にあり、この薄膜化の傾向は今後ますます強まるものと考えられる。かかる薄膜積層材料としては、例えば、中間層としての印刷層を有する多層フィルムなど多くの種類が存在する。かかる中間層の組成の分析を行なうためには、薄膜積層材料を断面方向に切削して中間層を露呈させて、分析機器などにより観察する必要がある。   In general, thin film laminate materials using polymers and metals with ductility tend to be thinned while imparting various properties such as durability and optical properties. It is thought to strengthen. As such a thin film laminated material, there are many types such as a multilayer film having a printing layer as an intermediate layer. In order to analyze the composition of the intermediate layer, it is necessary to cut the thin film laminated material in the cross-sectional direction to expose the intermediate layer and observe it with an analytical instrument or the like.

しかしながら、薄膜積層材料の厚さが薄くなり、中間層が10μm以下になると、既存の分析機器の空間分解能や検出感度の限界、もしくはサンプリング技術の限界により、その組成を直接分析することが難しくなる。従って、現状においては、薄膜積層材料の薄膜界面において表面層を物理的に剥離させて中間層を露呈させることが考えられるが、中間層をうまく露呈させることが難しく、必ずしも分析や評価ができるわけではない。従って、偶然に頼らざるを得ない状況となっており、効率が悪い。   However, if the thickness of the thin film laminated material is reduced and the intermediate layer is 10 μm or less, it becomes difficult to directly analyze the composition due to the limitations of the spatial resolution, detection sensitivity, or sampling technology of existing analytical instruments. . Therefore, at present, it is conceivable to expose the intermediate layer by physically peeling the surface layer at the thin film interface of the thin film laminate material, but it is difficult to expose the intermediate layer well, and analysis and evaluation are not always possible. is not. Therefore, the situation has to be relied on by chance, and the efficiency is poor.

一方、薄膜積層材料の多層膜の深さ方向のデータや剥離強度や剪断強度を求める技術として、下記の特許文献1,2,3などが知られている。特許文献1は、試料を切削しながら、力学的データ以外のデータ(赤外線、可視光、レーザー光などを用いて測定)を測定する分析方法を開示する(特許請求の範囲)。具体的な例として、珪素ウェハ上に銅をスパッタリングし、その上にポリイミド(厚み2μm)を塗布して硬化した試料をダイアモンドカッターを用いて入射角1度で切削したことが記載されている(段落0014)。   On the other hand, the following patent documents 1, 2, 3 and the like are known as techniques for obtaining depth data, peel strength, and shear strength of a multilayer film of a thin film laminated material. Patent Document 1 discloses an analysis method for measuring data other than mechanical data (measured using infrared rays, visible light, laser light, etc.) while cutting a sample (claims). As a specific example, it is described that a sample obtained by sputtering copper on a silicon wafer and applying and curing a polyimide (thickness 2 μm) thereon was cut at an incident angle of 1 degree using a diamond cutter ( Paragraph 0014).

特許文献2は、直線変位をする試料装着台と、直角変位をする切り刃支持体と、切り刃に生じる反発力を検出する圧力検出器を備え、塗膜の付着力および剪断力を測定する装置を開示する(特許請求の範囲)。具体的には、厚さ8mmの塗装板を用いて、その塗膜の一部を2cm程度剥離して素材を露出させて、切り刃を露出面に当てて押し付ける。次に、塗装板を1mm/minの速度で動かして切り刃の抵抗力をロードセルにより検知するものである(第2頁左下欄及び右下欄)。   Patent Document 2 includes a sample mounting table that performs linear displacement, a cutting blade support that performs perpendicular displacement, and a pressure detector that detects a repulsive force generated on the cutting blade, and measures adhesion force and shear force of a coating film. An apparatus is disclosed (claims). Specifically, using a coated plate having a thickness of 8 mm, a part of the coating film is peeled off by about 2 cm to expose the material, and the cutting blade is pressed against the exposed surface and pressed. Next, the coated plate is moved at a speed of 1 mm / min, and the resistance force of the cutting blade is detected by the load cell (second page, lower left column and lower right column).

特許文献3は、試料に付着した塗膜の付着強度や剪断強度を測定する装置を開示する。この装置は、試料に対して塗膜面に垂直な方向及び平行な方向の2方向に移動可能な切り刃を有し、夫々、平行移動モータ、垂直移動モータにより駆動される。切り刃を塗膜に食い込ませることで塗膜を切削する。   Patent Document 3 discloses an apparatus for measuring the adhesion strength and shear strength of a coating film adhered to a sample. This apparatus has a cutting blade that can move in two directions, a direction perpendicular to the coating film surface and a direction parallel to the sample surface, and is driven by a parallel movement motor and a vertical movement motor, respectively. The coating film is cut by cutting the cutting blade into the coating film.

特開2002−365183号公報JP 2002-365183 A 特開昭61−169745号公報JP-A 61-169745 特開2003−254894号公報JP 2003-254894 A

これらの特許文献2,3に開示される方法によれば、薄膜積層材料の中間層の組成を分析するのではなく、主として表面の塗膜などの剥離強度や剪断強度を分析するものであるから、切り刃の動きも水平方向に移動することで材料の剥離強度などを測定するようにしている。従って、中間層の分析評価を行う場合に、どのように露呈させるべきかについての教示・示唆などは全くされていない。   According to the methods disclosed in these Patent Documents 2 and 3, the composition of the intermediate layer of the thin film laminated material is not analyzed, but mainly the peel strength and shear strength of the coating film on the surface are analyzed. The movement of the cutting blade is also moved in the horizontal direction to measure the peel strength of the material. Therefore, there is no teaching or suggestion on how to expose the intermediate layer when it is analyzed and evaluated.

