JP2006234807A - Defect detecting method - Google Patents

Defect detecting method Download PDF

Info

Publication number
JP2006234807A
JP2006234807A JP2006020941A JP2006020941A JP2006234807A JP 2006234807 A JP2006234807 A JP 2006234807A JP 2006020941 A JP2006020941 A JP 2006020941A JP 2006020941 A JP2006020941 A JP 2006020941A JP 2006234807 A JP2006234807 A JP 2006234807A
Authority
JP
Japan
Prior art keywords
defect
inspected
detected
defects
flaw detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006020941A
Other languages
Japanese (ja)
Inventor
Masaru Kawabe
優 川辺
Hiroshi Narai
弘 奈良井
Akihiro Kiuchi
昭広 木内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2006020941A priority Critical patent/JP2006234807A/en
Publication of JP2006234807A publication Critical patent/JP2006234807A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2696Wheels, Gears, Bearings

Abstract

<P>PROBLEM TO BE SOLVED: To precisely detect a defect having a low reflection echo intensity existing in a body to be inspected. <P>SOLUTION: A part from which a reflection echo above a predetermined intensity is measured continuously more than a predetermined distance in the rolling direction of the body to be inspected is detected as a defect. In the case where two or more detected defects exist adjacent to each other within a predetermined or less interval in the rolling direction of the body to be inspected, two or more defects are detected as one continuous defect. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、被検査体中に存在する欠陥を検出するための欠陥検出方法に関する。   The present invention relates to a defect detection method for detecting defects present in an object to be inspected.

一般に、転がり軸受を構成する転動部品の転がり面(軌道面や転動面)に介在物や加工キズ等の欠陥が存在していると、転がり軸受の品質(例えば、転がり疲れ寿命や音響寿命)に影響を及ぼすことがよく知られている。
このため、転動部品の素材となる軸受用鋼を製造する製鋼メーカーでは、丸棒等の鋼材に対して超音波探傷による検査を行い、欠陥が検出されなかった良品のみを出荷するようにしている。しかしながら、製鋼メーカーの検査では、圧延直後の結晶粒が粗大で且つ表面粗さが大きな鋼材に対して行われるとともに、生産性の観点から高速で超音波探傷が行われることから、高精度に行えず、長さが数十ミリ以上の大きな介在物でないと検出することが難しい。したがって、製鋼メーカーの検査では、被検査体の表面(被検査体が丸棒の場合には表面、被検査体が管材の場合には内部表面)に圧延や引き抜き等で生じる割れやしわキズ等の加工キズや長さが数十ミリ以上の介在物等の欠陥が存在するか否かによって、良品か不良品かを判定しているのが現状である。
In general, if there are defects such as inclusions or processing flaws on the rolling surfaces (orbital surfaces and rolling surfaces) of the rolling parts that make up a rolling bearing, the quality of the rolling bearing (for example, rolling fatigue life and acoustic life) ) Is well-known.
For this reason, steelmakers that manufacture bearing steel that is the material for rolling parts should inspect steel materials such as round bars by ultrasonic flaw detection and ship only non-defective products for which no defects have been detected. Yes. However, steelmakers' inspections are performed on steel materials with coarse crystal grains immediately after rolling and a large surface roughness, and ultrasonic testing is performed at high speed from the viewpoint of productivity. Therefore, it is difficult to detect unless the inclusion is a large inclusion having a length of several tens of millimeters or more. Therefore, in steelmaker inspections, cracks, wrinkles, etc. caused by rolling, drawing, etc. on the surface of the object to be inspected (the surface when the object to be inspected is a round bar, the internal surface when the object to be inspected is a pipe) It is currently determined whether the product is a non-defective product or a defective product depending on whether or not there are defects such as inclusions having a length of several tens of millimeters or more.

例えば、特許文献1には、鋼管等の鋼材の同一部位で斜角探傷及び垂直探傷の両方を行い、得られる反射エコー強度がいずれも所定の閾値を超えた場合に、欠陥が存在すると判定することが提案されている。また、鋼管の周方向及び/又は軸方向への連続性を判定し、欠陥が存在すると判定された部位が所定の閾値を超えて連続する場合には、超音波探傷の次工程で用いられる設備に対して有害であると判定することも記載されている。   For example, in Patent Document 1, it is determined that a defect exists when both oblique and vertical flaw detections are performed at the same portion of a steel material such as a steel pipe and the obtained reflected echo intensity exceeds a predetermined threshold value. It has been proposed. Also, equipment used in the next process of ultrasonic flaw detection when the continuity in the circumferential direction and / or the axial direction of the steel pipe is determined and the part determined to have a defect continues beyond a predetermined threshold. It is also described that it is determined to be harmful.

一方、鋼製の転がり軸受においては、長さ数十ミリ未満の介在物であっても転がり疲れ寿命に影響を及ぼすことが知られている。このため、本発明者らは、特許文献2〜4において、転がり疲れ寿命に影響を及ぼす介在物を特定し、完成後の転動部品に対して超音波探傷による検査を行うことにより、転動部品中にこれらの介在物が存在しないようにすることを提案している。   On the other hand, in steel rolling bearings, it is known that inclusions having a length of less than several tens of millimeters affect the rolling fatigue life. For this reason, in the Patent Documents 2 to 4, the present inventors specify inclusions that affect the rolling fatigue life, and perform inspection by ultrasonic flaw detection on the finished rolling parts. It is proposed that these inclusions should not be present in the part.

また、超音波探傷により検出された被検査体中に存在する欠陥のデータは、通常、検査を行った証拠としたり、不良品の原因究明をするために記録しておく。
例えば、非特許文献1及び非特許文献2には、超音波探傷により検出された欠陥のデータを記録するための方法として、得られた反射エコー強度をアナログ信号に変換して縦軸に取り、時間を横軸に取って、アナログチャート方式で記録する方法が記載されている。
また、上述した特許文献1には、被検査体の軸方向及び円周方向における探傷ピッチ毎の反射エコー強度を測定してデジタル信号に変換し、軸方向の探傷ピッチを縦軸に、円周方向の探傷ピッチを横軸に取って、デジタル式で記録する方法が記載されている。
In addition, data of defects existing in the inspection object detected by ultrasonic flaw detection are usually recorded for proof of inspection or investigation of the cause of defective products.
For example, in Non-Patent Document 1 and Non-Patent Document 2, as a method for recording data of defects detected by ultrasonic flaw detection, the reflected echo intensity obtained is converted into an analog signal and taken on the vertical axis, A method is described in which time is plotted on the horizontal axis and recorded in an analog chart format.
Further, in Patent Document 1 described above, the reflected echo intensity for each flaw detection pitch in the axial direction and the circumferential direction of the object to be inspected is measured and converted into a digital signal. A method is described in which the flaw detection pitch in the direction is taken on the horizontal axis and recorded digitally.

