JPH11352061A - Method for analyzing surface layer by emission spectrochemical analysis - Google Patents

Method for analyzing surface layer by emission spectrochemical analysis

Info

Publication number
JPH11352061A
JPH11352061A JP15628798A JP15628798A JPH11352061A JP H11352061 A JPH11352061 A JP H11352061A JP 15628798 A JP15628798 A JP 15628798A JP 15628798 A JP15628798 A JP 15628798A JP H11352061 A JPH11352061 A JP H11352061A
Authority
JP
Japan
Prior art keywords
sample
depth
relationship
discharge
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15628798A
Other languages
Japanese (ja)
Inventor
Wataru Nagasawa
度 長沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP15628798A priority Critical patent/JPH11352061A/en
Publication of JPH11352061A publication Critical patent/JPH11352061A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PROBLEM TO BE SOLVED: To simply and accurately measure a surface layer, for example, the depth of a decarburized layer, the thickness of a coat, etc., by measuring the intensity of the emitted light of a specific wavelength continuously by an emission spectrochemical analysis, and comparing the relationship between the elapsed time of a discharge time and an element concentration corresponding to the measured intensity with a relationship between a cut depth and a discharge time obtained beforehand. SOLUTION: High energy discharging is conducted for a predetermined time to the surface of an iron steel sample 1 consisting essentially of the same chemical component as a sample, and a relationship between a cut depth H and a discharge time is obtained. Since the surface cut by the discharge is largest at a part immediately below an electrode 2, and an emission intensity is largest at the part, the cut depth H is measured at the part immediately below the electrode 2. A light emitted from the sample with a known carbon concentration as a result of the discharging is divided by a spectroscope 3, thereby obtaining a spectral emission intensity. The carbon concentration is related to the detected intensity. The relationship between the discharge time and the cut depth H, and a relation formula between the detected intensity and the carbon concentration are set to an analyzer. While the sample to be analyzed is subjected to predetermined high-energy discharging under the same conditions, the detected intensity is measured for each predetermined time unit, so that the carbon concentration is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鉄鋼試料に形成さ
れた脱炭層や改質膜など表層についての特定元素の分布
状態を、発光分光分析によって簡便に分析する方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for easily analyzing the distribution state of a specific element on a surface layer such as a decarburized layer or a modified film formed on a steel sample by emission spectroscopy.

【0002】[0002]

【従来の技術】熱間圧延、熱間鍛造あるいは熱処理等の
高温で処理した鋼材においては、表層の脱炭は避け難
い。脱炭した表面は、炭素濃度が低下しているので焼入
れ軟化状態となり熱処理を施しても所定の硬さにならず
疲れ強さが低下して、耐摩耗性も悪い。従って、鋼材を
高温で処理する場合は、できるだけ脱炭しないように注
意が払われている。
2. Description of the Related Art Decarburization of the surface layer is inevitable for steel materials which have been processed at a high temperature such as hot rolling, hot forging or heat treatment. The decarburized surface has a reduced carbon concentration and thus becomes a quenched and softened state, and does not have a predetermined hardness even when subjected to a heat treatment, resulting in reduced fatigue strength and poor wear resistance. Therefore, when treating steel at high temperatures, care is taken to minimize decarburization.

【0003】また、機械部品の耐摩耗性や防食性を向上
させる目的で、浸炭処理や浸炭窒化処理等により機械部
品の表面に浸炭層等が形成されたり、機械部品の表面に
改質皮膜処理が行われる。そして、導入される炭素量等
や、皮膜の成分及び膜厚は、要求される機械的特性によ
って異なり、この炭素量や膜厚などが要求通りになって
いるかどうかは非常に重要である。
In order to improve the wear resistance and corrosion resistance of machine parts, a carburized layer or the like is formed on the surface of the machine parts by carburizing or carbonitriding, or a modified coating is formed on the surface of the machine parts. Is performed. The amount of carbon to be introduced and the composition and thickness of the film differ depending on the required mechanical properties, and it is very important whether the amount of carbon and the thickness of the film are as required.

【0004】このため、製品表面に形成された脱炭層の
深さや炭素量の勾配、膜厚や膜内の主要元素の濃度分布
等が、要求通りになっているかどうか、試料を分析する
ことによって確認することが従来から行われている。
[0004] Therefore, it is necessary to analyze the sample to determine whether the depth of the decarburized layer formed on the product surface, the gradient of the amount of carbon, the film thickness, the concentration distribution of the main elements in the film, and the like are as required. Checking has been done conventionally.

【0005】一般に、浸炭層の分析など、鋼の組成分析
(約φ5mm、深さ5μm)には、発光分光分析法が使
用される。この発光分光分析方法を用いて脱炭層の深さ
などを分析する場合には、試料の厚さをあらかじめマイ
クロメータで測定してから、その厚さでの表面の炭素濃
度を発光分光分析法で求め、続いて、平面研削盤等で所
定厚さだけ表面を研削し当該研削面の炭素濃度を再び,
発光分光分析で求める。これを目的とする深さに到達す
るまで繰り返す。分析した深さは、研削前後の試料厚さ
の差から求める。
In general, emission spectroscopy is used for analyzing the composition of steel (about φ5 mm, depth 5 μm) such as the analysis of carburized layers. When analyzing the depth of the decarburized layer using this emission spectroscopy method, the thickness of the sample is measured in advance with a micrometer, and the carbon concentration on the surface at that thickness is measured by emission spectroscopy. Then, the surface is ground to a predetermined thickness with a surface grinder or the like, and the carbon concentration of the ground surface is again determined.
Determined by emission spectroscopy. This is repeated until the desired depth is reached. The analyzed depth is determined from the difference in sample thickness before and after grinding.