また、特許文献1は、材料を斜め方向に切削しながら分析を行う方法を開示している。薄膜積層材料を垂直方向に切削するのに比べて、斜め方向に切削すれば、露呈面の表面積を大きくできると考えられる。特許文献1には、どのような速度で切削するのかは記載がないが、仮に、10μm程度の中間層を有する薄膜積層材料を斜め方向に切削する場合、その切削速度が速すぎると、中間層の界面に割れやむしれが発生することが多く、分析に適した露呈面を得ることが難しくなる。従って、現状においては、10μm以下の、特に数μmからナノレベルで厚さを制御された中間層を分析可能なレベルに拡大露呈させる技術は確立されていない状況である。   Patent Document 1 discloses a method of performing analysis while cutting a material in an oblique direction. It is considered that the surface area of the exposed surface can be increased by cutting the thin film laminated material in an oblique direction as compared with cutting in the vertical direction. Patent Document 1 does not describe what speed to cut, but if a thin film laminated material having an intermediate layer of about 10 μm is cut obliquely, if the cutting speed is too high, the intermediate layer In many cases, cracks and cracks are generated at the interface, and it is difficult to obtain an exposed surface suitable for analysis. Therefore, in the present situation, a technique for expanding and exposing an intermediate layer having a thickness of 10 μm or less, particularly a thickness of several μm to a nano level, to an analyzable level has not been established.

本発明は上記実情に鑑みてなされたものであり、その課題は、数μmからnm(ナノメートル)レベルの厚さに制御された中間層を有する薄膜積層材料の中間層の組成を分析できるように、界面に割れやむしれなどのない平滑な中間層を拡大露呈させる薄膜積層材料の前処理方法及びこれに用いられる前処理装置を提供することである。   The present invention has been made in view of the above circumstances, and the problem is that the composition of the intermediate layer of the thin film laminated material having the intermediate layer controlled to a thickness of several μm to nm (nanometer) level can be analyzed. Furthermore, it is to provide a pretreatment method of a thin film laminated material that expands and exposes a smooth intermediate layer having no cracks or peeling at the interface, and a pretreatment apparatus used for this.

上記課題を解決するため本発明に係る薄膜積層材料の前処理方法は、
中間層を有する薄膜積層材料の中間層の組成を分析するために、薄膜積層材料を断面方向に切削して中間層を露呈させる薄膜積層材料の前処理方法であって、薄膜積層材料の表面に対して平行方向と垂直方向に相対的に駆動される切削刃を用いて薄膜積層材料を切削するに際して、垂直方向の切削速度を0.01nm(10-11m)/s以上1nm(10-9m)/s未満になるように設定し、断面を斜め方向に切削することを特徴とするものである。
In order to solve the above problems, a pretreatment method for a thin film laminated material according to the present invention
In order to analyze the composition of an intermediate layer of a thin film laminate material having an intermediate layer, a thin film laminate material pretreatment method in which the intermediate layer is exposed by cutting the thin film laminate material in a cross-sectional direction. On the other hand, when the thin film laminated material is cut using a cutting blade that is driven relatively in the parallel direction and the vertical direction, the cutting speed in the vertical direction is 0.01 nm (10 −11 m) / s to 1 nm (10 −9). m) It is set to be less than / s, and the cross section is cut obliquely.

この構成によると、切削刃は薄膜積層材料の表面に対して平行方向と垂直方向に相対的に駆動されるので、切削刃により薄膜積層材料を斜め方向に切削していくことができる。これにより、中間層も斜め方向に切削することになるので、垂直に切削する場合に比べて、露呈面を大きく取ることができる。ただし、斜め方向に切削したとき、切削刃と材料間に作用する力、特にせん断力の増加分を抑制する必要がある。つまり、切削刃と材料間に作用するせん断力の増加分が大きいと、中間層の界面付近に切削刃が到達したとき、その部位に割れや、むしれを生じ、中間層が欠落したり、露呈面の粗さが大きくなる原因となる。   According to this configuration, since the cutting blade is driven relatively in the direction parallel to and perpendicular to the surface of the thin film laminate material, the thin film laminate material can be cut obliquely by the cutting blade. Thereby, since an intermediate | middle layer will also be cut in the diagonal direction, a exposed surface can be taken larger compared with the case where it cuts perpendicularly. However, it is necessary to suppress an increase in the force acting between the cutting blade and the material, particularly the shearing force, when cutting in an oblique direction. In other words, if the increase in the shearing force acting between the cutting blade and the material is large, when the cutting blade reaches the vicinity of the interface of the intermediate layer, cracking or peeling occurs in that part, the intermediate layer is missing, This will cause the roughness of the exposed surface to increase.

そこで、せん断力の増加分を抑制するためには、斜め方向に切削する場合の速度を遅くすることが有効であることを本願発明者らは見出したものである。特に、切削刃の垂直方向の切削速度を0.01nm/s以上1nm/s未満になるように設定することで、応力緩和の効果により、中間層の界面付近で作用するせん断力の増加分を小さくすることができ、割れや、むしれが生じにくくなり、平滑な拡大露呈面を得ることができる。さらに、かかる速度にすることで、材料と切削刃間を見かけ状高温状態とする効果もあり、これにより、材料に快削性を付与することもできる。なお、あまり速度を遅くすると、切削時間が長くなりすぎるため、垂直方向の切削速度を0.01nm/s以上とするのがよい。その結果、数μmからnmレベルの厚さに制御された中間層を有する薄膜積層材料の中間層の組成を分析できるように、界面に割れやむしれなどのない平滑な中間層を拡大露呈させる薄膜積層材料の前処理方法を提供することができる。   Therefore, the present inventors have found that it is effective to reduce the speed when cutting in an oblique direction in order to suppress an increase in shearing force. In particular, by setting the cutting speed in the vertical direction of the cutting blade to be not less than 0.01 nm / s and less than 1 nm / s, the increase in shear force acting near the interface of the intermediate layer can be reduced by the effect of stress relaxation. It can be made small, cracking and peeling are less likely to occur, and a smooth enlarged exposed surface can be obtained. Furthermore, by setting this speed, there is also an effect that an apparent high temperature state is formed between the material and the cutting blade, and thereby it is possible to impart free-cutting properties to the material. If the speed is too slow, the cutting time becomes too long, so the vertical cutting speed should be 0.01 nm / s or more. As a result, a thin film that expands and exposes a smooth intermediate layer that does not have cracks or peeling at the interface so that the composition of the intermediate layer of the thin film laminate material having an intermediate layer controlled to a thickness of several μm to the nm level can be analyzed A method for pre-processing a laminated material can be provided.