特開2003−222617号公報JP 2003-222617 A 特開2000−130447号公報JP 2000-130447 A 特開2002−317821号公報JP 2002-317821 A 特願2002−293750号公報Japanese Patent Application No. 2002-293750 特殊鋼46巻6号,1997年,p14Special Steel, Vol. 46, No. 6, 1997, p14 特殊鋼51巻2号,2002年,p27Special Steel No. 51, No. 2, 2002, p27

ところで、上述した特許文献1に記載の方法を用いて長さが数十ミリ未満の介在物を検出するためには、被検査体の軸方向及び円周方向の連続性を評価するための探傷ピッチを細分化し、探傷感度を上げるとともに、欠陥として判定する反射エコー強度の閾値を下げる必要がある。ところが、探傷ピッチを細分化し、探傷感度を上げると、電気的ノイズ信号も大きくなり、欠陥とノイズとを区別し難くなることが想定される。   By the way, in order to detect inclusions having a length of less than several tens of millimeters using the method described in Patent Document 1, the flaw detection for evaluating the continuity in the axial direction and the circumferential direction of the object to be inspected. It is necessary to subdivide the pitch to increase the flaw detection sensitivity and lower the threshold value of the reflected echo intensity determined as a defect. However, if the flaw detection pitch is subdivided and the flaw detection sensitivity is increased, it is assumed that the electrical noise signal also increases, making it difficult to distinguish between defects and noise.

ここで、電気的ノイズ信号は、周期的に現れる場合が多いため、全反射エコー強度を測定した後に周期的に発生する信号を解析して除去すればよいが、測定に要する手間やコストが増大するという問題がある。
また、長さが数十ミリ未満の介在物を精度よく検出するためには、被検査体の表面粗さを小さくして、超音波の減衰を抑制する必要がある。ところが、表面粗さを小さくするために被検査体の表面に旋削や研削等の加工を施すと、被検査体の円周方向に加工キズが発生する場合がある。この加工キズによるノイズ信号は、電気的ノイズ信号とは異なり周期的に発生するものではないため、欠陥と区別することが難しい。
Here, since the electrical noise signal often appears periodically, it is sufficient to analyze and remove the periodically generated signal after measuring the total reflection echo intensity. However, the labor and cost required for the measurement increase. There is a problem of doing.
Further, in order to accurately detect inclusions having a length of less than several tens of millimeters, it is necessary to reduce the surface roughness of the object to be inspected and suppress the attenuation of ultrasonic waves. However, if the surface of the object to be inspected is subjected to processing such as turning or grinding in order to reduce the surface roughness, a processing flaw may occur in the circumferential direction of the object to be inspected. Unlike the electrical noise signal, the noise signal due to this processing flaw is not generated periodically, so it is difficult to distinguish it from a defect.

さらに、長さが数十ミリ未満の介在物から得られる反射エコー強度は弱いため、精度よく検出することが難しい。このため、上述した特許文献1に記載のように、被検査体の軸方向や円周方向の連続性のみで介在物の判定を行うと、一の長い介在物を二以上の介在物であると判断したり、介在物自体が存在しないと判断してしまう場合がある。
また、上述した特許文献2〜4では、いずれも超音波探傷により介在物を検出することについては記載されているが、その介在物の判定方法についてまでは言及されていない。
Furthermore, since the reflected echo intensity obtained from inclusions having a length of less than several tens of millimeters is weak, it is difficult to detect with high accuracy. For this reason, as described in Patent Document 1 described above, when the inclusion is determined only by the continuity in the axial direction or the circumferential direction of the object to be inspected, one long inclusion is two or more inclusions. Or the inclusion itself may not exist.
In addition, in Patent Documents 2 to 4 described above, detection of inclusions by ultrasonic flaw detection is described, but there is no mention of a method for determining the inclusions.

さらに、上述した非特許文献1及び2では、検出された介在物の全データを保存しているため、データの管理に手間やコストを要するという問題がある。
そこで、本発明はこのような事情に鑑みてなされたものであり、例えば、長さが数十ミリ未満の介在物のように、反射エコー強度が弱い欠陥であっても精度よく検出できる欠陥判定方法を提供することを課題としている。
Further, in the above-described Non-Patent Documents 1 and 2, since all data of detected inclusions are stored, there is a problem that it takes time and cost to manage the data.
Therefore, the present invention has been made in view of such circumstances. For example, a defect determination that can accurately detect even a defect having a low reflection echo intensity, such as an inclusion having a length of less than several tens of millimeters. The challenge is to provide a method.

このような課題を解決するために、本発明者らが鋭意検討を重ねた結果、「被検査体中に存在する介在物からの反射エコーは被検査体の圧延方向(例えば、軸方向)に連続して存在し、各種ノイズ信号は被検査体の圧延方向に対して垂直方向(例えば、円周方向)に連続して存在すること」と、「二以上の介在物が圧延方向に所定間隔以下の範囲で隣接して存在する場合には、連続した一の介在物として存在すること」とを見出し、本発明をなすに至った。   In order to solve such a problem, as a result of intensive studies by the present inventors, “the reflection echo from the inclusions present in the object to be inspected is in the rolling direction (for example, the axial direction) of the object to be inspected. There must be continuous, and various noise signals must be continuously present in a direction perpendicular to the rolling direction of the object to be inspected (for example, in the circumferential direction) ”and“ two or more inclusions in the rolling direction at predetermined intervals. When it exists adjacently in the following range, it is found that it exists as one continuous inclusion ”, and the present invention has been made.

すなわち、本発明に係る欠陥検出方法は、被検査体に超音波を照射し、前記被検査体中に存在する欠陥からの反射エコーを測定することで前記欠陥を検出する欠陥検出方法において、所定強度以上の前記反射エコーが、前記被検査体の圧延方向に所定距離以上連続して測定された部分を前記欠陥として検出するとともに、二以上の前記欠陥が、前記被検査体の圧延方向に所定間隔以下の範囲で隣接して存在する場合には、二以上の前記欠陥を一の前記欠陥として検出することを特徴とするものである。   That is, a defect detection method according to the present invention is a defect detection method for detecting a defect by irradiating an inspection object with ultrasonic waves and measuring a reflected echo from a defect present in the inspection object. The reflected echo of intensity or more detects a portion measured continuously in the rolling direction of the inspection object as a predetermined distance or more as the defect, and two or more defects are predetermined in the rolling direction of the inspection object. Two or more of the defects are detected as a single defect when they are adjacent to each other within a range of an interval or less.