【0006】以上のようにして段階的に求めた複数の測
定値から、深さ方向の炭素量推移曲線を求め脱炭層の深
さを同定する。なお、上記発光分光分析方法は、鉄鋼試
料と対電極との間の放電によって試料表面を励起させて
発光させ、これを分光器で分光して、目的とする特定元
素(炭素等)の波長のスペクトル線の強度を測定するこ
とで、各元素の定性及び定量分析を行うものである。そ
して、従来にあっては、放電エネルギーはさほど高いも
のではなく、放電時間も短い。
[0006] From a plurality of measured values obtained stepwise as described above, a carbon amount transition curve in the depth direction is obtained, and the depth of the decarburized layer is identified. In the emission spectroscopy method, the surface of the sample is excited by a discharge between the steel sample and the counter electrode to emit light, and this is spectrally separated by a spectroscope to obtain a wavelength of a target specific element (carbon or the like). The qualitative and quantitative analysis of each element is performed by measuring the intensity of the spectral line. And conventionally, the discharge energy is not so high and the discharge time is short.

【0007】また、製品の表層を構成する皮膜の膜厚測
定法には数多くの測定法があるが、代表的な測定方法と
しては、蛍光X線(JISH8501−1988)によ
る測定方法がある。この測定方法は、皮膜試料にX線を
照射して発生した蛍光X線の強度を検出し、その強度を
皮膜の厚さに換算して求めるというものである。
There are many methods for measuring the film thickness of the film constituting the surface layer of a product, and a typical measuring method is a measuring method using fluorescent X-rays (JISH8501-1988). In this measuring method, the intensity of fluorescent X-rays generated by irradiating a coating sample with X-rays is detected, and the intensity is converted into the thickness of the coating to obtain the intensity.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上記従
来の発光分光分析法による脱炭層の深さ等の分析では、
目的とする深さまで、表面から段階的に何度も研削を行
いつつ各段階の研削面の分析を行うために、各研削面
(各深さ位置)の分析前に毎回,前処理(研削等)が要
求されるばかりか、研削厚さ毎の離隔した分析情報しか
得ることができず、深さ方向の連続的な濃度分布を得る
ことができないという問題がある。
However, in the analysis of the depth of the decarburized layer by the above-mentioned conventional emission spectroscopy,
Before analyzing each ground surface (each depth position), pre-processing (grinding etc.) must be performed before analyzing each ground surface (each depth position) in order to analyze the ground surface at each stage while grinding the surface several times step by step to the target depth. ) Is not only required, but only analytical information separated for each grinding thickness can be obtained, and a continuous concentration distribution in the depth direction cannot be obtained.

【0009】このことはまた、一回の研削の厚さに分解
能が左右されてしまうため、極薄層の試料では深さ方向
の分解能を確保できず、分析できないという問題もあ
る。また、上記蛍光X線による皮膜の測定方法では、皮
膜が厚すぎると測定が不可能となる。通常、この方法で
は膜厚が10μm程度が限界である。
[0009] This also has the problem that the resolution depends on the thickness of one grinding, so that it is not possible to secure the resolution in the depth direction with a sample having an extremely thin layer, and analysis cannot be performed. Further, in the method of measuring a film by the fluorescent X-ray, if the film is too thick, measurement becomes impossible. Usually, the limit of the thickness of this method is about 10 μm.

【0010】そして、金属皮膜が比較的厚い試料につい
ては、簡便な方法で皮膜の成分や膜厚を測定する技術も
ない。本発明は、上記のような問題点に着目してなされ
たもので、脱炭層の深さや皮膜の膜厚等の表層を、簡易
的な方法で精度良く測定するための発光分光分析による
表層分析方法を提供することを課題とするものである。
[0010] For a sample having a relatively thick metal film, there is no technique for measuring the composition and film thickness of the film by a simple method. The present invention has been made by paying attention to the above problems, and a surface layer analysis by emission spectroscopy for accurately measuring a surface layer such as a depth of a decarburized layer and a film thickness of a film by a simple method. It is an object to provide a method.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に、本発明の発光分光分析による表層分析方法は、鉄鋼
材料からなる試料表面に形成された脱炭層や浸炭層等の
層や表面改質膜等の膜についての特定元素の濃度分布
を、発光分光分析によって分析する表層分析方法であっ
て、分析する試料と同様な鉄鋼材料からなる試料表面に
ついて、所定の高エネルギー放電で連続的に放電した際
における試料表面の削れ深さと放電時間との関係を予め
求めておき、分析する試料について、上記所定の高エネ
ルギー放電で放電しながら発光分光分析で連続的に特定
波長の発光強度を測定して、放電時間の経過時間と上記
測定した発光強度に対応する元素濃度との関係、及び予
め求めた上記削れ深さと放電時間との関係によって、試
料表面に形成された層若しくは膜を分析することを特徴
とするものである。
Means for Solving the Problems To solve the above problems, the surface analysis method according to the present invention employs an emission spectroscopy, which comprises the steps of forming a layer such as a decarburized layer or a carburized layer formed on the surface of a sample made of a steel material and modifying the surface. A surface layer analysis method for analyzing the concentration distribution of a specific element in a film such as a porous film by emission spectroscopy, and continuously performing a predetermined high-energy discharge on a sample surface made of a steel material similar to the sample to be analyzed. The relationship between the shaving depth of the sample surface at the time of discharge and the discharge time is determined in advance, and the emission intensity of a specific wavelength is continuously measured by emission spectroscopy while discharging the sample to be analyzed using the predetermined high-energy discharge. Then, the relationship between the elapsed time of the discharge time and the element concentration corresponding to the measured emission intensity, and the relationship between the previously obtained shaving depth and the discharge time, formed on the sample surface. Or it is characterized in analyzing the film.