本発明に係る垂直方向の切削速度を0.6nm/s以下になるように設定することが好ましい。さらに好ましくは、0.2nm/s以下であり、特に好ましくは0.1nm/s以下である。また、切削速度の下限値は0.05nm/s以上にすることがより好ましい。かかる速度に設定することで、中間層の界面付近で作用するせん断力の増加分をより小さくすることができ、その結果、平滑な拡大露呈面を得ることができる。   The vertical cutting speed according to the present invention is preferably set to be 0.6 nm / s or less. More preferably, it is 0.2 nm / s or less, and particularly preferably 0.1 nm / s or less. The lower limit value of the cutting speed is more preferably 0.05 nm / s or more. By setting this speed, the increase in shearing force acting near the interface of the intermediate layer can be made smaller, and as a result, a smooth enlarged exposed surface can be obtained.

本発明に係る切削刃による切削方向は、薄膜積層材料の表面に対して0.03゜以上5゜以下になるように設定することが好ましい。より好ましくは、0.05゜以上3゜以下であり、さらに好ましくは、0.05゜以上1゜以下である。角度が5゜以上になると、切削した後の露呈面の面積が分析を行なうのに十分な大きさではなく、分析評価が難しくなる。   The cutting direction by the cutting blade according to the present invention is preferably set to be 0.03 ° or more and 5 ° or less with respect to the surface of the thin film laminated material. More preferably, it is 0.05 degree or more and 3 degrees or less, More preferably, it is 0.05 degree or more and 1 degree or less. When the angle is 5 ° or more, the area of the exposed surface after cutting is not large enough to perform analysis, and analysis evaluation becomes difficult.

本発明において、薄膜積層材料は少なくとも3層以上からなると共に、前記中間層の厚さが10μm以下であることが好ましい。かかる厚さの場合は、垂直に切断した場合に、露呈する幅も10μm以下であるから、既存の分析機器の空間分解能や検出感度の限界、もしくはサンプリング技術の限界により、その組成を直接分析することが難しくなる。従って、本発明のように切削速度の範囲を設定することで、特に10μm以下の中間層を拡大露呈させ、中間層の分析が可能になる。   In the present invention, the thin film laminate material is preferably composed of at least three layers or more, and the thickness of the intermediate layer is preferably 10 μm or less. In the case of such a thickness, since the exposed width is 10 μm or less when cut vertically, the composition is directly analyzed depending on the spatial resolution and detection sensitivity limit of existing analytical instruments or the sampling technology limit. It becomes difficult. Therefore, by setting the cutting speed range as in the present invention, an intermediate layer having a size of 10 μm or less is particularly exposed and analysis of the intermediate layer becomes possible.

本発明に係る薄膜積層材料の前処理方法に用いられる前処理装置は、
切削刃を薄膜積層材料の表面に対して垂直方向に駆動可能な第1圧電素子と、
前記切削刃を薄膜積層材料の表面に対して平行方向に駆動可能な第2圧電素子と、を備え、
前記切削刃の垂直方向の切削速度を0.01nm/s以上1nm/s未満になるように設定し、薄膜積層材料の断面を斜め方向に切削することを可能にしたこと特徴とするものである。
The pretreatment apparatus used in the pretreatment method of the thin film laminate material according to the present invention is
A first piezoelectric element capable of driving the cutting blade in a direction perpendicular to the surface of the thin film laminated material;
A second piezoelectric element capable of driving the cutting blade in a direction parallel to the surface of the thin film laminate material,
The cutting speed in the vertical direction of the cutting blade is set to be 0.01 nm / s or more and less than 1 nm / s, and the cross section of the thin film laminated material can be cut obliquely. .

上記のように切削刃の垂直方向の切削速度を設定することで、前述のように、応力緩和の効果により、中間層の界面付近で作用するせん断力の増加分を小さくすることができ、割れや、むしれが生じにくくなり、平滑な拡大露呈面を得ることができる。また、切削刃を駆動するに際して圧電素子を用いており、これにより、上記の範囲の切削速度を実現することが可能になる。   By setting the cutting speed in the vertical direction of the cutting blade as described above, the increase in shear force acting near the interface of the intermediate layer can be reduced by the effect of stress relaxation, as described above, and cracking In addition, it is difficult for peeling to occur, and a smooth enlarged exposed surface can be obtained. In addition, a piezoelectric element is used when driving the cutting blade, which makes it possible to achieve a cutting speed in the above range.

本発明に係る薄膜積層材料の前処理方法の好適な実施形態を図面を用いて説明する。図1は、前処理装置(切削装置)の構成を示す概略図である。対象となる薄膜積層材料としては、高分子や延性を有する金属成分からなるものであり、例えば、多層膜で構成されるラミネートフィルム、コーティング積層品、蒸着品等が例としてあげられるが、本発明は、特定の材料に限定されるものではない。   A preferred embodiment of a pretreatment method for a thin film laminate material according to the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram illustrating a configuration of a pretreatment device (cutting device). The target thin film laminate material is composed of a polymer or a ductile metal component, and examples thereof include a laminate film composed of a multilayer film, a coating laminate product, and a vapor deposition product. Is not limited to a particular material.

切削対象となる材料が搭載される搭載面Aに面するように切削刃1が設けられている。切削刃1は、平行圧力検出器2に保持されており、さらに、この平行圧力検出器2は連結具3を介して垂直圧力検出器4に保持されている。さらに、垂直圧力検出器4は、連結具5を介して第1圧電素子6及び第2圧電素子7と連結されており、これにより、切削刃1の水平駆動及び垂直駆動を可能にしている。第1圧電素子6は、切削刃1を垂直方向に駆動するものであり、第2圧電素子7は、切削刃1を水平方向に駆動するものである。圧電素子を駆動源として用いることで、切削刃1を微動できるように構成している。第1・第2圧電素子6,7を同時に駆動することで、切削刃1を斜め方向に駆動することができる。なお、第2圧電素子7を試料台側に設置してもよい。   A cutting blade 1 is provided so as to face a mounting surface A on which a material to be cut is mounted. The cutting blade 1 is held by a parallel pressure detector 2, and the parallel pressure detector 2 is held by a vertical pressure detector 4 via a connector 3. Further, the vertical pressure detector 4 is connected to the first piezoelectric element 6 and the second piezoelectric element 7 via a connector 5, thereby enabling the cutting blade 1 to be driven horizontally and vertically. The first piezoelectric element 6 drives the cutting blade 1 in the vertical direction, and the second piezoelectric element 7 drives the cutting blade 1 in the horizontal direction. By using a piezoelectric element as a drive source, the cutting blade 1 can be finely moved. By simultaneously driving the first and second piezoelectric elements 6 and 7, the cutting blade 1 can be driven in an oblique direction. In addition, you may install the 2nd piezoelectric element 7 in the sample stand side.

