JPH0353016A - Method for measuring depth of decarburized layer of steel products - Google Patents

Method for measuring depth of decarburized layer of steel products

Info

Publication number
JPH0353016A
JPH0353016A JP18437089A JP18437089A JPH0353016A JP H0353016 A JPH0353016 A JP H0353016A JP 18437089 A JP18437089 A JP 18437089A JP 18437089 A JP18437089 A JP 18437089A JP H0353016 A JPH0353016 A JP H0353016A
Authority
JP
Japan
Prior art keywords
depth
decarburized layer
carbon
glow discharge
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18437089A
Other languages
Japanese (ja)
Inventor
Takashi Nishimura
隆 西村
Hiroyasu Satou
佐藤 広育
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP18437089A priority Critical patent/JPH0353016A/en
Publication of JPH0353016A publication Critical patent/JPH0353016A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

PURPOSE:To easily and accurately measure the depth of the decarburized layer of steel products by diagonally grinding the surface layer part of the steel products, detecting the carbon concn. of the ground surface by a glow discharge spectrochemical analysis and converting the detected concn. to the carbon concn. distribution in the thickness direction. CONSTITUTION:The surface layer part of a specimen material 10 of the steel products subjected to a decarburization treatment is diagonally ground over a depth d and a length L. This ground surface is then subjected to the glow discharge spectrochemical analysis, by which the carbon concn. of the ground surface is detected. The length l at which the carbon concn. changes to the specified value equal to the base iron is determined from the carbon concn. distribution curve of the ground surface obtd. in such a manner. The depth d0 of the decarburized layer is then determined from equation: d0=l.(d/L).

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、簡便な手順で鋼材の脱炭層深さの評価を行う
のに好適な、鋼材の脱炭層深さ測定方法に関する.
The present invention relates to a method for measuring the depth of a decarburized layer of a steel material, which is suitable for evaluating the depth of a decarburized layer of a steel material using a simple procedure.

【従来の技術】[Conventional technology]