本発明によれば、被検査体の圧延方向における反射エコーの連続性を欠陥の判定基準としたことにより、圧延方向に対して垂直方向に延びる各種ノイズが検出され難く、圧延方向に延びる欠陥を精度よく検出できる。
また、二以上の欠陥が圧延方向に所定間隔以下の範囲で隣接する場合において、二以上の欠陥を一の連続する欠陥として検出するようにしたことによって、反射エコー強度の弱い欠陥であっても精度よく検出できる。
According to the present invention, since the continuity of the reflected echoes in the rolling direction of the test object is used as a criterion for the defect, various noises extending in the direction perpendicular to the rolling direction are difficult to detect, and defects extending in the rolling direction are detected. It can be detected accurately.
In addition, in the case where two or more defects are adjacent to each other in the rolling direction within a predetermined interval or less, by detecting two or more defects as one continuous defect, even a defect having a weak reflected echo intensity It can be detected accurately.

なお、本発明において、「圧延方向」とは、被検査体を圧延する際の方向を指し、例えば被検査体が丸棒や軌道輪である場合にはそれらの軸方向である場合が多い。
また、本発明において、「圧延方向に連続する」とは、図1に示すように、圧延方向に平行な直線方向L1の連続する場合に限らず、この直線方向L1に対して所定角度(例えば、45°)で傾斜した直線方向L2,L3に連続する場合も指す。
さらに、本発明において、欠陥として検出する際に判定基準とする反射エコーの「所定強度」及びこの所定強度以上の反射エコーが連続する「所定距離」や、二以上の欠陥を一の欠陥として検出する際に判定基準とする二以上の欠陥の「所定間隔」は、いずれも検出する欠陥や被検査体の寸法に応じて適宜変更する。
In the present invention, the “rolling direction” refers to the direction in which the object to be inspected is rolled. For example, when the object to be inspected is a round bar or a ring, it is often the axial direction thereof.
Further, in the present invention, “continuous in the rolling direction” is not limited to the case where the linear direction L1 parallel to the rolling direction is continuous, as shown in FIG. , 45 °), and the case where it continues in the linear directions L2 and L3 inclined.
Furthermore, in the present invention, the “predetermined intensity” of the reflected echo used as a criterion for detection as a defect, the “predetermined distance” in which the reflected echo of the predetermined intensity or more continues, and two or more defects are detected as one defect The “predetermined interval” between two or more defects that are used as criteria for determination is appropriately changed according to the defect to be detected and the size of the inspection object.

本発明に係る欠陥検出方法において、欠陥として検出する際に判定基準とする反射エコーの所定強度は、被検査体の寸法に応じて決定することが好ましい。例えば、被検査体が丸棒や軌道輪である場合、外径が細くなると外周面の曲率が小さくなって、反射エコー強度が低くなり、一方、外径が太くなると外周面の曲率が大きくなって、反射エコー強度が高くなる傾向がある。このため、丸棒や軌道輪等が被検査体である場合、その外径が細い時には判定基準とする反射エコー強度の所定強度を小さくし、その外径が太くなった時には判定基準とする反射エコー強度の所定強度を大きくすることにより、被検査体の寸法に係わらず、圧延方向に延びる欠陥を精度よく検出できる。   In the defect detection method according to the present invention, it is preferable that the predetermined intensity of the reflected echo used as a determination criterion when detecting as a defect is determined according to the size of the object to be inspected. For example, when the object to be inspected is a round bar or a ring, the curvature of the outer peripheral surface decreases as the outer diameter decreases, and the reflected echo intensity decreases. On the other hand, the curvature of the outer peripheral surface increases as the outer diameter increases. Therefore, the reflected echo intensity tends to increase. For this reason, when a round bar, raceway, or the like is an object to be inspected, when the outer diameter is thin, the predetermined intensity of the reflected echo intensity used as a criterion is reduced, and when the outer diameter is increased, the criterion is used as a criterion. By increasing the predetermined echo intensity, defects extending in the rolling direction can be accurately detected regardless of the size of the object to be inspected.

本発明において、欠陥として検出する際の判定基準に、欠陥の連続性を考慮して許容値を差し引いた反射エコー強度を用いることにより、欠陥をさらに精度よく検出できる。なお、許容値とは、欠陥の幅や太さ等の違いによる測定のバラツキを指し、被検査体の寸法に応じて算出する。
また、本発明において、二以上の欠陥を一の連続した欠陥として検出するための判定基準に、被検査体の圧延方向における欠陥の連続性に加えて、被検査体の表面から内部に向かう方向(深さ方向)における欠陥の連続性を用いることにより、欠陥の寸法や存在位置を正確に把握することができるため、反射エコー強度の弱い欠陥であっても精度よく検出できる。
In the present invention, the defect can be detected with higher accuracy by using the reflection echo intensity obtained by subtracting the allowable value in consideration of the continuity of the defect as a criterion for detection as a defect. The allowable value refers to measurement variations due to differences in the width and thickness of defects, and is calculated according to the dimensions of the object to be inspected.
Further, in the present invention, in addition to the continuity of defects in the rolling direction of the inspection object, the direction from the surface of the inspection object toward the inside is used as a criterion for detecting two or more defects as one continuous defect. By using the continuity of the defect in the depth direction, it is possible to accurately grasp the size and position of the defect, so that even a defect having a weak reflection echo intensity can be detected with high accuracy.

本発明に係る欠陥検出方法は、前記欠陥が検出された前記被検査体においては、測定された前記反射エコーの全てのデータを記録しておくとともに、前記欠陥が検出されなかった前記被検査体においては、測定された前記反射エコーの最大値のデータを記録しておくことが好ましい。
これによれば、被検査体中に存在する欠陥のデータを効率よく記録できる。
In the defect detection method according to the present invention, in the inspected object in which the defect is detected, all data of the measured reflected echo is recorded, and the inspected object in which the defect is not detected In this case, it is preferable to record data of the measured maximum value of the reflected echo.
According to this, it is possible to efficiently record defect data existing in the inspection object.

本発明に係る欠陥検出方法によれば、所定強度以上の反射エコーが、被検査体の圧延方向に所定距離以上連続して測定された部分を欠陥として検出するとともに、二以上の欠陥が所定間隔以下の範囲で隣接して存在する場合には、二以上の介在物を一の介在物として検出するようにしたことによって、例えば長さが数十ミリ未満の介在物のように、反射エコー強度の弱い欠陥であっても精度よく検出できる。   According to the defect detection method of the present invention, the reflected echo of a predetermined intensity or more detects a portion measured continuously over a predetermined distance in the rolling direction of the inspected object as a defect, and two or more defects are at a predetermined interval. When two or more inclusions are detected as one inclusion when they are adjacent in the following range, the reflected echo intensity is, for example, an inclusion having a length of less than several tens of millimeters. Even a weak defect can be accurately detected.