図1に示す構造は、摺動部分や回転部分が一切ない一体構造となっており、各連結部分においてギヤやステージを一切用いていない。平行圧力検出器2や垂直圧力検出器4により、夫々水平方向及び垂直方向の圧力を検出するが、圧力によりこれら圧力検出器2,4が変形したとしても、平行四辺形の原理により切削刃1の設定角度は常に一定に保持される。載置面Aの下部には、静電容量型変位計8が設けられており、その上部に載置面Aが形成されると共に、切削刃1の垂直方向の切削深さを測定可能にしている。   The structure shown in FIG. 1 is an integral structure with no sliding parts or rotating parts, and no gears or stages are used at each connecting part. The parallel pressure detector 2 and the vertical pressure detector 4 detect the pressure in the horizontal direction and the vertical direction, respectively. Even if the pressure detectors 2 and 4 are deformed by the pressure, the cutting blade 1 is driven by the principle of the parallelogram. The set angle is always kept constant. A capacitance-type displacement meter 8 is provided below the placement surface A. The placement surface A is formed above the placement surface A, and the cutting depth in the vertical direction of the cutting blade 1 can be measured. Yes.

図2は、実際に使用する切削刃1の斜視図及び側面図を示す図である。切削刃1の諸元については、すくい角20゜、刃角60゜、逃げ角10゜となっており、刃幅は1mmである。   FIG. 2 shows a perspective view and a side view of the cutting blade 1 actually used. The specifications of the cutting blade 1 are a rake angle of 20 °, a blade angle of 60 °, a clearance angle of 10 °, and a blade width of 1 mm.

本発明においては、中間層を有する薄膜積層材料を切削するに際して斜め方向に切削する。図3は、斜め方向に切削する時のモデル図を示す。ここでは、表面層10a、中間層10b、裏面層10cの3層構造からなる薄膜積層材料10が示されている。仮に、中間層10bの厚さが50nmであれば、垂直に切削した場合、50nmの長さの中間層10bが露呈するが、分析機器の空間分解能や検出感度の限界などを考えると、この大きさでは、その組成を直接分析することが難しくなる。   In the present invention, the thin film laminated material having the intermediate layer is cut in an oblique direction when cutting. FIG. 3 shows a model diagram when cutting in an oblique direction. Here, a thin film laminated material 10 having a three-layer structure of a surface layer 10a, an intermediate layer 10b, and a back surface layer 10c is shown. If the thickness of the intermediate layer 10b is 50 nm, the intermediate layer 10b having a length of 50 nm is exposed when it is cut vertically, but this size is considered in consideration of the spatial resolution of the analytical instrument, the limit of detection sensitivity, and the like. Now, it becomes difficult to directly analyze the composition.

そこで、図3(a)に示すように斜め方向に切削する。仮に、切り込み角度を0.05゜に設定したとすると、図3(b)に示すように、露呈面に垂直な方向から見ると、中間層10bの露呈長さは50μmとなり、垂直に切削した場合に比べると1000倍の長さが得られる。従って、組成分析が可能な露呈面が得られることになる。   Therefore, cutting is performed in an oblique direction as shown in FIG. Assuming that the cutting angle is set to 0.05 °, as shown in FIG. 3 (b), when viewed from the direction perpendicular to the exposed surface, the exposed length of the intermediate layer 10b is 50 μm and cut vertically. Compared to the case, the length is 1000 times longer. Therefore, an exposed surface capable of composition analysis is obtained.

ただし、斜め方向に切削する場合にも、その切削速度が速すぎると、中間層10bの界面に割れやむしれが発生することが多く、分析に適した露呈面を得ることが難しくなる。従って、斜め方向に切削する場合も、適切な切削速度の範囲が存在するものと考えられる。具体的には、切削速度を垂直成分と水平成分とにわけ、特に、その垂直方向の切削刃1の切削速度VYを下記のようにすることが好ましい。 However, even when cutting in an oblique direction, if the cutting speed is too high, cracking and peeling often occur at the interface of the intermediate layer 10b, making it difficult to obtain an exposed surface suitable for analysis. Therefore, it is considered that there is an appropriate cutting speed range even when cutting in an oblique direction. Specifically, the cutting speed is divided into a vertical component and a horizontal component, and in particular, the cutting speed V Y of the cutting blade 1 in the vertical direction is preferably set as follows.

0.01nm/s≦ VY <1nm/s
特に、1nm/s未満に設定することで、応力緩和の効果により、中間層10bの界面付近で作用するせん断力の増加分を小さくすることができ、割れや、むしれが生じにくくなり、平滑かつ連続的な拡大露呈面を得ることができる。これにより、中間層10bの組成分析を行うことが可能になる。垂直方向の切削速度については、0.6nm/s以下がより好ましく、0.2nm/s以下がさらに好ましく、0.1nm/s以下が特に好ましい。速度をより小さく設定することで、中間層の界面付近で作用するせん断力の増加分をより小さくすることができ、その結果、平滑な拡大露呈面を得やすくなる。
0.01 nm / s ≦ V Y <1 nm / s
In particular, by setting it to less than 1 nm / s, the increase in shearing force acting near the interface of the intermediate layer 10b can be reduced due to the effect of stress relaxation, cracking and peeling are less likely to occur, and smoothness And a continuous expansion exposure surface can be obtained. This makes it possible to perform a composition analysis of the intermediate layer 10b. The cutting speed in the vertical direction is more preferably 0.6 nm / s or less, further preferably 0.2 nm / s or less, and particularly preferably 0.1 nm / s or less. By setting the speed smaller, the increase in shearing force acting near the interface of the intermediate layer can be made smaller, and as a result, it becomes easier to obtain a smooth enlarged exposed surface.