【0012】上記高エネルギー放放電のエネルギー容量
は、試料表面を徐々に切削可能な大きさであればよい。
そして、深く定量する場合には、エネルギー容量を大き
く設定し、また、浅く且つ精度良く求めたい場合には、
エネルギー容量を小さく設定すればよい。
The energy capacity of the high-energy discharge / discharge has only to be large enough to gradually cut the sample surface.
And, in case of deep quantification, large energy capacity is set.
What is necessary is just to set energy capacity small.

【0013】高エネルギー放電による単位時間当たりの
表面削れ量は、鉄鋼材料や削れ深さ位置等によって異な
るので、発光分光分析と同一の条件からなる高エネルギ
ー放電で、予め対象とする試料と同様な鉄鋼材料からな
る試料について表面の削れ深さと放電時間との関係を求
めておくことで、放電時間と削れ深さ、つまり、分析す
る試料表面からの深さ位置が、放電時間と一対一に対応
付けされる。
The amount of surface abrasion per unit time due to high energy discharge differs depending on the steel material, the depth of the abrasion, and the like. By determining the relationship between the surface shaving depth and the discharge time for a sample made of a steel material, the discharge time and the shaving depth, that is, the depth position from the sample surface to be analyzed, correspond one-to-one with the discharge time. Attached.

【0014】ここで、上記放電時間と削れ深さは一度行
って、所定の検量線を求めておけば良く、その後は、適
宜,校正をかければよい。また、試料中の炭素濃度等の
分析対象となる元素の濃度は、放電時間と削れ深さとの
関係にさほど影響を与えることはなく、主に、鉄鋼材料
の主要マトリクスで決定される。
Here, the discharge time and the shaving depth may be determined once, and a predetermined calibration curve may be obtained. Thereafter, calibration may be appropriately performed. The concentration of the element to be analyzed, such as the carbon concentration in the sample, does not significantly affect the relationship between the discharge time and the shaving depth, and is determined mainly by the main matrix of the steel material.

【0015】そして、高エネルギ−放電で所定時間放電
を行い、連続的に発光分光分析することで、深さ方向に
連続して目的の元素濃度が測定され、その濃度分布から
脱炭深さ、膜厚等を求めることが可能となる。
Then, the target element concentration is continuously measured in the depth direction by performing discharge for a predetermined time by high-energy discharge and performing continuous emission spectroscopy, and the decarburization depth, It is possible to determine the film thickness and the like.

【0016】つまり、研削等の前処理を必要とせずに、
1回の放電によって、特定元素についての深さ方向への
連続した濃度分布を得る。
That is, without the need for pretreatment such as grinding,
With one discharge, a continuous concentration distribution in the depth direction for the specific element is obtained.

【0017】[0017]

【発明の実施の形態】次に、本発明の第1の実施形態を
図面を参照しつつ説明する。なお、以下の説明では、表
層に脱炭層が形成されている試料を分析対象とすること
を想定して説明する。
Next, a first embodiment of the present invention will be described with reference to the drawings. In the following description, it is assumed that a sample in which a decarburized layer is formed on a surface layer is to be analyzed.

【0018】対象とする試料と主要化学成分が同様な鉄
鋼試料1の表面について、後述する発光分光分析と同一
条件にて、図1に示すように、高エネルギー放電を所定
時間,行い、試料1の表面の削れ深Hさと放電時間との
関係を求める。ここで、図1に示す各一点鎖線は、それ
ぞれ所定の放電時間だけ経過した際における、放電によ
って削れた研削面(ミーリング面)の状態を示すもので
ある。
As shown in FIG. 1, a high-energy discharge was performed for a predetermined time on the surface of a steel sample 1 having the same main chemical components as the target sample under the same conditions as the emission spectroscopy described later. The relationship between the shaving depth H of the surface and the discharge time is determined. Here, each one-dot chain line shown in FIG. 1 indicates the state of the ground surface (milling surface) cut by the discharge when a predetermined discharge time has elapsed.

【0019】上記関係は、所定放電時間単位に、その時
の削れ深さHをダイヤルゲージ等で測定し、放電時間と
削り深さとを対応付けることで求める。放電による表面
の切削は、電極2の直下部分が一番削られるが、その部
分からの発光強度が一番大きいことを考慮して、電極2
の直下部分での深さを上記削れ深さHとする。
The above relationship is obtained by measuring the shaving depth H at that time in a predetermined discharge time unit using a dial gauge or the like, and associating the discharge time with the shaving depth. In the cutting of the surface by electric discharge, the portion directly below the electrode 2 is cut most, but taking into consideration that the emission intensity from that portion is the largest, the electrode 2
Is defined as the scraping depth H.