以下、本発明を実施するための最良の形態を図面を参照しながら説明する。
<第一実施形態>
まず、清浄度の劣るSUJ2からなる素材を所定形状に加工した後、旋削、焼入れ及び焼戻し、及び研削を行うことにより、呼び番号NU322(外径:240mm,内径:110mm,幅:50mm)の転がり軸受用内輪を作製した。
The best mode for carrying out the present invention will be described below with reference to the drawings.
<First embodiment>
First, after rolling a material made of SUJ2 having a poor cleanliness into a predetermined shape, turning, quenching and tempering, and grinding are performed to roll with a nominal number NU322 (outer diameter: 240 mm, inner diameter: 110 mm, width: 50 mm). An inner ring for a bearing was produced.

次に、得られた内輪を図2に示す超音波探傷装置に設置して、以下に示す条件で、内輪軌道面における超音波探傷を行った。
この超音波探傷装置は、図2に示すように、超音波伝達媒体が貯留された貯留槽10内に浸漬された被検査体11を円周方向に回転させつつ、超音波探傷用探触子12を被検査体11の軸方向(圧延方向,図2に示すZ方向)に移動させることで、被検査体11の軌道面の全表面の探傷がなされるようになっている。
Next, the obtained inner ring was installed in the ultrasonic flaw detector shown in FIG. 2, and ultrasonic flaw detection was performed on the inner ring raceway surface under the following conditions.
As shown in FIG. 2, this ultrasonic flaw detector is a probe for ultrasonic flaw detection while rotating an object to be inspected 11 immersed in a storage tank 10 in which an ultrasonic transmission medium is stored in the circumferential direction. By moving 12 in the axial direction of the inspection object 11 (rolling direction, Z direction shown in FIG. 2), the entire surface of the track surface of the inspection object 11 is flawed.

また、軌道面が曲面である場合には、さらに、軌道面に沿った軸方向(圧延方向,図2に示すθ方向)に探触子12を回転させながら探傷することにより、軌道面と探触子12との間隔及び角度を一定に保持することができるようになっている。
ここで、探触子12から被検査体11に送信された超音波パルスの反射エコーは、超音波探傷器20で解析される。そして、被検査体11の軸方向及び円周方向における探傷ピッチ毎の反射エコー信号と、ターンテーブル13及び被検査体11を同期回転駆動させるサーボモータ14からのパルス信号とを同期させることにより、軸方向及び円周方向における探傷ピッチ毎の反射エコーが測定され、制御装置30でデジタル表示されるようになっている。
Further, when the raceway surface is a curved surface, flaw detection is further performed by rotating the probe 12 in the axial direction along the raceway surface (rolling direction, θ direction shown in FIG. 2), thereby detecting the raceway surface and the probe surface. It is possible to keep the distance and the angle with the toucher 12 constant.
Here, the reflected echo of the ultrasonic pulse transmitted from the probe 12 to the inspection object 11 is analyzed by the ultrasonic flaw detector 20. Then, by synchronizing the reflected echo signal for each flaw detection pitch in the axial direction and the circumferential direction of the inspection object 11 and the pulse signal from the servo motor 14 for synchronously rotating and driving the turntable 13 and the inspection object 11, Reflected echoes for each flaw detection pitch in the axial direction and the circumferential direction are measured and digitally displayed by the control device 30.

なお、図2中の符号15はサーボモータ駆動用制御アンプを指し、同様に16は探触子12の位置を図中のXYZ方向に調整して、被検査体11の軸方向及び円周方向に移動可能に支持するとともに、被検査体11の軌道面に沿って移動させるXYZステージ、17は探触子12を支持する支持部、18は探触子12を支持部17に取り付ける取り付け具、19は被検査体11の回転状態を検知するロータリーエンコーダ、40はXYZステージ用の位置合わせ制御アンプを指す。   2 designates a servo motor drive control amplifier, and similarly, 16 designates the position of the probe 12 in the XYZ directions in the figure, and the axial direction and circumferential direction of the inspected object 11. And an XYZ stage that is moved along the track surface of the inspected object 11, 17 is a support part that supports the probe 12, and 18 is an attachment that attaches the probe 12 to the support part 17, Reference numeral 19 denotes a rotary encoder that detects the rotation state of the object to be inspected 11, and 40 denotes an alignment control amplifier for an XYZ stage.

〔超音波探傷条件〕
探触子:焦点型探触子
探傷周波数:5〜20MHz
振動子径:6mm
超音波探傷装置:HIS3(日本クラウトクレーマー社製)
入射角:19°(斜角探傷法、屈折角45°),28°(表面波探傷法、屈折角90°)超音波伝達媒体:水(防錆剤を含む)
探傷ゲート:表面から2mmの深さ位置
探傷ピッチ:被検査体の円周方向に0.5mmピッチ、被検査体の軸方向に0.5mmピッチ
[Ultrasonic flaw detection conditions]
Probe: Focus type probe Flaw detection frequency: 5 to 20 MHz
Vibrator diameter: 6 mm
Ultrasonic flaw detector: HIS3 (Nippon Kraut Kramer)
Incident angle: 19 ° (diagonal flaw detection method, refraction angle 45 °), 28 ° (surface wave flaw detection method, refraction angle 90 °) Ultrasonic transmission medium: water (including rust preventive agent)
Flaw detection gate: 2 mm depth position from the surface Flaw detection pitch: 0.5 mm pitch in the circumferential direction of the test object, 0.5 mm pitch in the axial direction of the test object

そして、異なる被検査体11の超音波探傷結果を、図3及び図4にそれぞれ示す。ここで、図3及び図4は、被検査体の軸方向の1/4幅と、円周方向の1/8幅の範囲において、探傷ピッチ毎の反射エコー強度を示す図である。
次に、図3及び図4で示すように欠陥A〜Mが検出された被検査体11において、実際に欠陥調査を行い、この欠陥調査結果と、上述した超音波探傷による検査結果との比較を行った。
And the ultrasonic flaw detection result of different to-be-inspected object 11 is shown in FIG.3 and FIG.4, respectively. Here, FIG. 3 and FIG. 4 are diagrams showing the reflected echo intensity for each flaw detection pitch in the range of the 1/4 width in the axial direction of the object to be inspected and the 1/8 width in the circumferential direction.
Next, as shown in FIG. 3 and FIG. 4, the defect inspection is actually performed on the inspection object 11 in which the defects A to M are detected, and the defect inspection result is compared with the above-described inspection result by the ultrasonic flaw detection. Went.