なお、切削速度をあまり小さくしすぎると、切削時間が長くなりすぎるため、全体の効率を考えて、0.01nm/s以上に設定することが好ましい。さらに、速度を遅くすることで、薄膜積層材料10と切削刃1の間を見かけ上、高温状態とする効果もあり、これにより、材料に快削性を付与するという副次的効果も生じる。   If the cutting speed is too low, the cutting time becomes too long. Therefore, it is preferable to set it to 0.01 nm / s or more in consideration of the overall efficiency. Furthermore, by slowing down the speed, there is also an effect of apparently increasing the temperature between the thin film laminated material 10 and the cutting blade 1, and this also produces a secondary effect of imparting free machinability to the material.

また、斜め方向に切削する場合の切り込み角度θは、0.03゜≦θ≦5゜以下になるように設定することが好ましい。より好ましくは、0.05゜≦θ≦3゜であり、さらに好ましくは、0.05゜≦θ≦1゜である。角度が5゜以上になると、切削した後の露呈面の面積が分析を行なうのに十分な大きさではなく、分析評価が難しくなるからである。また、0.05゜未満のような小さい角度になると、薄膜積層材料の表面とほぼ平行な状態に近づくため、かえって切削を行うことが難しくなる。   In addition, the cutting angle θ when cutting in an oblique direction is preferably set so that 0.03 ° ≦ θ ≦ 5 ° or less. More preferably, 0.05 ° ≦ θ ≦ 3 °, and still more preferably 0.05 ° ≦ θ ≦ 1 °. This is because if the angle is 5 ° or more, the area of the exposed surface after cutting is not large enough for analysis, and analysis evaluation becomes difficult. Further, when the angle is small, such as less than 0.05 °, it approaches a state almost parallel to the surface of the thin film laminated material, and it becomes difficult to cut.

以上のような設定を行うことで、中間層の厚みに対して10倍から1000倍程度の幅の平滑な拡大露呈面を得ることができ、その面に対して既存の分析機器を用いて組成の分析を行なうことができる。   By performing the setting as described above, a smooth expanded exposed surface having a width of about 10 to 1000 times the thickness of the intermediate layer can be obtained, and the composition can be formed using existing analytical equipment on the surface. Can be analyzed.

さらに、斜め方向の切削により得られた、中間層の拡大露呈面の表面粗さRは、R<1μmが好ましく、100nm≦R≦500nmがより好ましく、10nm≦R≦50nmがさらに好ましく、R<10nmが特に好ましい。表面粗さRが1μm以上の場合は、表面の凸部が影を作り既存の分析機器を用いて組成の分析を行うことが難しくなるからである。上記のような、垂直方向の切削速度VYの設定及び切り込み角度θの設定を行なうことで、上記のような好ましい範囲の表面粗さの拡大露呈面を得ることができる。このように平滑な露呈面を得ることで、分析機器による分析を正確に行なうことができる。 Further, the surface roughness R of the enlarged exposed surface of the intermediate layer obtained by oblique cutting is preferably R <1 μm, more preferably 100 nm ≦ R ≦ 500 nm, further preferably 10 nm ≦ R ≦ 50 nm, and R < 10 nm is particularly preferable. This is because, when the surface roughness R is 1 μm or more, it is difficult to analyze the composition using the existing analytical equipment because the convex portions on the surface make a shadow. By setting the vertical cutting speed V Y and the cutting angle θ as described above, it is possible to obtain an enlarged exposed surface having a surface roughness in a preferable range as described above. By obtaining a smooth exposed surface in this way, analysis by an analytical instrument can be performed accurately.

本発明において、切削を行なう雰囲気は、対象となる薄膜積層材料の物性が変化しないような室温とすることが好ましい。室温よりも高温に設定すると、薄膜積層材料のガラス転移温度等とも関係するが、一般的に流動性を有するようになり、切削そのものは良好に行なわれるが、材料の特性が変化してしまい、適切な組成の分析を行うことができなくなる。   In the present invention, it is preferable that the atmosphere in which cutting is performed is a room temperature that does not change the physical properties of the target thin film laminated material. If it is set to a temperature higher than room temperature, it is related to the glass transition temperature of the thin film laminate material, etc., but generally it has fluidity, and the cutting itself is performed well, but the characteristics of the material change, An analysis of an appropriate composition cannot be performed.

<実験結果>
斜め方向に切削した場合に、その表面粗さがどのように変化するのかを実験を行った。
<Experimental result>
An experiment was conducted to see how the surface roughness changes when cutting in an oblique direction.

最初に、PMMA(ポリメチルメタクリレート樹脂)の表面を図1に示す装置を用いて斜め方向に切削した。垂直方向に速度を表1に示すように、0.1nm/s〜10nm/sまで変えて実験を行った。表1に示すように、水平方向の切削速度VXは、垂直方向の切削速度VYに対して500倍になるように(例えば、VYが0.1nm/sの場合、VXは50nm/s)設定した。その表面粗さRの測定結果は、表1に示す通りである。なお、表面粗さの測定は、Veeco Metrology Digital Instruments社製のAFM NanoscopeV+D3100を使用し、測定条件として、測定モードはタッピングモード、探針はシリコン単結晶製NCH−10V、測定領域は1μm×0.5μmとした。

Figure 2008281528
First, the surface of PMMA (polymethyl methacrylate resin) was cut obliquely using the apparatus shown in FIG. As shown in Table 1, the experiment was conducted while changing the speed in the vertical direction from 0.1 nm / s to 10 nm / s. As shown in Table 1, the horizontal cutting speed V X is 500 times the vertical cutting speed V Y (for example, when V Y is 0.1 nm / s, V X is 50 nm). / S) was set. The measurement result of the surface roughness R is as shown in Table 1. The surface roughness was measured using an AFM Nanoscope V + D3100 manufactured by Veeco Digital Digital Instruments. The measurement conditions were tapping mode, the probe was NCH-10V made of silicon single crystal, and the measurement area was 1 μm × 0. The thickness was 5 μm.
Figure 2008281528