【0020】上記求めた削れ深さHと放電時間との関係
は、例えば、図2に表されるような曲線の関係として求
められる。これは、削られるにつれて単位放電時間に対
する削られる量(蒸発する量)が一定ではなく、また、
所定深さで飽和してしまうからである。図2では、0.
1mm程度で飽和した例である。
The relationship between the scraping depth H and the discharge time obtained above is obtained, for example, as a relationship of a curve as shown in FIG. This means that the amount removed (evaporated amount) per unit discharge time is not constant as it is removed,
This is because saturation occurs at a predetermined depth. In FIG.
This is an example of saturation at about 1 mm.

【0021】また、上記試料1として、数段階の炭素濃
度からなる複数の炭素濃度既知試料(芯部まで炭素濃度
が均一な既知の標準試料)を使用し、各既知試料につい
て、放電による発光を分光器3で分光し、波長で炭素の
スペクトルを特定して、そのスペクトルの発光強度(検
出強度)を求めることで、炭素濃度と検出強度とが関係
付けられる。この検出強度と炭素濃度との関係は、ほぼ
一次の比例関係にある。もっとも、検出強度と炭素濃度
との関係は既存のデータを使用してもよい。
Further, as the above-mentioned sample 1, a plurality of samples of known carbon concentration (known standard samples having a uniform carbon concentration up to the core) consisting of several levels of carbon concentration are used, and for each of the known samples, light emission by discharge is emitted. By spectroscopy with the spectroscope 3, specifying the carbon spectrum by wavelength, and obtaining the emission intensity (detection intensity) of the spectrum, the carbon concentration and the detection intensity are related. The relationship between the detected intensity and the carbon concentration is almost linearly proportional. However, the relationship between the detection intensity and the carbon concentration may use existing data.

【0022】このように、放電時間と削れ深さHとの関
係、及び、検出強度(特定波長スペクトルの発光強度)
と炭素濃度との関係が求められ、これらの関係式を、予
め分析装置若しくは分析装置に接続するコンピュータ等
にに設定しておく。
As described above, the relationship between the discharge time and the shaving depth H, and the detection intensity (the emission intensity of the specific wavelength spectrum)
And the carbon concentration are determined, and these relational expressions are set in advance in the analyzer or a computer connected to the analyzer.

【0023】そして、分析対象の試料について、上記と
同一条件の所定の高エネルギー放電で放電しながら、所
定時間単位(例えば,1秒単位)毎に連続して検出強度
を測定し、放電時間の経過時間から削れ深さH、つまり
表面からの深さを求めると共に、その放電時間の所定経
過時間での検出強度から、その深さの炭素濃度を求め
る。
Then, the detection intensity of the sample to be analyzed is continuously measured at predetermined time units (for example, every one second) while discharging at a predetermined high energy discharge under the same conditions as above, and the discharge time is measured. The shaving depth H, that is, the depth from the surface, is determined from the elapsed time, and the carbon concentration at the depth is determined from the intensity detected at a predetermined elapsed time of the discharge time.

【0024】これによって、表面から深さ方向への連続
した炭素濃度の分布が求められ、その炭素濃度の勾配が
所定量飽和した位置から脱炭層の深さが求められる。こ
のように、本実施形態では、従来の発光分光分析法によ
る表層の分析とは異なり、一回の連続した放電によっ
て、深さ方向への連続した炭素の濃度分布を求めること
ができるため、短時間に且つ簡便に、しかも精度良く表
層の分析が可能となる。
Thus, a continuous carbon concentration distribution from the surface to the depth direction is obtained, and the depth of the decarburized layer is obtained from a position where the gradient of the carbon concentration is saturated by a predetermined amount. As described above, in the present embodiment, unlike the analysis of the surface layer by the conventional emission spectroscopy, it is possible to obtain a continuous carbon concentration distribution in the depth direction by one continuous discharge. It is possible to analyze the surface layer easily in a short time and with high accuracy.

【0025】また、深さ方向への連続した特定元素の濃
度分布を求めることができることから、次に示すような
表層の分析も行うこともできるようになる。 偏析等の欠陥を正しく求めることができる。
Further, since the concentration distribution of the specific element which is continuous in the depth direction can be obtained, the following analysis of the surface layer can be performed. Defects such as segregation can be correctly determined.

【0026】表面改質膜等における皮膜元素の素地へ
の界面拡散状況が連続的に検出されるので、成膜強度も
判断できるようになる。例えば、皮膜主要成分の元素が
深さ方向に連続的に拡散し、なだらかに変化しているほ
ど、強い膜厚強度と判定する。
Since the state of interface diffusion of the coating element to the substrate in the surface modified film or the like is continuously detected, the film forming strength can be determined. For example, as the element of the main component of the film continuously diffuses in the depth direction and gradually changes, the film thickness is determined to be higher.

【0027】ここで、上記実施形態では、一回の放電で
炭素濃度の分布だけを測定しているが、一回の放電で、
二種類以上の特定の元素の濃度を測定するように設定し
てもよい。
Here, in the above embodiment, only the distribution of the carbon concentration is measured in one discharge, but in one discharge,
You may set so that the density | concentration of two or more types of specific elements may be measured.