その結果、図3において、30%以上の反射エコー強度が被検査体11の軸方向に2ピッチ以上連続して測定された欠陥A〜Cは、実際の欠陥調査でも欠陥となる介在物が検出され、30%以上の反射エコー強度が被検査体11の円周方向に2ピッチ以上連続して測定された欠陥D,Eは、実際の欠陥調査では欠陥が検出されなかった。   As a result, in FIG. 3, the defects A to C in which the reflected echo intensity of 30% or more is continuously measured in the axial direction of the inspection object 11 by two pitches or more are detected as inclusions that become defects even in the actual defect inspection. In the defects D and E, in which the reflected echo intensity of 30% or more was continuously measured for two or more pitches in the circumferential direction of the inspection object 11, no defect was detected in the actual defect inspection.

以上の結果から、所定強度以上の反射エコーが被検査体11の軸方向に所定距離以上連続して存在する部分を欠陥として検出することにより、欠陥を精度よく検出できることが分かった。
また、図5に示すように、被検査体11の軸方向において1ピッチの距離を介して隣接する欠陥Fと欠陥Gは、一の連続した介在物による欠陥であった。同様に、欠陥Jと欠陥Kも、一の連続した介在物による欠陥であった。
From the above results, it was found that a defect can be detected with high accuracy by detecting a portion where a reflection echo having a predetermined intensity or more continuously exists in the axial direction of the inspection object 11 for a predetermined distance or more as a defect.
Moreover, as shown in FIG. 5, the defect F and the defect G which adjoin via the distance of 1 pitch in the axial direction of the to-be-inspected object 11 were the defects by one continuous inclusion. Similarly, the defect J and the defect K were also defects due to one continuous inclusion.

一方、図6に示すように、被検査体11の軸方向において2ピッチの距離を介して隣接する欠陥Hと欠陥Iは、それぞれ異なる介在物による二の欠陥であった。同様に、欠陥Lと欠陥Mは、それぞれ異なる介在物による二の欠陥であった。
以上の結果から、二以上の欠陥が所定間隔以下の範囲で隣接して存在する場合には、一の連続した欠陥として検出することにより、欠陥を精度よく検出できることが分かった。
On the other hand, as shown in FIG. 6, the defect H and the defect I which are adjacent to each other through a distance of 2 pitches in the axial direction of the inspection object 11 are two defects due to different inclusions. Similarly, the defect L and the defect M were two defects caused by different inclusions.
From the above results, it was found that when two or more defects exist adjacent to each other within a predetermined interval or less, the defects can be detected with high accuracy by detecting them as one continuous defect.

<第二実施形態>
まず、清浄度の劣るSUJ2からなる素材を所定形状に加工した後、旋削、焼入れ及び焼戻し、研削を行うことにより、呼び番号6202(外径:35mm,内径:15mm,幅:11mm)の転がり軸受用内輪及び外輪を作製した。
次に、得られた内輪及び外輪を図2に示す超音波探傷装置にそれぞれ設置して、以下に示す条件で、各軌道面における超音波探傷を行った。
<Second embodiment>
First, after rolling a material made of SUJ2 having poor cleanliness into a predetermined shape, rolling, quenching, tempering, and grinding are performed, so that a rolling bearing having a nominal number of 6202 (outer diameter: 35 mm, inner diameter: 15 mm, width: 11 mm). An inner ring and an outer ring were produced.
Next, the obtained inner ring and outer ring were respectively installed in the ultrasonic flaw detector shown in FIG. 2, and ultrasonic flaw detection was performed on each track surface under the following conditions.

〔超音波探傷条件〕
探触子:焦点型探触子
探傷周波数:5〜20MHz
振動子径:6mm
超音波探傷装置:HIS3(日本クラウトクレーマー社製)
入射角:19°(斜角探傷法、屈折角45°),28°(表面波探傷法、屈折角90°)超音波伝達媒体:炭化水素系洗浄液(白灯油及び防錆剤を含む)
探傷ゲート:表面から2mmの深さ位置
探傷ピッチ:被検査体の円周方向に0.5mmピッチ、被検査体の軸方向に0.5mmピッチ
[Ultrasonic flaw detection conditions]
Probe: Focus type probe Flaw detection frequency: 5 to 20 MHz
Vibrator diameter: 6 mm
Ultrasonic flaw detector: HIS3 (Nippon Kraut Kramer)
Incident angle: 19 ° (diagonal flaw detection method, refraction angle 45 °), 28 ° (surface wave flaw detection method, refraction angle 90 °) Ultrasonic transmission medium: hydrocarbon-based cleaning liquid (including white kerosene and rust inhibitor)
Flaw detection gate: 2 mm depth position from the surface Flaw detection pitch: 0.5 mm pitch in the circumferential direction of the test object, 0.5 mm pitch in the axial direction of the test object

そして、同一の被検査体1 1の超音波探傷結果を、本発明例である図7に示す方法と、従来例である図8に示す方法との両方で記録した。
図7は、被検査体の軸方向及び円周方向の全範囲において、超音波探傷によって得られた探傷ピッチ毎の反射エコー強度を示す図である。図7に示すように記録した場合には、被検査体11中に存在する欠陥の位置及び長さを一目で判定することができた。
Then, the ultrasonic flaw detection results of the same specimen 11 were recorded by both the method shown in FIG. 7 as an example of the present invention and the method shown in FIG. 8 as a conventional example.
FIG. 7 is a diagram showing the reflected echo intensity for each flaw detection pitch obtained by ultrasonic flaw detection in the entire range in the axial direction and the circumferential direction of the inspection object. In the case of recording as shown in FIG. 7, the position and length of the defect present in the inspection object 11 could be determined at a glance.

一方、図8は、被検査体の軸方向及び円周方向の全範囲において、探傷時間と、反射エコー強度との関係を示す図である。図8に示すように記録した場合には、所定強度以上の反射エコーが得られた探傷時間と、被検査体11の円周方向に一回転する時間とに基づいて、欠陥が検出された位置を判定するため、被検査体11中に存在する欠陥の位置及び長さを正確に判定することが難しく、判定に時間を要した。   On the other hand, FIG. 8 is a diagram showing the relationship between the flaw detection time and the reflected echo intensity over the entire range in the axial direction and the circumferential direction of the inspection object. In the case of recording as shown in FIG. 8, the position at which the defect is detected based on the flaw detection time when the reflected echo having a predetermined intensity or more was obtained and the time for one rotation in the circumferential direction of the inspection object 11. Therefore, it is difficult to accurately determine the position and length of the defect present in the inspection object 11, and it takes time for the determination.