図4は、各切削速度における露呈面に直交する方向から撮影した表面の写真と、表1をグラフ化したものを示す。このグラフからも分かるように、垂直方向の切削速度を特に1nm/s未満にすると、表面粗さもかなり小さくなり、既存の分析機器による組成の分析を行ないやすくなることが分かる。   FIG. 4 shows a photograph of the surface taken from the direction orthogonal to the exposed surface at each cutting speed, and a graph of Table 1. As can be seen from this graph, when the cutting speed in the vertical direction is particularly less than 1 nm / s, the surface roughness becomes considerably small, and it becomes easy to analyze the composition with the existing analytical instrument.

次に、HC(ハードコート)層付きの眼鏡レンズの表面を切削した場合の実験結果を示す。切削装置は、実施例1と同じであり、水平方向の切削速度VXは、垂直方向の切削速度VYの関係も実施例と同じである。表面粗さの測定結果は表2に示す通りである。表面粗さの測定に使用した装置は、実施例1と同じであるが、測定領域は10μm×1μmとした。

Figure 2008281528
Next, experimental results when the surface of a spectacle lens with an HC (hard coat) layer is cut are shown. The cutting apparatus is the same as in the first embodiment, and the relationship between the horizontal cutting speed V X and the vertical cutting speed V Y is the same as in the first embodiment. The measurement results of the surface roughness are as shown in Table 2. The apparatus used for the measurement of the surface roughness is the same as in Example 1, but the measurement area was 10 μm × 1 μm.
Figure 2008281528

図5は、各切削速度における露呈面に直交する方向から撮影した表面の写真と、表2をグラフ化したものを示す。このグラフからも分かるように、垂直方向の切削速度を2nm/s以下、特に1nm/s未満にすると、表面粗さもかなり小さくなり、既存の分析機器による組成の分析を行ないやすくなることが分かる。   FIG. 5 shows a photograph of the surface taken from a direction orthogonal to the exposed surface at each cutting speed, and a graph of Table 2. As can be seen from this graph, when the cutting speed in the vertical direction is set to 2 nm / s or less, particularly less than 1 nm / s, the surface roughness is considerably reduced, and it becomes easy to analyze the composition with the existing analytical instrument.

次に、3層構造からなる薄膜積層材料(積層フィルム)を切削した場合の実験結果を示す。具体的には、ポリイミド層/接着剤層/PET層からなる積層フィルムである。水平方向の切削速度VXは、垂直方向の切削速度VYに対して100倍になるように設定した。表面粗さの測定結果は表3に示す通りである。表面粗さの測定に使用した装置は、実施例1と同じであるが、測定領域は1μm×1μmとした。

Figure 2008281528
Next, experimental results when a thin film laminated material (laminated film) having a three-layer structure is cut will be shown. Specifically, it is a laminated film composed of polyimide layer / adhesive layer / PET layer. The horizontal cutting speed V X was set to be 100 times the vertical cutting speed V Y. The measurement results of the surface roughness are as shown in Table 3. The apparatus used for the measurement of the surface roughness is the same as in Example 1, but the measurement area was 1 μm × 1 μm.
Figure 2008281528

図6は、各切削速度における露呈面に直交する方向から撮影した表面の写真と、表3をグラフ化したものを示す。このグラフからも分かるように、垂直方向の切削速度を特に1nm/s未満にすると、表面粗さもかなり小さくなり、既存の分析機器による組成の分析を行ないやすくなることが分かる。また、図7は、中間層切削前、切削途中、切削後の断面のSEM像を示す図である。中間層の露呈箇所が矢印で示されており、中間層の厚さに比べて十分な長さが露呈していることが分かる。   FIG. 6 shows a photograph of the surface taken from the direction orthogonal to the exposed surface at each cutting speed and a graph of Table 3. As can be seen from this graph, when the cutting speed in the vertical direction is particularly less than 1 nm / s, the surface roughness becomes considerably small, and it becomes easy to analyze the composition with the existing analytical instrument. Moreover, FIG. 7 is a figure which shows the SEM image of the cross section before intermediate layer cutting, in the middle of cutting, and after cutting. The exposed portion of the intermediate layer is indicated by an arrow, and it can be seen that a sufficient length is exposed as compared with the thickness of the intermediate layer.

次に、下塗り層(中間層に相当)付き粘着剤の組成分析のデータを図8に示す。この対象物は、薄膜積層材料に相当するものであるが、PET(ポリエチレンテレフタレート)基材の上に、オキサゾリン基を含むメタクリル系ポリマーを下塗り剤として40nmの厚みで塗布し、その後、ブチルアクリレート系粘着剤をグラビア印刷で転写させた粘着テープを準備した。図8左上に下塗り層付近の断面TEM写真を示す。   Next, FIG. 8 shows composition analysis data of an adhesive with an undercoat layer (corresponding to an intermediate layer). This object corresponds to a thin film laminate material, but is applied on a PET (polyethylene terephthalate) base material with a methacrylic polymer containing an oxazoline group as a primer at a thickness of 40 nm, and then a butyl acrylate type. An adhesive tape having an adhesive transferred by gravure printing was prepared. A cross-sectional TEM photograph near the undercoat layer is shown in the upper left of FIG.

粘着剤は室温では斜め方向に切削不可能であるために、まず、電子染色処理(0.5%Ru酸水溶液による蒸気染色:室温1.5hr)を施し、その後に斜め方向の切削を実施した。このときの切削速度は、垂直方向で0.5nm/s、水平方向で250nm/sであった。図8右上に、材料を斜め切削した後の光学顕微鏡写真を示す。斜め方向の切削の結果、幅20μm程の下塗り層と推定される拡大露呈面を得ることができた。   Since the adhesive cannot be cut in an oblique direction at room temperature, it was first subjected to an electronic dyeing process (vapor dyeing with a 0.5% Ru acid aqueous solution: room temperature for 1.5 hours), and then cut in an oblique direction. . The cutting speed at this time was 0.5 nm / s in the vertical direction and 250 nm / s in the horizontal direction. An optical micrograph after obliquely cutting the material is shown in the upper right of FIG. As a result of cutting in the oblique direction, an enlarged exposed surface estimated to be an undercoat layer having a width of about 20 μm could be obtained.