然間圧延、熱間鍛遣あるいは熱処理等によって高温で処
理した鋼材表層の脱炭は避け難い.脱炭した表層は、熱
処理しても所定の硬さにならず疲れ強さが低下し、耐摩
耗性も悪い.従って、鋼材を高温で処理する場合はでき
るだけ脱炭しないように注意が払われている. そこで、鋼製品、特に機械部品の脱炭N深さを測定する
ことは重要なことである。従来、この脱炭層は、顕g&
鏡による組織試験、硬さ試験、あるいは、化学分析試験
等により測定されていた.顕微鏡組織試験による測定方
法においては、JIs  G  0558に示されてい
るように、まず、鯛材の試験片を切断し、その切断面を
エッチングにより腐蝕して組織を出す.次いで、顕微鏡
を介して当該ffl織を目視により[察し、鋼中の7エ
ラ7イト、バーライトの面積率から炭素濃度を求め、脱
炭層深さを測定する.しかしながら、この測定方法は、
目視による官能検査であり、その測定値に個人差が生じ
るため、精度上問題がある.又、炭素の濃度が0.8%
を超えた過共折鋼については、試料断面の全面がパーラ
イトに変化し、フエライトの部分がないため、脱炭層深
さの測定が困難である. 又、硬さ試験による測定方法においては、まず、試験片
をその表面に垂直に切断し、その切断面を研磨して被研
面とする.次いで、被研面についてビツカース硬さ試験
を行い、表面から生地の硬さが得られる位置までの深さ
を測定し、脱炭層深さを求める.しかしながら、この測
定方法においては、測定対象材が、主に、焼入や焼戻し
状態の鋼等、限定されたものである.又、硬さ試験を行
う際の測定ピッチには圧痕サイズによる制約があり、深
さ方向の測定精度が不十分となる場合がある.又、化学
分析による測定方法においては、試料表面の不純物を除
去した後、試料表面から順次、できるだけ薄く、等間隔
にサンプルを採取して当該サンプルから正確な炭素量推
移曲線を求め、脱炭層厚さを測定する.しかしながら、
この方法では、f!薄層のサンプリングは困難であるこ
とから、あまり薄い脱炭層深さを測定することができず
、測定限界がある. なお、電子ブローブマイクロアナライザー(EPMA)
をコンピュータと結合して制御し、多数点の元素の特性
X線を二次元に採取し、画(i解析を行い元素分布状態
を把握するシステムが採用されるようになっている.こ
のシステムにより鋼材中の炭素の分布を知り脱炭層深さ
を知ることが考えられる.しかしながら、このシステム
においては、電子プローブによる走査や各種演算等複雑
な手順を必要とするため、試験処理の迅速性に欠けるも
のである.
Decarburization of the surface layer of steel products treated at high temperatures through rolling, hot forging, heat treatment, etc. is unavoidable. The decarburized surface layer does not reach the desired hardness even after heat treatment, resulting in lower fatigue strength and poor wear resistance. Therefore, when treating steel materials at high temperatures, care is taken to prevent decarburization as much as possible. Therefore, it is important to measure the decarburization N depth of steel products, especially mechanical parts. Conventionally, this decarburized layer is
It was measured by microstructural examination using a mirror, hardness test, or chemical analysis test. In the measurement method using a microscopic structure test, as shown in JIs G 0558, a test piece of sea bream material is first cut, and the cut surface is etched to expose the structure. Next, the ffl weave is visually observed through a microscope, and the carbon concentration is determined from the area ratio of 7ela 7ite and barite in the steel, and the depth of the decarburized layer is measured. However, this measurement method
This is a visual sensory test, and the measurement values vary from person to person, so there is a problem with accuracy. Also, the carbon concentration is 0.8%
For hypereutectic steels that exceed 100%, the entire cross section of the sample changes to pearlite and there is no ferrite, making it difficult to measure the depth of the decarburized layer. In addition, in the measurement method using a hardness test, first, the test piece is cut perpendicular to its surface, and the cut surface is polished to serve as the surface to be polished. Next, conduct a Bitkers hardness test on the surface to be polished, measure the depth from the surface to the point where the hardness of the material is obtained, and determine the depth of the decarburized layer. However, in this measurement method, the materials to be measured are limited, mainly steel in the quenched or tempered state. Additionally, the measurement pitch when performing hardness tests is limited by the size of the indentation, which may result in insufficient measurement accuracy in the depth direction. In addition, in the measurement method using chemical analysis, after removing impurities from the sample surface, samples are taken from the sample surface as thinly as possible and at equal intervals, and an accurate carbon content transition curve is determined from the sample to determine the decarburized layer thickness. Measure the quality. however,
In this method, f! Because it is difficult to sample thin layers, it is not possible to measure the depth of very thin decarburized layers, and there is a measurement limit. In addition, electronic probe microanalyzer (EPMA)
A system is now being adopted that connects and controls the element with a computer, collects characteristic X-rays of elements at multiple points in two dimensions, and performs image (i) analysis to understand the element distribution state. It is possible to know the depth of the decarburized layer by knowing the distribution of carbon in the steel material.However, this system requires complex procedures such as scanning with an electronic probe and various calculations, so the testing process lacks speed. It is something.

【発明が解決しようとする課題】[Problem to be solved by the invention]

以上のように、従来は、鋼材の脱炭層深さを、簡易的な
手順で精度良く測定可能な技術がないという問題点があ
った. 本発明は、前記従来の問題点を解消するべくなされたも
ので、簡易的な手順により鋼材の脱炭層深さを精度良く
測定することができる鋼材の脱炭層深さ測定方法を提供
することを課題とする.
As mentioned above, there was a problem in the past that there was no technology that could accurately measure the depth of the decarburized layer of steel materials using a simple procedure. The present invention has been made in order to solve the above-mentioned conventional problems, and it is an object of the present invention to provide a method for measuring the depth of a decarburized layer of a steel material, which can accurately measure the depth of a decarburized layer of a steel material using a simple procedure. This is a topic.