【0028】また、目標とする層の深さに応じて、上記
放電時の高エネルギー容量を設定すればよい。次に、表
層に改質皮膜が形成されている場合に例について説明す
る。なお、上記実施形態と同様な部材等については、同
一の符号を使用してその説明を省略する。
The high energy capacity at the time of the discharge may be set according to the target depth of the layer. Next, an example in which a modified film is formed on the surface layer will be described. In addition, about the member etc. similar to the said embodiment, the same code | symbol is used and the description is abbreviate | omitted.

【0029】ここで、図3に示すように、高エネルギー
放電で削れる飽和深さが膜厚t以上であれば、皮膜1a
の発光強度と素地1b(皮膜の下地)の発光強度を検出
することができる。
Here, as shown in FIG. 3, if the saturation depth that can be cut by high-energy discharge is equal to or greater than the film thickness t, the film 1a
And the light emission intensity of the substrate 1b (underlying film) can be detected.

【0030】上記第1の実施形態と同様に、予め放電時
間と削れ深さHの間の関係を求めて分析装置に設定して
おき、同一条件の高エネルギー放電で所定時間放電し
て、連続して検出強度(皮膜の主要元素の波長スペクト
ルについての発光強度)と放電時間(削れ深さH)との
関係を求める。
As in the first embodiment, the relationship between the discharge time and the shaving depth H is determined in advance and set in the analyzer. Then, the relationship between the detection intensity (the emission intensity of the wavelength spectrum of the main element of the coating film) and the discharge time (the scraping depth H) is obtained.

【0031】このとき、膜厚tと検出強度は、図4に示
すように削れ深さHが増すにつれ検出強度は下がる関係
にあるので、発光強度の変化量から皮膜1aの厚さtを
求めることができる。
At this time, as shown in FIG. 4, the detection intensity decreases as the abrasion depth H increases, so that the thickness t of the film 1a is determined from the variation of the emission intensity. be able to.

【0032】すなわち、検出強度が飽和した位置Aを皮
膜1aの厚さとすればよい。なお、素地1bにも測定対
象の元素が拡散しているので、所定飽和状態を皮膜1a
と素地1bとの境界に設定する。
That is, the position A where the detection intensity is saturated may be determined as the thickness of the film 1a. Since the element to be measured is also diffused in the substrate 1b, the predetermined saturated state is set in the film 1a.
Is set at the boundary between the object and the substrate 1b.

【0033】さらに、同種類の皮膜について、予め膜厚
tが分かっている数種類の試料に対して上記分析を行
い、膜厚tと検出強度が飽和する際の当該検出強度Kと
の関係を求めて、膜厚tと飽和時の検出強度Kとの間の
関係を求めておく。この膜厚tと飽和時の検出強度Kと
の関係は、後述するように一次の比例関係となる。
Further, for the same type of film, the above analysis is performed on several types of samples whose film thickness t is known in advance, and the relationship between the film thickness t and the detected intensity K when the detected intensity is saturated is obtained. Thus, the relationship between the film thickness t and the detection intensity K at the time of saturation is obtained in advance. The relationship between the film thickness t and the detection intensity K at the time of saturation has a first-order proportional relationship as described later.

【0034】そして、対象とする試料1について、高エ
ネルギー放電で所定時間だけ連続して放電して検出強度
が飽和したときの検出強度Kを求め、上記膜厚tと飽和
時の検出強度Kとの関係から膜厚tを求める。
Then, with respect to the target sample 1, the detection intensity K when the detection intensity is saturated by continuous discharge with the high energy discharge for a predetermined time is obtained, and the film thickness t and the detection intensity K at the time of saturation are obtained. Is determined from the relationship.

【0035】この場合には、単位時間当たりの検出強度
の変化で飽和の有無を判定すれば良く、放電時間を使用
する必要がない。
In this case, it is only necessary to determine the presence or absence of saturation based on the change in the detected intensity per unit time, and it is not necessary to use the discharge time.

【0036】[0036]

【実施例】〔第1実施例〕まず、表層に脱炭層が形成さ
れている場合についての本発明の第1の実施例について
述べる。
[First Embodiment] First, a first embodiment of the present invention in a case where a decarburized layer is formed on a surface layer will be described.

【0037】表1に、実施例1に用いた試験片の主要化
学成分を示す(試料1寸法はφ60mm×8mmの円盤
試験片)。
Table 1 shows the main chemical components of the test pieces used in Example 1 (sample 1 has a disk test piece of φ60 mm × 8 mm).

【0038】[0038]

【表1】 [Table 1]

【0039】最初に、表1の高炭素クローム鋼2種(S
UJ2)の試験片を用いて、高エネルギー容量(10μ
F×1000V)で最大削られる深さについて実験を行
なったところ、上記図2に示す結果を得た。
First, two kinds of high carbon chromium steels shown in Table 1 (S
UJ2) test piece, high energy capacity (10μ)
(F × 1000 V), the experiment was performed for the maximum shaving depth, and the result shown in FIG. 2 was obtained.

【0040】なお、既存の発光分析装置では、コンデン
サー容量が10μFで電圧が1000V程度が限界であ
るため、この最高値である高エネルギー容量(10μF
×1000V)に設定したものであるが、より高エネル
ギー容量を出力可能な装置を用意することで、エネルギ
ー容量は高く設定可能である。
In the existing emission spectrometer, since the capacity of the capacitor is 10 μF and the voltage is about 1000 V, the maximum value of the high energy capacity (10 μF)
X 1000 V), but the energy capacity can be set higher by preparing a device capable of outputting a higher energy capacity.