また、被検査体11の超音波探傷により得られた反射エコーの最大値のデータを、図9に示すように記録した。なお、図9においては、超音波探傷結果の2日分の記録を示し、反射エコーの最大値のデータが所定強度(50%)未満のサンプルを良品として判定し、最大値が所定強度(50%)以上のサンプルを不良品として判定した。
そして、不良品として判定されたサンプルNo.2,No.18においては、得られた反射エコーの全てのデータを図7に示すように記録した。
Further, data of the maximum value of the reflected echo obtained by the ultrasonic flaw detection of the inspection object 11 was recorded as shown in FIG. Note that FIG. 9 shows a record of the ultrasonic flaw detection results for two days, a sample whose reflection echo maximum value data is less than a predetermined intensity (50%) is determined as a non-defective product, and the maximum value is a predetermined intensity (50 %) Or more samples were judged as defective.
And sample No. determined as a defective product. 2, no. In FIG. 18, all the data of the obtained reflection echoes were recorded as shown in FIG.

以上の結果から、欠陥が検出されたサンプルにおいては、得られた反射エコーの全てのデータを記録し、欠陥が検出されなかったサンプルにおいては、得られた反射エコーの最大値のデータを記録することにより、不良品として判定されたサンプルに存在する欠陥の情報を詳細に把握できるとともに、各サンプルの合否判定の結果を容易に認識でき、全数検査の証明が行えることが分かった。   From the above results, all the data of the obtained reflection echo is recorded in the sample in which the defect is detected, and the maximum value data of the obtained reflection echo is recorded in the sample in which the defect is not detected. As a result, it was found that the defect information existing in the sample determined as a defective product can be grasped in detail, the result of the pass / fail determination of each sample can be easily recognized, and the proof of 100% inspection can be performed.

また、良品として判定されたサンプルにおいては、得られた反射エコーの最大値のデータを記録することにより、反射エコーの最大値の平均データが一日目よりも二日目のほうが大きい等、製造ロット毎の傾向を容易に認識できることが分かった。
なお、上述した第一及び第二実施形態では、いずれも反射エコー強度を三段階に分けて欠陥の検出を行ったが、これに限らず、例えば反射エコー強度を二段階に分けて欠陥の検出を行ってもよいし、図10に示すように、反射エコー強度を四段階以上に分けて欠陥の検出を行ってもよい。
In addition, for samples determined to be non-defective, recording the maximum value of the obtained reflection echo, the average data of the maximum value of the reflection echo is larger on the second day than on the first day, etc. It turned out that the tendency for every lot can be recognized easily.
In the first and second embodiments described above, the defect detection is performed by dividing the reflection echo intensity into three stages. However, the present invention is not limited to this. For example, the defect detection is performed by dividing the reflection echo intensity into two stages. Alternatively, as shown in FIG. 10, the reflected echo intensity may be divided into four or more stages to detect a defect.

ここで、図10に示すように、反射エコー強度が30%以上の欠陥a〜nが検出された被検査体において、上述と同様に、実際に欠陥調査を行ったところ、30%以上の反射エコー強度が、被検査体の軸方向において2ピッチ以上連続して測定された欠陥a,b,g,h,i,j,l,mでは、実際の欠陥検査でも介在物による欠陥が検出された。
また、被検査体の軸方向において、1ピッチの距離を介して隣接する欠陥cと欠陥d、欠陥eと欠陥fでは、いずれも一の連続した介在物による欠陥が検出された。
一方、被検査体の軸方向において1ピッチのみで測定された欠陥k,nでは、実際の欠陥調査でも介在物による欠陥が検出されなかった。また、被検査体の軸方向において2ピッチの距離を介して隣接する欠陥hと欠陥i、及び欠陥kと欠陥lでは、それぞれ異なる二の介在物による欠陥が検出された。
Here, as shown in FIG. 10, in the inspection object in which the defects a to n having the reflection echo intensity of 30% or more were detected, the defect inspection was actually performed in the same manner as described above. In the defects a, b, g, h, i, j, l, and m in which the echo intensity is continuously measured in the axial direction of the object to be inspected, defects due to inclusions are detected even in the actual defect inspection. It was.
Further, in the axial direction of the object to be inspected, a defect due to one continuous inclusion was detected in each of the defect c and the defect d, and the defect e and the defect f adjacent to each other through a distance of 1 pitch.
On the other hand, in the defects k and n measured at only one pitch in the axial direction of the object to be inspected, no defects due to inclusions were detected in the actual defect inspection. In addition, a defect due to two different inclusions was detected in the defect h and the defect i and the defect k and the defect l adjacent to each other through a distance of 2 pitches in the axial direction of the inspection object.

<第三実施形態>
まず、SUJ2製の球状化焼鈍材からなる棒状素材を所定形状に加工した後、旋削、焼入れ及び焼戻し、及び研削を行うことにより、表1に示す各外径寸法で軸方向長さが200mmである被検査体を作製した。そして、各被検査体の軸方向一端面において、外縁部から芯部に向かう距離が6mmの位置にφ0 .5 mm×10mmの人工欠陥を形成した。
<Third embodiment>
First, after a rod-shaped material made of a spheroidized annealing material made of SUJ2 is processed into a predetermined shape, turning, quenching and tempering, and grinding are performed, so that the axial length is 200 mm with each outer diameter dimension shown in Table 1. An inspection object was produced. Then, on one end face in the axial direction of each object to be inspected, the distance from the outer edge portion to the core portion is 6 mm at a position of φ0. An artificial defect of 5 mm × 10 mm was formed.

次に、得られた被検査体を図11に示す超音波探傷装置に設置した。そして、外径寸法が60mm以上65mm未満の被検査体に形成した人工欠陥の反射エコー強度が100%となるように焦点距離(水距離)とアンプ強度を調整した以下に示す条件で、被検査体の表面における超音波探傷を行った。この結果は、表1に併せて示した。また、表1には、被検査体の外径寸法に応じて算出される許容値を差し引いた反射エコー強度も示した。
この超音波探傷装置は、図11に示すように、超音波伝達媒体が貯留された貯留槽50内に探触子52が配置されており、この貯留槽50内に、人工欠陥51aが形成された被検査体51を浸漬して円周方向に回転させることで、被検査体51の表面の探傷がなされるようになっている。
Next, the obtained object to be inspected was placed in the ultrasonic flaw detector shown in FIG. Then, the focal length (water distance) and the amplifier strength were adjusted so that the reflection echo intensity of the artificial defect formed on the inspection object having an outer diameter dimension of 60 mm or more and less than 65 mm was 100%. Ultrasonic flaw detection was performed on the surface of the body. The results are also shown in Table 1. Table 1 also shows the reflected echo intensity obtained by subtracting the allowable value calculated according to the outer diameter size of the object to be inspected.
In this ultrasonic flaw detector, as shown in FIG. 11, a probe 52 is disposed in a storage tank 50 in which an ultrasonic transmission medium is stored, and an artificial defect 51 a is formed in the storage tank 50. The surface of the inspection object 51 is flawed by immersing the inspection object 51 and rotating it in the circumferential direction.