【課題を達戒するための手段】[Means to accomplish the task]

本発明は、鋼材の脱炭層の深さを測定する際に、鋼材の
表層部を斜め研削し、当該研削面をグロー放電分光分析
して研削面の炭素濃度を検出し、検出された研削面の炭
素濃度分布を鋼材表面からの深さ方向の炭素濃度分布に
換算して、脱炭層の深さを求めることにより、前記課題
を達或したものである.
When measuring the depth of the decarburized layer of a steel material, the present invention obliquely grinds the surface layer of the steel material, performs glow discharge spectroscopy analysis on the ground surface to detect the carbon concentration of the ground surface, and detects the carbon concentration of the ground surface. The above problem was achieved by converting the carbon concentration distribution in the depth direction from the steel surface to determine the depth of the decarburized layer.

【作用】[Effect]

鋼材の脱炭層深さを測定する方法には前記のJIS  
G0558等種々のものがあるが、発明者らはそれら方
法によらず、グロー放電分光分析法により脱炭層深さを
測定することを着想した,グロー放電分光分析法は、一
般的に、メッキ層の深さ方向の連続分析に適用されてい
る.この分析法でメッキ層を深さ方向に垂直分析する際
に連続分析が可能な深さは、最大100μm程度である
.従って、脱炭層深さの測定に適用するには測定深さが
不足する場合がある. そこで、発明者らは種々検討を行った結果、第1図に斜
線で示すように、供試材10の表層部を斜め研削すれば
、深さ方向の長さdを長手方向の長さしに置換し、脱炭
層深さdOを拡大して把握できることを見出した.例え
ば供試材が棒鋼である場合には斜め研削は第2図(A)
に示すように行い、供試材が厚鋼板である場合には第2
図(B)に示すように行う. この斜め切削された研削面をグロー放電分光分析して炭
素の濃度を検出し、検出炭素濃度の分布を求める.この
炭素濃度の分布は、深さ方向の炭素濃度分布を長手方向
の分布に変換したものであるから、逆に深さ方向に変換
すればその濃度分布から脱炭層の深さが求められる.又
、脱炭層は、表面からの深さによって炭素濃度が変化し
ている層であり、一方、地鉄では炭素濃度が一定となる
ことから、炭素濃度の一定となる位置が脱炭層深さに相
当し、炭素濃度から脱炭層深さを知ることができる.例
えば検出された炭素含有Ji(炭素濃度に相当)が第1
図のように分布する場合、炭素含有量の変化する℃の部
分が脱炭層に相当し、脱炭層深さdOは次式(1)から
求められる.do=1・(d/L)        ・
・・(1)以上のような知見に基づき本発明は創案され
たものである.本発明においては、前述のEPMAのよ
うに供試片を鏡面研磨するまでの手順を必要とせずに、
単に表層部を斜め切削し電極でグロー放電分光分析して
測定できるため、PJj便な手順で脱炭N深さを定量的
に測定することが可能となる.又、その測定精度も前記
顕微鏡による測定方法等と比較して過共析鋼に対しても
困難性なく測定できるため、測定精度は高い. な゛お、前記のようにグロー放電分光分析する際に使用
する放電To [iの大きさ及び斜め研削の角度か測定
精度に影響を及ぼすため、それらに適切なものを選ぶ必
要がある.そこで、発明者らは、第3図に示すような棒
鋼端部を種々の角度で斜め研削し、種々の直径Dの電極
を用いて分析する際に、当該電極の直径Dが供試材10
の深さ方向にはどのくらいの深さΔdに相当するか調査
した.調査の結果を第4図に示す.この深さΔdが分析
の精度となるため、所望される精度に応じた直径の電極
を使用し、あるいは、研削面の角度を選ぶ.前記の電極
で研削面をグロー放電分光分析し、その測定対象点を適
切なピッチで移動させて炭素Cの濃度が一定となる位置
をみつけ、当該位置を前記(1)式で表面からの深さに
換算して脱炭層深さを求めることができる.
The above-mentioned JIS method is used to measure the depth of the decarburized layer of steel materials.
There are various methods such as G0558, but the inventors came up with the idea of measuring the depth of the decarburized layer by glow discharge spectroscopy, regardless of these methods.Glow discharge spectroscopy generally measures the depth of the decarburized layer. It has been applied to continuous analysis in the depth direction. When vertically analyzing the plating layer in the depth direction using this analysis method, the maximum depth at which continuous analysis can be performed is approximately 100 μm. Therefore, the measurement depth may be insufficient for application to measuring the depth of the decarburized layer. Therefore, as a result of various studies, the inventors found that by diagonally grinding the surface layer of the sample material 10, the length d in the depth direction can be reduced to the length in the longitudinal direction, as shown by diagonal lines in FIG. It was found that the decarburized layer depth dO can be enlarged and understood by replacing it with . For example, if the specimen material is a steel bar, diagonal grinding is shown in Figure 2 (A).