この露呈面に関して、TOF−SIMS(アルバックファイ製TRIFT−2)を用いて分析した結果、得られたイオンマッピング像を図8右下に示す。TOF−SIMSによる分析の結果、粘着剤層からは、ブチルアクリレート由来のC47-(M/Z 71)及びC49-(M/Z 73)などが検出された。また、下塗り層からはメタクリルポリマー由来のC452 -(M/Z 85)が検出された。また、架橋剤のオキサゾリン環が反応したアミド結合由来と推察されるCN-(M/Z 26)やCNO-(M/Z 42)イオンも検出され、設計どおりの成分を同定することができた。 As a result of analyzing the exposed surface using TOF-SIMS (TRIFT-2 manufactured by ULVAC-PHI), an ion mapping image obtained is shown in the lower right of FIG. As a result of analysis by TOF-SIMS, C 4 H 7 O (M / Z 71) and C 4 H 9 O (M / Z 73) derived from butyl acrylate were detected from the pressure-sensitive adhesive layer. Further, C 4 H 5 O 2 (M / Z 85) derived from methacrylic polymer was detected from the undercoat layer. In addition, CN (M / Z 26) and CNO (M / Z 42) ions presumed to originate from the amide bond reacted with the oxazoline ring of the crosslinking agent were also detected, and the components as designed could be identified. .

比較例Comparative example

次に、比較例として、実施例4において切削速度を垂直方向に2nm/s、水平方向に1000nm/sに設定した場合の実験結果を図9に示す。かかる切削速度で行なうと、下塗り層(中間層)が露出せずに、界面にむしれが発生し不均一になることが分かった。また、下塗り層相当部分にも粘着剤層由来のピークが検出されている。   Next, as a comparative example, FIG. 9 shows an experimental result when the cutting speed is set to 2 nm / s in the vertical direction and 1000 nm / s in the horizontal direction in Example 4. It was found that when the cutting speed was used, the undercoat layer (intermediate layer) was not exposed, and the interface was peeled off and became non-uniform. Further, a peak derived from the pressure-sensitive adhesive layer is also detected in a portion corresponding to the undercoat layer.

以上のように、本発明の効果を実験的に確認することができた。   As described above, the effect of the present invention could be experimentally confirmed.

薄膜積層材料の前処理装置の構成を示す概略図Schematic showing the configuration of the thin film laminated material pretreatment equipment 切削刃の構成を示す図Diagram showing the configuration of the cutting blade 斜め方向に切削する時のモデル図Model diagram when cutting in an oblique direction PMMAを切削した場合の実験結果を示す図The figure which shows the experimental result at the time of cutting PMMA HC層付き眼鏡レンズを切削した場合の実験結果を示す図The figure which shows the experimental result at the time of cutting spectacle lens with HC layer 積層フィルムを切削した場合の実験結果を示す図The figure which shows the experimental result when the laminated film is cut 積層フィルムの中間層切削前、切削途中、切削後の断面のSEM像を示す図The figure which shows the SEM image of the cross section after the intermediate | middle layer cutting of a laminated | multilayer film, in the middle of cutting, and after cutting 下塗り層付き粘着剤を有する薄膜積層材料の組成分析のデータを示す図The figure which shows the data of the compositional analysis of the thin film laminated material which has the adhesive with undercoat 比較例の実験結果を示す図The figure which shows the experimental result of a comparative example

符号の説明Explanation of symbols

1 切削刃
2 平行圧力検出器
3 連結具
4 垂直圧力検出器
5 連結具
6 第1圧電素子
7 第2圧電素子
10 薄膜積層材料
10a 表面層
10b 中間層
10c 裏面層
DESCRIPTION OF SYMBOLS 1 Cutting blade 2 Parallel pressure detector 3 Connecting tool 4 Vertical pressure detector 5 Connecting tool 6 1st piezoelectric element 7 2nd piezoelectric element 10 Thin film laminated material 10a Surface layer 10b Intermediate | middle layer 10c Back surface layer

Claims (5)