【0041】上記図2から分かるように、60sec程
度放電を行うと削れ深さHは飽和し最大で0.1mm程
度削られる。すなわち、この場合には、最大で0.1m
mまでの脱炭層が分析できることが分かる。
As can be seen from FIG. 2, when the discharge is performed for about 60 seconds, the shaving depth H is saturated and the shaving depth H is cut by about 0.1 mm at the maximum. That is, in this case, the maximum is 0.1 m
It can be seen that decarburized layers up to m can be analyzed.

【0042】分析条件は、10μF×1000Vのエネ
ルギー容量で連続して放電し、上記実施形態と同様にし
て、予め、検出強度と元素濃度との関係、及び、放電時
間(分析時間)と削れ深さHとの関係を求め、分析装置
に設定しておく。
The analysis conditions were as follows: discharge was continuously performed at an energy capacity of 10 μF × 1000 V, and the relationship between the detection intensity and the element concentration, the discharge time (analysis time) and the shaving depth were determined in advance in the same manner as in the above embodiment. The relationship with the height H is determined and set in the analyzer.

【0043】そして、実際の試料(脱炭している試料)
を用いて、上記実施形態で説明した方法で、検出強度
(元素濃度)と放電時間(表面からの深さ)との関係を
求めたたところ、図5に示す結果を得た。
Then, the actual sample (decarburized sample)
Was used to determine the relationship between the detection intensity (element concentration) and the discharge time (depth from the surface) by the method described in the above embodiment, and the result shown in FIG. 5 was obtained.

【0044】図5中、実線がその測定結果である。丸印
及び破線は、比較のために従来の測定方法で測定した結
果である。従来の測定方法とは、予めマイクロメーター
で厚さを測定してから表面を発光分光分析で分析し、続
いて分析面を平面研削盤で目的する深さまで研削して研
削面について発光分光分析で分析する。これを繰り返す
ことで、目的とする深さまで分析を行なう。なお、測定
面の深さは研削前後の試料の厚さの差から算出する。
In FIG. 5, the solid line is the measurement result. The circles and dashed lines are the results measured by the conventional measurement method for comparison. The conventional measurement method is to measure the thickness in advance with a micrometer, analyze the surface with emission spectroscopy, then grind the analysis surface to the desired depth with a surface grinder, and use the emission spectroscopy for the ground surface. analyse. By repeating this, analysis is performed up to the target depth. The depth of the measurement surface is calculated from the difference between the thickness of the sample before and after the grinding.

【0045】この図5から分かるように、本発明に基づ
く簡便な方法であっても、従来の測定方法と同様な測定
精度を持っていることが分かる。〔第2実施例〕次に、
表層を改質皮膜で形成した場合についての本発明の第2
の実施例について述べる。本実施例は、表層に改質皮膜
が形成されている場合についてのものである。
As can be seen from FIG. 5, even the simple method based on the present invention has the same measurement accuracy as the conventional measurement method. [Second Embodiment] Next,
Second embodiment of the present invention in the case where the surface layer is formed of a modified film
An example will be described. This embodiment relates to a case where a modified film is formed on a surface layer.

【0046】まず実験に用いる試験片として、クロム皮
膜およびニッケル皮膜それぞれ5種類の厚さの試験片を
作成した。試験片は、予めJISの顕微鏡法(JISH
8501−1988)にて膜厚tの測定を行った。その
結果を表2に示す。
First, as the test pieces used in the experiment, test pieces having five kinds of thickness each of a chromium film and a nickel film were prepared. Specimens were prepared in advance by JIS microscopy (JISH
8501-1988). Table 2 shows the results.

【0047】[0047]

【表2】 [Table 2]

【0048】次に、表1の高炭素クローム鋼2種(マト
リックス主としてFe)と試料NO.5(クローム皮膜8
0μm)および試料1NO. 10(ニッケル皮膜82μ
m)の試験片を用いて放電時間と最大に削られる深さに
ついて実験を行った。
Next, two kinds of high carbon chromium steel (matrix mainly Fe) shown in Table 1 and sample No. 5 (chrome coating 8
0 μm) and sample 1 NO. 10 (nickel coating 82 μm)
An experiment was performed on the discharge time and the maximum shaving depth using the test piece of m).

【0049】分析条件は、分析条件を表3に示す通りで
ある。
The analysis conditions are as shown in Table 3 below.

【0050】[0050]

【表3】 [Table 3]

【0051】放電時間と削れ深さHとの測定結果は、図
6となった。これは、各金属に対して、高エネルギー、
アークライト、ノーマル放電の三種類のエネルギー容量
で行ったものである。
FIG. 6 shows the measurement results of the discharge time and the scraping depth H. This means that for each metal, high energy,
It was performed with three types of energy capacity, arc light and normal discharge.

【0052】この図6から分かるように、鉄、クロー
ム、ニッケルともにエネルギ−容量が高い程深く削ら
れ、マトリクッスによって若干,削れ深さHに差がある
がニッケル<クローム<鉄の順になった。
As can be seen from FIG. 6, the higher the energy capacity of iron, chromium, and nickel, the deeper the metal was cut.