If the test material is a thick steel plate, the second
Perform as shown in Figure (B). The diagonally cut ground surface is analyzed by glow discharge spectroscopy to detect the carbon concentration, and the distribution of the detected carbon concentration is determined. This carbon concentration distribution is obtained by converting the carbon concentration distribution in the depth direction to the distribution in the longitudinal direction, so by converting it in the depth direction, the depth of the decarburized layer can be determined from the concentration distribution. In addition, the decarburized layer is a layer in which the carbon concentration changes depending on the depth from the surface.On the other hand, since the carbon concentration is constant in sub-steel, the position where the carbon concentration is constant is at the depth of the decarburized layer. Correspondingly, the depth of the decarburized layer can be determined from the carbon concentration. For example, the detected carbon-containing Ji (corresponding to carbon concentration) is the first
When the distribution is as shown in the figure, the portion at °C where the carbon content changes corresponds to the decarburized layer, and the decarburized layer depth dO is determined from the following equation (1). do=1・(d/L)・
...(1) The present invention was created based on the above findings. In the present invention, unlike the above-mentioned EPMA, there is no need for the procedure of mirror polishing the specimen, and
Since it can be measured simply by diagonally cutting the surface layer and performing glow discharge spectroscopy with an electrode, it becomes possible to quantitatively measure the decarburized N depth using a convenient procedure for PJJ. In addition, the measurement accuracy is high because it can measure hypereutectoid steel without difficulty compared to the above-mentioned measurement method using a microscope. Note that, as mentioned above, the size of the discharge To[i and the angle of oblique grinding used in glow discharge spectroscopic analysis affect the measurement accuracy, so it is necessary to select the appropriate one. Therefore, the inventors obliquely ground the ends of the steel bars at various angles as shown in FIG. 3, and analyzed them using electrodes of various diameters D.
We investigated how much depth Δd corresponds to in the depth direction. The results of the survey are shown in Figure 4. This depth Δd determines the accuracy of the analysis, so use an electrode with a diameter or choose the angle of the grinding surface depending on the desired accuracy. Glow discharge spectroscopy analysis is performed on the ground surface using the above electrode, and the point to be measured is moved at an appropriate pitch to find a position where the concentration of carbon C is constant. The depth of the decarburized layer can be determined by converting it to .