中間層を有する薄膜積層材料の中間層の組成を分析するために、薄膜積層材料を断面方向に切削して中間層を露呈させる薄膜積層材料の前処理方法であって、
薄膜積層材料の表面に対して平行方向と垂直方向に相対的に駆動される切削刃を用いて薄膜積層材料を切削するに際して、垂直方向の切削速度を0.01nm/s以上1nm/s未満になるように設定し、断面を斜め方向に切削することを特徴とする薄膜積層材料の前処理方法。
In order to analyze the composition of the intermediate layer of the thin film laminated material having the intermediate layer, the thin film laminated material is pre-processed by cutting the thin film laminated material in the cross-sectional direction to expose the intermediate layer,
When cutting a thin film laminated material using a cutting blade driven relatively in a direction parallel to and perpendicular to the surface of the thin film laminated material, the cutting speed in the vertical direction is 0.01 nm / s or more and less than 1 nm / s. A thin film laminated material pretreatment method, characterized in that the cross section is cut obliquely.
垂直方向の切削速度を0.6nm/s以下になるように設定した請求項1に記載の薄膜積層材料の前処理方法。   The pretreatment method for a thin film laminated material according to claim 1, wherein the cutting speed in the vertical direction is set to 0.6 nm / s or less. 切削刃による切削方向は、薄膜積層材料の表面に対して0.05゜以上5゜以下になるように設定した請求項1又は2に記載の薄膜積層材料の前処理方法。   The thin film laminated material pretreatment method according to claim 1 or 2, wherein a cutting direction by the cutting blade is set to be 0.05 ° or more and 5 ° or less with respect to a surface of the thin film laminated material. 薄膜積層材料は少なくとも3層以上からなると共に、前記中間層の厚さが10μm以下であることを特徴とする請求項1〜3のいずれか1項に記載の薄膜積層材料の前処理方法。   The thin film laminate material pretreatment method according to any one of claims 1 to 3, wherein the thin film laminate material comprises at least three layers and the intermediate layer has a thickness of 10 µm or less. 請求項1〜4のいずれか1項に記載の薄膜積層材料の前処理方法に用いられる前処理装置であって、
切削刃を薄膜積層材料の表面に対して垂直方向に駆動可能な第1圧電素子と、
前記切削刃を薄膜積層材料の表面に対して平行方向に駆動可能な第2圧電素子と、を備え、
前記切削刃の垂直方向の切削速度を0.01nm/s以上1nm/s未満になるように設定し、薄膜積層材料の断面を斜め方向に切削することを可能にしたことを特徴とする薄膜積層材料の前処理装置。
A pretreatment device used in the thin film laminate material pretreatment method according to any one of claims 1 to 4,
A first piezoelectric element capable of driving the cutting blade in a direction perpendicular to the surface of the thin film laminated material;
A second piezoelectric element capable of driving the cutting blade in a direction parallel to the surface of the thin film laminate material,
A thin film stack characterized in that the cutting speed in the vertical direction of the cutting blade is set to be 0.01 nm / s or more and less than 1 nm / s, and the cross section of the thin film stack material can be cut obliquely. Material pretreatment equipment.
JP2007128232A 2007-05-14 2007-05-14 Thin film laminated material pretreatment method and pretreatment apparatus Active JP4966732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007128232A JP4966732B2 (en) 2007-05-14 2007-05-14 Thin film laminated material pretreatment method and pretreatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007128232A JP4966732B2 (en) 2007-05-14 2007-05-14 Thin film laminated material pretreatment method and pretreatment apparatus

Publications (2)

Publication Number Publication Date
JP2008281528A true JP2008281528A (en) 2008-11-20
JP4966732B2 JP4966732B2 (en) 2012-07-04

Family

ID=40142455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007128232A Active JP4966732B2 (en) 2007-05-14 2007-05-14 Thin film laminated material pretreatment method and pretreatment apparatus

Country Status (1)

Country Link
JP (1) JP4966732B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015143688A (en) * 2014-01-30 2015-08-06 エフ・イ−・アイ・カンパニー Surface delayering using programmed manipulator
CN105823658A (en) * 2015-01-07 2016-08-03 宝山钢铁股份有限公司 Method for preparing slice sample used for observing surface film cross section of laminated steel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003254894A (en) * 2001-12-26 2003-09-10 Daipura Uintesu Kk Apparatus for measuring bond strength and shearing strength of coating film
JP2004219261A (en) * 2003-01-15 2004-08-05 Fuji Photo Film Co Ltd Method of analyzing thin film
JP2005127938A (en) * 2003-10-27 2005-05-19 National Printing Bureau Method for obtaining cut face information of sample
JP2005321312A (en) * 2004-05-10 2005-11-17 Nec Electronics Corp Acid diffusion constant measuring method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003254894A (en) * 2001-12-26 2003-09-10 Daipura Uintesu Kk Apparatus for measuring bond strength and shearing strength of coating film
JP2004219261A (en) * 2003-01-15 2004-08-05 Fuji Photo Film Co Ltd Method of analyzing thin film
JP2005127938A (en) * 2003-10-27 2005-05-19 National Printing Bureau Method for obtaining cut face information of sample
JP2005321312A (en) * 2004-05-10 2005-11-17 Nec Electronics Corp Acid diffusion constant measuring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015143688A (en) * 2014-01-30 2015-08-06 エフ・イ−・アイ・カンパニー Surface delayering using programmed manipulator
CN105823658A (en) * 2015-01-07 2016-08-03 宝山钢铁股份有限公司 Method for preparing slice sample used for observing surface film cross section of laminated steel

Also Published As

Publication number Publication date
JP4966732B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
Bull et al. An overview of the potential of quantitative coating adhesion measurement by scratch testing
Othman et al. Evaluation techniques and improvements of adhesion strength for TiN coating in tool applications: a review
US6502455B1 (en) Microscratch test indenter and method of microscratch testing
Ha et al. Highly flexible cover window using ultra-thin glass for foldable displays
JP4966732B2 (en) Thin film laminated material pretreatment method and pretreatment apparatus
Hohlfelder Bulge and blister testing of thin films and their interfaces
US20170073550A1 (en) Pressure sensitive adhesive tape with microstructured elastomeric core
JP2006284453A (en) Adhesiveness evaluation method for thin film
Boddaert et al. Organic ultrathin film adhesion on compliant substrate using scratch test technique
Wirasate et al. Effect of adhesion, film thickness, and substrate hardness on the scratch behavior of poly (carbonate) films
Overman et al. Yield and deformation in biaxially stressed multilayer metallic thin films
Kawashita et al. Analysis of peel arm curvature for the determination of fracture toughness in metal-polymer laminates
Xie et al. Measuring the adhesion of sol–gel derived coatings to a ductile substrate by an indentation-based method
Kushendarsyah et al. Orthogonal microcutting of thin workpieces
JP5335343B2 (en) Method for analyzing deposits
JPH11173973A (en) Measuring method for adhesion force of thin film
JP2009115626A (en) Method for evaluating strength of thin film
JP5414585B2 (en) Thin film peeling evaluation system
JP2011075286A (en) Method and device for measuring surface adhesion strength
JP5659665B2 (en) Adhesion strength evaluation method
Omiya et al. Evaluation of the interfacial strength of layered structures by indentation method
Witkowski et al. Surface micro treatment of INCONEL 718 alloys with a picoseconds laser to increase adhesive strength in glued joints
JP2012202878A (en) Adhesion strength evaluation method of laminates and adhesion strength evaluation apparatus
JP2006250590A (en) Whisker measurement sheet, measuring device using the same, and measurement method of whisker
Noori ASSESSMENT OF INTERFACIAL ADHESION IN POLYMER LAMINATED SHEET METALS

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100203

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120402

R150 Certificate of patent or registration of utility model

Ref document number: 4966732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250