【0053】そして、実際の測定の前に、予め厚み既知
の標準試料(クローム皮膜処理品NO. 1〜NO. 4、及び
ニッケル皮膜処理品NO. 6〜NO. 9)を用いて、上記実
施形態で説明したようにして、膜厚の主成分(Cr又は
Ni)と飽和時の検出強度との関係を求めた。その結果
を、図7及び図8に示す。
Prior to the actual measurement, a standard sample having a known thickness (the chrome film-treated products No. 1 to NO. 4 and the nickel film-treated products No. 6 to NO. 9) was used to carry out the above-described measurement. As described in the embodiment, the relationship between the main component (Cr or Ni) of the film thickness and the detection intensity at the time of saturation was obtained. The results are shown in FIGS.

【0054】次に、膜厚未知試料について、高エネルギ
ー放電で所定時間放電して連続的に検出強度を求め、そ
の検出強度が飽和した値に対応する各膜厚を、上記図7
若しくは図8を使用して求めてみた。
Next, with respect to the sample whose thickness is unknown, the detection intensity is continuously obtained by discharging with a high energy discharge for a predetermined time, and the film thickness corresponding to the value at which the detection intensity is saturated is calculated as shown in FIG.
Alternatively, it was obtained using FIG.

【0055】その結果を表4の上段に示す。The results are shown in the upper part of Table 4.

【0056】[0056]

【表4】 [Table 4]

【0057】確認のため、同じ膜厚未知試料について膜
厚をJISの顕微鏡で求めてみたところ、上記表4の下
段に示すように、同程度の厚さを得た。これから、本発
明に基づく膜厚測定であっても、精度よく膜厚を求める
ことができることが分かる。
For confirmation, when the film thickness of the same film thickness unknown sample was determined with a JIS microscope, the same thickness was obtained as shown in the lower part of Table 4 above. From this, it is understood that the film thickness can be accurately obtained even in the film thickness measurement based on the present invention.

【0058】[0058]

【発明の効果】以上説明してきたように、本発明に基づ
く、発光分光分析による表層分析方法を採用すると、一
回の連続した放電だけで簡便に且つ精度良く、脱炭層の
深さや膜厚等の表層等の表層の分析を行うことができ
る。
As described above, when the surface analysis method based on the emission spectroscopy according to the present invention is employed, the depth and thickness of the decarburized layer can be easily and accurately obtained by only one continuous discharge. The surface layer such as the surface layer can be analyzed.

【0059】しかも簡便であるにも関わらず、特定元素
について深さ方向に連続した濃度分布(濃度勾配)を求
めることが可能である。
In addition, despite its simplicity, it is possible to obtain a concentration distribution (concentration gradient) continuous for a specific element in the depth direction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係る高エネルギー放電に
よる削れ深さを示す図である。
FIG. 1 is a diagram showing a shaving depth by high-energy discharge according to an embodiment of the present invention.

【図2】本発明の実施の形態に係る放電時間と削れ深さ
との関係を示す図である。
FIG. 2 is a diagram showing a relationship between a discharge time and a shaving depth according to the embodiment of the present invention.

【図3】表層に改質皮膜がある場合における発光強度の
状態を示す図である。
FIG. 3 is a diagram showing a state of light emission intensity when a modified film is present on a surface layer.

【図4】皮膜の厚さと検出強度との関係を示す図であ
る。
FIG. 4 is a diagram showing a relationship between a film thickness and a detection intensity.

【図5】高エネルギー放電と従来法による脱炭層の炭素
濃度分布の分析結果を示す図である。
FIG. 5 is a diagram showing analysis results of carbon concentration distribution of a decarburized layer by a high energy discharge and a conventional method.

【図6】各元素における放電容量と削られる深さの関係
を示す図であり、(a)は鉄の場合を、(b)はクロム
の場合を、(c)はニッケルの場合を示す。
6A and 6B are diagrams showing the relationship between the discharge capacity and the shaving depth of each element, where FIG. 6A shows the case of iron, FIG. 6B shows the case of chromium, and FIG. 6C shows the case of nickel.

【図7】クロム皮膜における飽和時の検出強度と膜厚と
の関係を示す図である。
FIG. 7 is a diagram showing a relationship between a detection intensity and a film thickness of a chromium film at the time of saturation.

【図8】ニッケル皮膜における飽和時の検出強度と膜厚
との関係を示す図である。
FIG. 8 is a diagram showing the relationship between the detection intensity and the film thickness of the nickel film at the time of saturation.

【符号の説明】 1 試料 2 電極 H 削れ深さ[Description of Signs] 1 Sample 2 Electrode H Shaving depth