【実施例】【Example】

以下、図面を参照して本発明の実施例を説明する. この実施例は、第5図に示すようなグロー放亀分光分析
装置12で、第2[J(A)に示す棒鋼の供試材10を
分析し、その結果から脱炭層深さを測定するものである
. 第5図のグロー放電分光分析装置12は、グロー発光部
14と、分光部16と、測光部18と、分析データ処理
部20とで主に構成される.前記グロー発光部14には
、供試材10の試料24をグロー放電させるためのグロ
ー電極15が設けられており、当該グロー電極15、試
料24間には、直流電源22から電源が供給される.こ
のグロ一発光部l4でのグロー放電で試料24から生じ
たグロー光は、前記分光部16に入射する.前記分光部
16は、入射したグロー光をスリット光とする入口スリ
ット26と、当該スリット光を元素毎に分光するための
回折格子28、分光されたグロー光(スペクトル)をス
リット光とするための出口スリット30、当該各スリッ
ト光の光量(以下、スペクトル強度という)を検出する
ための各光電子増倍管32を有する.なお、この分光部
16には、その内部を所定の真空度に保つための真空ボ
ンプ34が設けられている.前記測光部■8には、各光
電子増倍管32の測定感反を設定するためのアツテネー
タ35と、各光電子増倍管32の出力信号をミラー積分
回路により積分する積分回fI436と、積分されて得
られたスペクトル強度データをデジタルデータに変換す
るA/D変換器38と、インターフエイス42を介し、
分析条件や測定グループに応じてアツテネータ35を設
定するためのマイクロコンピュータ40と、変換された
スペクトル強度データを外部へ出力等するためのインタ
ーフエイス42とを有する. 前記データ処理部20は、出力されたスペクトル強度デ
ータを、予め与えられた検量線を用いて処理し、例えば
炭素含有量(炭素濃度に相当〉を求めるものである.こ
のデータ処理部20には、その処理されたデータをCR
T(陰極線管)やプリンターで表示するディスプレイ4
4が設けられている。 前記供試材10の試料24は、第6図に示すような治具
50で、電極15の移動方向と平行に研削面が向くよう
に保持される.この治具により、グロー電極を研削面に
対して精度良く水平に走査させることができる. 前記グロー放電分光分析装置12で試料24の分析を行
う際には、まず、グロー発光部14において試料24表
面からグロー放電させる.グロー放電光は分光器16内
に入射し、入口スリット26を介して回折格子28に照
射される.該回折格予28は、グロー放電光を分光し、
各出口スリット30に照射する.該出口スリット30は
照射光をスリット光にして光電子増fB g3 2に入
射する.光電子増倍管32は入射光から、各分光のスペ
クトル強度を電気信号に変換し、積分器36に入力する
.積分器36は、入力信号を積分してスペクトル強度の
データとし、A/D変換器38に伝達する,A/D変換
器38は、伝達データをデジタル処理し、インターフエ
イス40を介してデータ処理部20に入力する.該デー
タ処理部20は、入力データから元素の定量を行い各元
素の含有量をデスブレイ44に表示する. 従って、前記電極15を試料24の研削面上を水平に走
査させることにより、研削面の炭素含有量の分布を、例
えば前出第1図のように求める.この分布において、炭
素含有量が一定となる位置及び前出(1)式から脱炭層
深さを測定する.次に、鋼材について本発明法により脱
炭層深さを設定した例を説明する.この場合、測定対象
となった鋼材は、その断面組織が写真(1)、写真(2
)となる2つのものについて行った.各鋼材の試料1、
2は、前出第2図<A)に示すような棒鋼であり、その
直径が501のものである.又、この試料1、2を長手
方向長さしが1001となり、深さ方向高さdが1.0
1となるように斜め研削した.更に、グロー放電させる
電極の直径は1■であった. 前記試料1、試料2を前記条件でグロー放電分光分析し
た結果を第7図<A)、(B)に示す.第7図(A>に
示すように試料1においては表面から深さ0.41にか
けて次第に炭素Cの含有量(濃度)が増えていき、0.
41を超えたところで平坦となった。従って、この試料
1においては脱炭層深さは表面から0.4nl′Nと判
別できる.又、第7図(B)に示すように、試料2にお
いては、炭素Cの含有量(濃度)は、試料の表面から深
さ0.31を超える位置まで徐々に増えており、0.:
Inを超えてから平坦となった.従って、試料2におけ
る脱炭層深さはQ.3nunと判別される。 この測定例から本発明により精度良く脱炭層深さを測定
できることが理解される. なお、この分析においては、第7図(A)、(B)に示
すように他の成分の含有量も同時に検出でき、そのデー
タを有効に利用できる.
Embodiments of the present invention will be described below with reference to the drawings. In this example, a steel bar specimen 10 shown in No. 2 [J(A)] is analyzed using a glow random spectrometer 12 as shown in FIG. 5, and the depth of the decarburized layer is measured from the result. It is something. The glow discharge spectrometer 12 shown in FIG. 5 mainly includes a glow emission section 14, a spectroscopic section 16, a photometry section 18, and an analytical data processing section 20. The glow emitting section 14 is provided with a glow electrode 15 for causing the sample 24 of the test material 10 to glow discharge, and power is supplied between the glow electrode 15 and the sample 24 from a DC power source 22. .. The glow light generated from the sample 24 by the glow discharge in the glow light emitting section l4 enters the spectroscopic section 16. The spectroscopic section 16 includes an entrance slit 26 that converts the incident glow light into slit light, a diffraction grating 28 that separates the slit light into elements, and a diffraction grating 28 that converts the separated glow light (spectrum) into slit light. It has an exit slit 30 and each photomultiplier tube 32 for detecting the light intensity (hereinafter referred to as spectral intensity) of each slit light. Note that this spectroscopic section 16 is provided with a vacuum pump 34 for maintaining its interior at a predetermined degree of vacuum. The photometry section 8 includes an attenuator 35 for setting the measurement response of each photomultiplier tube 32, an integration circuit fI436 for integrating the output signal of each photomultiplier tube 32 by a mirror integration circuit, and via an A/D converter 38 that converts the obtained spectral intensity data into digital data, and an interface 42,