〔超音波探傷条件〕
探触子:焦点型探触子
探傷周波数:15MHz
振動子径:6mm
超音波探傷装置:USD15(日本クラウトクレーマー製)
入射角 0°(垂直探傷法)
超音波伝達媒体:水(防錆剤を含む)
探傷ゲート:表面から2〜20mmの深さ位置
[Ultrasonic flaw detection conditions]
Probe: Focus type probe Flaw detection frequency: 15 MHz
Vibrator diameter: 6 mm
Ultrasonic flaw detector: USD15 (manufactured by Nippon Kraut Kramer)
Incident angle 0 ° (Vertical flaw detection)
Ultrasonic transmission medium: water (including rust inhibitor)
Flaw detection gate: 2-20mm depth position from the surface

表1に示すように、被検査体の外径寸法が小さくなる程、反射エコー強度が小さくなっていることが分かる。この結果から、欠陥として検出する際に判定基準とする反射エコーの所定強度を、被検査体の寸法に応じて決定することにより、欠陥をさらに精度よく検出できることが分かった。また、欠陥として検出する際に判定基準とする反射エコーの所定強度を、許容値を差し引いた値とすることにより、欠陥をさらに精度よく検出できることが分かった。   As shown in Table 1, it can be seen that the smaller the outer diameter of the object to be inspected, the smaller the reflected echo intensity. From this result, it was found that the defect can be detected with higher accuracy by determining the predetermined intensity of the reflected echo as a determination criterion when detecting as a defect according to the size of the object to be inspected. Further, it was found that the defect can be detected with higher accuracy by setting the predetermined intensity of the reflected echo used as a determination criterion when detecting as a defect to a value obtained by subtracting the allowable value.

本発明に係る欠陥検出方法で用いる圧延方向の連続性の一例を示す説明図である。It is explanatory drawing which shows an example of the continuity of the rolling direction used with the defect detection method which concerns on this invention. 本発明に係る欠陥検出方法で用いる超音波探傷装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the ultrasonic flaw detector used with the defect detection method which concerns on this invention. 第一実施形態における超音波探傷結果の一例を示す図である。It is a figure which shows an example of the ultrasonic flaw detection result in 1st embodiment. 第一実施形態における超音波探傷結果の他の例を示す図である。It is a figure which shows the other example of the ultrasonic flaw detection result in 1st embodiment. 図4で検出された欠陥FとGを示す光学顕微鏡写真である。5 is an optical micrograph showing defects F and G detected in FIG. 4. 図4で検出された欠陥HとIを示す光学顕微鏡写真である。5 is an optical micrograph showing defects H and I detected in FIG. 4. 第二実施形態における超音波探傷結果の一例を示す図である。It is a figure which shows an example of the ultrasonic flaw detection result in 2nd embodiment. 第二実施形態における超音波探傷結果の他の例を示す図である。It is a figure which shows the other example of the ultrasonic flaw detection result in 2nd embodiment. 第二実施形態における超音波探傷結果の他の例を示す図である。It is a figure which shows the other example of the ultrasonic flaw detection result in 2nd embodiment. 第一及び第二実施形態における超音波探傷試験の他の例を示す図である。It is a figure which shows the other example of the ultrasonic flaw test in 1st and 2nd embodiment. 本発明にかかる欠陥検出方法で用いる超音波探傷装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the ultrasonic flaw detector used with the defect detection method concerning this invention.

符号の説明Explanation of symbols

10 貯留槽
11 被検査体
12 探触子
13 ターンテーブル
14 サーボモータ
15 サーボモータ駆動用制御アンプ
16 XYZステージ
17 支持部
18 取り付け具
19 ロータリーエンコーダ
20 超音波探傷器
30 制御装置
40 位置合わせ制御アンプ
50 貯留槽
51 被検査体
52 探触子
DESCRIPTION OF SYMBOLS 10 Storage tank 11 Inspected object 12 Probe 13 Turntable 14 Servo motor 15 Servo motor drive control amplifier 16 XYZ stage 17 Support part 18 Attaching tool 19 Rotary encoder 20 Ultrasonic flaw detector 30 Controller 40 Positioning control amplifier 50 Storage tank 51 Inspected object 52 Probe

Claims (3)

被検査体に超音波を照射し、前記被検査体中に存在する欠陥からの反射エコーを測定することで前記欠陥を検出する欠陥検出方法において、
所定強度以上の前記反射エコーが、前記被検査体の圧延方向に所定距離以上連続して測定された部分を前記欠陥として検出するとともに、
二以上の前記欠陥が、前記被検査体の圧延方向に所定間隔以下の範囲で隣接して存在する場合には、二以上の前記欠陥を一の前記欠陥として検出することを特徴とする欠陥検出方法。
In the defect detection method for detecting the defect by irradiating the object to be inspected with ultrasonic waves and measuring a reflection echo from the defect existing in the object to be inspected,
The reflected echo of a predetermined intensity or more is detected as the defect a portion measured continuously over a predetermined distance in the rolling direction of the inspection object,
When two or more of the defects are present adjacent to each other in the rolling direction of the inspection object within a predetermined interval or less, two or more of the defects are detected as one defect. Method.
前記欠陥が検出された前記被検査体においては、測定された前記反射エコーの全てのデータを記録しておくとともに、前記欠陥が検出されなかった前記被検査体においては、測定された前記反射エコーの最大値のデータを記録しておくことを特徴とする請求項1に記載の欠陥検出方法。   In the inspected object in which the defect is detected, all data of the measured reflected echo is recorded, and in the inspected object in which the defect is not detected, the measured reflected echo is recorded. The defect detection method according to claim 1, wherein data of a maximum value is recorded. 前記欠陥として検出する際に判定基準とする前記反射エコーの所定強度を、前記被検査体の寸法に応じて決定することを特徴とする請求項1に記載の欠陥検出方法。   The defect detection method according to claim 1, wherein a predetermined intensity of the reflected echo that is used as a criterion for detection as the defect is determined according to a dimension of the inspection object.
JP2006020941A 2005-01-31 2006-01-30 Defect detecting method Pending JP2006234807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006020941A JP2006234807A (en) 2005-01-31 2006-01-30 Defect detecting method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005023487 2005-01-31
JP2006020941A JP2006234807A (en) 2005-01-31 2006-01-30 Defect detecting method

Publications (1)