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 鉄鋼材料からなる試料表面に形成された
脱炭層や浸炭層等の層や表面改質膜等の膜についての特
定元素の濃度分布を、発光分光分析によって分析する表
層分析方法であって、 分析する試料と同様な鉄鋼材料からなる試料表面につい
て、所定の高エネルギー放電で連続的に放電した際にお
ける試料表面の削れ深さと放電時間との関係を予め求め
ておき、 分析する試料について、上記所定の高エネルギー放電で
放電しながら発光分光分析で連続的に特定波長の発光強
度を測定して、放電時間の経過時間と上記測定した発光
強度に対応する元素濃度との関係、及び予め求めた上記
削れ深さと放電時間との関係によって、試料表面に形成
された層若しくは膜を分析することを特徴とする発光分
光分析による表層分析方法。
1. A surface layer analysis method for analyzing the concentration distribution of a specific element in a layer such as a decarburized layer and a carburized layer formed on the surface of a sample made of a steel material and a film such as a surface modified film by emission spectroscopy. Then, for the sample surface made of the same steel material as the sample to be analyzed, the relationship between the shaving depth of the sample surface and the discharge time when discharging continuously at a predetermined high energy discharge is determined in advance, and the sample to be analyzed is About, measuring the emission intensity of a specific wavelength continuously by emission spectral analysis while discharging with the predetermined high energy discharge, the relationship between the elapsed time of the discharge time and the element concentration corresponding to the measured emission intensity, and A surface analysis method based on emission spectroscopy, wherein a layer or a film formed on a sample surface is analyzed based on a relationship between the shaving depth and a discharge time obtained in advance.
JP15628798A 1998-06-04 1998-06-04 Method for analyzing surface layer by emission spectrochemical analysis Pending JPH11352061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15628798A JPH11352061A (en) 1998-06-04 1998-06-04 Method for analyzing surface layer by emission spectrochemical analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15628798A JPH11352061A (en) 1998-06-04 1998-06-04 Method for analyzing surface layer by emission spectrochemical analysis

Publications (1)

Publication Number Publication Date
JPH11352061A true JPH11352061A (en) 1999-12-24

Family

ID=15624521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15628798A Pending JPH11352061A (en) 1998-06-04 1998-06-04 Method for analyzing surface layer by emission spectrochemical analysis

Country Status (1)

Country Link
JP (1) JPH11352061A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012108003A (en) * 2010-11-17 2012-06-07 Mitsubishi Heavy Ind Ltd METHOD FOR MEASURING CARBURIZED DEPTH OF Cr-CONTAINING ALLOY
RU2607297C1 (en) * 2015-07-15 2017-01-10 Общество с ограниченной ответственностью "Аквамодуль" Method of determining effective thickness of diffusion layer
CN111487272A (en) * 2020-04-21 2020-08-04 中国航发沈阳发动机研究所 Analysis method for surface product layer of turbine blade of aero-engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012108003A (en) * 2010-11-17 2012-06-07 Mitsubishi Heavy Ind Ltd METHOD FOR MEASURING CARBURIZED DEPTH OF Cr-CONTAINING ALLOY
RU2607297C1 (en) * 2015-07-15 2017-01-10 Общество с ограниченной ответственностью "Аквамодуль" Method of determining effective thickness of diffusion layer
CN111487272A (en) * 2020-04-21 2020-08-04 中国航发沈阳发动机研究所 Analysis method for surface product layer of turbine blade of aero-engine

Similar Documents

Publication Publication Date Title
JP7054093B2 (en) XRF analyzer that identifies multiple solid-phase objects, its sorting system and sorting method
US6399944B1 (en) Measurement of film thickness by inelastic electron scattering
US6631177B1 (en) Device for measurement of metal sheet thickness and clad layer thickness and method of use thereof
Xu et al. The high-accuracy prediction of carbon content in semi-coke by laser-induced breakdown spectroscopy
Wallace et al. Handheld methods in archaeological research on large copper alloy assemblages: HH‐XRF against HH‐LIBS
Wang et al. Rapid analysis of content and particle sizes of aluminum inclusions in low and middle alloy steel by laser-induced breakdown spectroscopy
Sabbarese et al. Gold‐coating thickness determination on Ag, Cu, Fe, and Pb using a handheld X‐ray instrument
CN105717094B (en) A kind of metal element content analysis method based on large database concept identification
JPH11352061A (en) Method for analyzing surface layer by emission spectrochemical analysis
CN110132188B (en) Coating permeation layer thickness calculation method based on multi-element X-ray characteristic spectrum comprehensive analysis
CN115236110A (en) Precision measurement method for micro-area carbon concentration distribution of gear carburization part
Nakahata et al. Quantitative distribution analysis of alumina inclusion particles in ferritic stainless steels by using laser‐induced breakdown optical emission spectrometry
US6845147B2 (en) Scatter spectra method for x-ray fluorescent analysis with optical components
Kempenaers et al. Micro-heterogeneity study of trace elements in BCR CRM 680 by means of synchrotron micro-XRF
JP3923459B2 (en) Stress measuring method and stress measuring device for metal micro region
JP4513425B2 (en) Evaluation method of press formability of galvanized steel sheet
JPH10300659A (en) Method for measuring grain size distribution of oxide based inclusion in metal
Bernard Methods of Measuring Case Depth in Steels
Yakovlev et al. Hydrogen in Materials Obtained Using of Additive Technologies
RU2730929C1 (en) Method of estimating heterogeneity of structural materials and individual inhomogeneous areas by content of chemical elements
JPH0353016A (en) Method for measuring depth of decarburized layer of steel products
JP2001281176A (en) High-accuracy analysis method for carbon in steel
Alvarenga et al. Quantitative determination of carbon concentration profiles by GD‐OES for the study of decarburization in low‐carbon steels
WO2023199591A1 (en) Emission spectroscopic analysis method for sb in metal material, method for measuring sb concentration in molten steel during refining, and method for manufacturing steel material
JPH0943151A (en) Particle size distribution measuring method for metal inclusion