It has a microcomputer 40 for setting the attenuator 35 according to analysis conditions and measurement groups, and an interface 42 for outputting converted spectral intensity data to the outside. The data processing unit 20 processes the output spectral intensity data using a pre-given calibration curve to determine, for example, carbon content (corresponding to carbon concentration). , CR the processed data
Display 4 displayed on T (cathode ray tube) or printer
4 is provided. The sample 24 of the test material 10 is held with a jig 50 as shown in FIG. 6 so that the ground surface faces parallel to the direction of movement of the electrode 15. This jig allows the glow electrode to be scanned horizontally across the grinding surface with high accuracy. When analyzing the sample 24 with the glow discharge spectrometer 12, first, a glow discharge is caused from the surface of the sample 24 in the glow emitting section 14. The glow discharge light enters the spectroscope 16 and is irradiated onto the diffraction grating 28 through the entrance slit 26. The diffraction grating 28 separates the glow discharge light,
Irradiate each exit slit 30. The exit slit 30 converts the irradiated light into slit light and enters the photoelectron intensifier fB g3 2. The photomultiplier tube 32 converts the spectral intensity of each spectral beam from the incident light into an electrical signal, and inputs the electrical signal to the integrator 36. The integrator 36 integrates the input signal to obtain spectral intensity data and transmits it to the A/D converter 38. The A/D converter 38 digitally processes the transmitted data and performs data processing via the interface 40. Enter the information in section 20. The data processing unit 20 quantifies elements from the input data and displays the content of each element on the display screen 44. Therefore, by horizontally scanning the ground surface of the sample 24 with the electrode 15, the distribution of carbon content on the ground surface is determined, for example, as shown in FIG. 1 above. In this distribution, the depth of the decarburized layer is measured from the position where the carbon content is constant and the equation (1) above. Next, an example of setting the decarburization layer depth for steel materials using the method of the present invention will be explained. In this case, the cross-sectional structure of the steel material to be measured is photo (1) and photo (2).
). Sample 1 of each steel material,
2 is a steel bar as shown in Figure 2 <A) above, and its diameter is 501 mm. Also, the length in the longitudinal direction of these samples 1 and 2 is 1001, and the height d in the depth direction is 1.0.
It was diagonally ground so that it was 1. Furthermore, the diameter of the electrode used for glow discharge was 1 inch. The results of glow discharge spectroscopic analysis of Sample 1 and Sample 2 under the above conditions are shown in Figures 7A and 7B. As shown in FIG. 7 (A>), in sample 1, the content (concentration) of carbon C gradually increases from the surface to a depth of 0.41 mm, and the content (concentration) of carbon C gradually increases from the surface to a depth of 0.41 mm.
It became flat when it exceeded 41. Therefore, in this sample 1, the depth of the decarburized layer can be determined to be 0.4nl'N from the surface. Further, as shown in FIG. 7(B), in sample 2, the content (concentration) of carbon C gradually increases from the surface of the sample to a position exceeding a depth of 0.31 mm. :
It became flat after exceeding In. Therefore, the depth of the decarburized layer in sample 2 is Q. It is determined that the number is 3nun. From this measurement example, it is understood that the depth of the decarburized layer can be measured with high accuracy by the present invention. In addition, in this analysis, the contents of other components can be detected at the same time as shown in FIGS. 7(A) and (B), and the data can be used effectively.