Publication Number Publication Date
JP2006234807A true JP2006234807A (en) 2006-09-07

Family

ID=37042595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006020941A Pending JP2006234807A (en) 2005-01-31 2006-01-30 Defect detecting method

Country Status (1)

Country Link
JP (1) JP2006234807A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236794A (en) * 2008-03-28 2009-10-15 Sumitomo Metal Ind Ltd Ultrasonic flaw detecting method and device of pipe
JP2015004530A (en) * 2013-06-19 2015-01-08 日本精工株式会社 Ultrasonic wave inspection method and device for round-bar steel

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63277963A (en) * 1987-03-12 1988-11-15 Kobe Steel Ltd Method for deciding acceptance or rejection of material to be inspected such as billet
JPH0385444A (en) * 1989-08-30 1991-04-10 Hitachi Constr Mach Co Ltd Detecting system for continuity defect in ultrasonic measurement
JPH06258302A (en) * 1993-03-03 1994-09-16 Mitsubishi Electric Corp Ultrasonic flaw-detection apparatus
JPH085616A (en) * 1994-06-15 1996-01-12 Nisshin Steel Co Ltd Method and apparatus for inspecting flaw on surface layer of roll
JPH0842576A (en) * 1994-07-29 1996-02-13 Nippon Seiko Kk Rolling bearing
JPH10206396A (en) * 1997-01-17 1998-08-07 Railway Technical Res Inst Ultrasonic automatic flaw detection method for solid wheel shaft and device therefor
JP2000130447A (en) * 1998-10-28 2000-05-12 Nsk Ltd Rolling bearing
JP2000176543A (en) * 1998-12-09 2000-06-27 Kawasaki Steel Corp Detection and production of steel plate, and treating equipment for hot-rolled steel plate and producing equipment for cold-rolled steel plate
JP2002207028A (en) * 2001-01-11 2002-07-26 Sumitomo Metal Ind Ltd Flaw discriminating method
JP2002317821A (en) * 2000-12-25 2002-10-31 Nsk Ltd Rolling bearing, and ultrasonic inspection method of bearing washer
JP2003222617A (en) * 2002-01-31 2003-08-08 Sumitomo Metal Ind Ltd Method for judging harmful defect in ultrasonic flaw detection, and method for utilizing its judgment result
JP2003301850A (en) * 2002-04-10 2003-10-24 Nsk Ltd Roller bearing

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63277963A (en) * 1987-03-12 1988-11-15 Kobe Steel Ltd Method for deciding acceptance or rejection of material to be inspected such as billet
JPH0385444A (en) * 1989-08-30 1991-04-10 Hitachi Constr Mach Co Ltd Detecting system for continuity defect in ultrasonic measurement
JPH06258302A (en) * 1993-03-03 1994-09-16 Mitsubishi Electric Corp Ultrasonic flaw-detection apparatus
JPH085616A (en) * 1994-06-15 1996-01-12 Nisshin Steel Co Ltd Method and apparatus for inspecting flaw on surface layer of roll
JPH0842576A (en) * 1994-07-29 1996-02-13 Nippon Seiko Kk Rolling bearing
JPH10206396A (en) * 1997-01-17 1998-08-07 Railway Technical Res Inst Ultrasonic automatic flaw detection method for solid wheel shaft and device therefor
JP2000130447A (en) * 1998-10-28 2000-05-12 Nsk Ltd Rolling bearing
JP2000176543A (en) * 1998-12-09 2000-06-27 Kawasaki Steel Corp Detection and production of steel plate, and treating equipment for hot-rolled steel plate and producing equipment for cold-rolled steel plate
JP2002317821A (en) * 2000-12-25 2002-10-31 Nsk Ltd Rolling bearing, and ultrasonic inspection method of bearing washer
JP2002207028A (en) * 2001-01-11 2002-07-26 Sumitomo Metal Ind Ltd Flaw discriminating method
JP2003222617A (en) * 2002-01-31 2003-08-08 Sumitomo Metal Ind Ltd Method for judging harmful defect in ultrasonic flaw detection, and method for utilizing its judgment result
JP2003301850A (en) * 2002-04-10 2003-10-24 Nsk Ltd Roller bearing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236794A (en) * 2008-03-28 2009-10-15 Sumitomo Metal Ind Ltd Ultrasonic flaw detecting method and device of pipe
JP2015004530A (en) * 2013-06-19 2015-01-08 日本精工株式会社 Ultrasonic wave inspection method and device for round-bar steel

Similar Documents

Publication Publication Date Title
US20070289385A1 (en) Ultrasonic Flaw Detection Method For Roller Bearing, And Method For Detecting Flaws
KR101671084B1 (en) Ultrasonic flaw-detection method, ultrasonic flaw-detection device, and method for producing pipe material
JPWO2003060507A1 (en) Steel for bearing and its large inclusion evaluation method, and rolling bearing
US8490492B2 (en) Method for nondestructive testing of pipes
CN111751448B (en) Surface leakage wave ultrasonic synthetic aperture focusing imaging method
CN112379001A (en) Process method for reducing detection blind area of railway bearing ring by ultrasonic flaw detection
Murav’ev et al. Evaluating damage accumulated in car wheelset axle journals by the ultrasonic method using Rayleigh and head waves
JP2006234807A (en) Defect detecting method
JP2010127618A (en) Automatic sphere inspection method and device for the same with ultrasonic flaw detection system
JP2010127621A (en) Automatic sphere inspection method and device for the same with ultrasonic flaw detection system
EP1882923A3 (en) Method and apparatus for ultrasonic inspection of steel pipes
JP4645289B2 (en) Ultrasonic flaw detection method for rolling bearings
CN115389623A (en) Continuous casting billet ultrasonic flaw detection process
RU2394235C1 (en) Method for ultrasonic inspection of welded joints of small-diametre pipes
JP2008151588A (en) Flaw evaluation method of two-layered bellows and eddy current flaw detector used therein
JP2008170408A (en) Method and device for inspecting nonmetallic inclusion in component of rolling apparatus
JP4015935B2 (en) Inclusion detection evaluation method in steel by water immersion ultrasonic flaw detection
JP2011047655A (en) Defect recognition method and defect recognition device using ultrasonic wave
RU2472143C1 (en) Method of ultrasound control
JP2016102665A (en) Ultrasonic flaw detection device
JP2015094588A (en) Ultrasonic flaw inspection method of measurement target object material
JPH09257761A (en) Ultrasonic inspection of cast piece
JP2003329653A (en) Evaluation method of copper alloy and copper alloy for bearing cage
RU2653122C1 (en) Method for detecting corrosive damages on hard to reach surfaces of products
JP2003139143A (en) Rolling bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110712