【発明の効果】【Effect of the invention】

以上説明した通り、本発明によれば、簡易な手順で鋼材
の脱炭N深さを定量的に精度良く測定することができる
という漫れた効果が得られる.
As explained above, according to the present invention, the extensive effect of being able to quantitatively and accurately measure the decarburization N depth of steel materials with a simple procedure can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の原理を説明するための脱炭NJ深さ
の求め方を示す、一部線図を含む断面図、第2図(A)
、(B)は、同じく、脱炭層深さ測定のための供試材加
工例を示す要部斜視図、第3図は、試料片の研削角度と
使用電極径の測定精度に対する影響を説明するための測
面図、第4図は、同じく、線図、 第5図は、本発明の実施例に係るグロー放電分光分析装
置の構成を示す、一部ブロック図を含む配置図、 第6図は、前記装置で用いる試料保持具による保持状態
を示す測面図、 第7図(A)、(B)は、本発明を採用して、鋼材をグ
ロー放電分光分析し脱炭層深さを測定した例を示す線図
である. O・・・供試材、 2・・・グロー放電分光分析装置、 4・・・グロ一発光部、 5・・・電極、 6・・・分光部、 8・・・測光部、 0・・・データ処理部、 4・・・試料、 8・・・回折格子、 2・・・光電子増倍管.
Fig. 1 is a sectional view including a partial line diagram showing how to determine the decarburization NJ depth for explaining the principle of the present invention, and Fig. 2 (A)
, (B) is a perspective view of the main part showing an example of processing the sample material for measuring the depth of the decarburized layer, and Fig. 3 illustrates the influence of the grinding angle of the sample piece and the diameter of the electrode used on the measurement accuracy. FIG. 4 is a line diagram; FIG. 5 is a layout diagram including a partial block diagram showing the configuration of a glow discharge spectrometer according to an embodiment of the present invention; FIG. 7(A) and 7(B) are surface views showing the state of holding by the sample holder used in the device; FIGS. 7(A) and 7(B) show the depth of the decarburized layer by glow discharge spectroscopic analysis of steel using the present invention. This is a diagram showing an example. O... Test material, 2... Glow discharge spectrometer, 4... Glow-emitting part, 5... Electrode, 6... Spectroscopic part, 8... Photometry part, 0...・Data processing unit, 4...sample, 8...diffraction grating, 2...photomultiplier tube.

Claims (1)

【特許請求の範囲】[Claims] (1)鋼材の脱炭層の深さを測定する際に、鋼材の表層
部を斜め研削し、 当該研削面をグロー放電分光分析して研削面の炭素濃度
を検出し、 検出された研削面の炭素濃度分布を鋼材表面からの深さ
方向の炭素濃度分布に換算して、脱炭層の深さを求める
ことを特徴とする鋼材の脱炭層深さ測定方法。
(1) When measuring the depth of the decarburized layer of a steel material, the surface layer of the steel material is obliquely ground, and the ground surface is analyzed by glow discharge spectroscopy to detect the carbon concentration of the ground surface. A method for measuring the depth of a decarburized layer in a steel material, the method comprising determining the depth of the decarburized layer by converting a carbon concentration distribution into a carbon concentration distribution in the depth direction from the surface of the steel material.
JP18437089A 1989-07-17 1989-07-17 Method for measuring depth of decarburized layer of steel products Pending JPH0353016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18437089A JPH0353016A (en) 1989-07-17 1989-07-17 Method for measuring depth of decarburized layer of steel products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18437089A JPH0353016A (en) 1989-07-17 1989-07-17 Method for measuring depth of decarburized layer of steel products

Publications (1)

Publication Number Publication Date
JPH0353016A true JPH0353016A (en) 1991-03-07

Family

ID=16152033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18437089A Pending JPH0353016A (en) 1989-07-17 1989-07-17 Method for measuring depth of decarburized layer of steel products

Country Status (1)

Country Link
JP (1) JPH0353016A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05269377A (en) * 1992-10-23 1993-10-19 Dow Chem Co:The Method for absorbing water of ph hot more than 4
JP2007256256A (en) * 2006-02-23 2007-10-04 Nippon Steel Corp Method of evaluating thickness-directional component concentration of metal sample by spark discharge emission spectrophotometric analysis

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05269377A (en) * 1992-10-23 1993-10-19 Dow Chem Co:The Method for absorbing water of ph hot more than 4
JP2007256256A (en) * 2006-02-23 2007-10-04 Nippon Steel Corp Method of evaluating thickness-directional component concentration of metal sample by spark discharge emission spectrophotometric analysis
JP4762852B2 (en) * 2006-02-23 2011-08-31 新日本製鐵株式会社 Method for evaluating the concentration of components in the thickness direction of metal samples by spark discharge emission spectrometry

Similar Documents

Publication Publication Date Title
KR960006366B1 (en) Metals assay apparatus and method
US6631177B1 (en) Device for measurement of metal sheet thickness and clad layer thickness and method of use thereof
US10024802B2 (en) Method for laser-induced breakdown spectroscopy and calibration
JPS6337224A (en) Fluorescent spectrophotometer
JPH0353016A (en) Method for measuring depth of decarburized layer of steel products
EP1355145A1 (en) A method for analysing metals in the fundamental state utilizing the statistical distribution of elements
EP0204855A1 (en) Method and apparatus for state analysis
CN107004556A (en) Trace carbon quantitative analysis device and trace carbon quantitative analysis method
JPH0247542A (en) Quantitative analysis using x-ray spectroscope
JP3671600B2 (en) Method for measuring particle size distribution of oxide inclusions in metals
JP3950642B2 (en) X-ray analyzer with electronic excitation
JP2978089B2 (en) Particle size distribution measurement method for inclusions in metal
JP4496888B2 (en) Machine side analysis method by laser emission spectroscopy
JPH11352061A (en) Method for analyzing surface layer by emission spectrochemical analysis
JP3458538B2 (en) X-ray fluorescence analyzer
JPH11160239A (en) Quantitative determination method for very small inclusion in iron and steel
KR0172623B1 (en) Method and apparatus for analyzing contaminative element concentrations
JP2004109068A (en) Movable metal material flaw type discrimination device
JP2000199749A (en) Fluorescence x-ray spectrometer
JPH0961357A (en) Method for quantitatively determining minute nonmetal inclusion by emission spectro analysis
SU868503A1 (en) X-ray spectrometer
JPH0943150A (en) Method for measuring composition and particle size distribution of inclusion of metal
JPS63223548A (en) Non-destructive inspecting instrument
JPH0348751A (en) Method for evaluating composition of inclusion by emission spectrochemical analysis
JPH0348752A (en) Method for quantitative evaluation of segregation by glow discharge spectrochemical analysis