JP2008170408A - Method and device for inspecting nonmetallic inclusion in component of rolling apparatus - Google Patents

Method and device for inspecting nonmetallic inclusion in component of rolling apparatus Download PDF

Info

Publication number
JP2008170408A
JP2008170408A JP2007045377A JP2007045377A JP2008170408A JP 2008170408 A JP2008170408 A JP 2008170408A JP 2007045377 A JP2007045377 A JP 2007045377A JP 2007045377 A JP2007045377 A JP 2007045377A JP 2008170408 A JP2008170408 A JP 2008170408A
Authority
JP
Japan
Prior art keywords
rolling device
rolling
electromagnetic induction
metallic
metallic inclusions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007045377A
Other languages
Japanese (ja)
Inventor
Kazuhiro Kinouchi
一宏 木野内
Juntaro Sawara
淳太郎 佐原
Sonji Ryu
尊慈 劉
Takanori Miyasaka
孝範 宮坂
Noboru Yasuda
昇 安田
Kyosuke Tokiwa
恭輔 常盤
Kenji Imanishi
賢治 今西
Kinji Yugawa
謹次 湯川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2007045377A priority Critical patent/JP2008170408A/en
Publication of JP2008170408A publication Critical patent/JP2008170408A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for inspecting a nonmetallic inclusion in a component of a rolling apparatus, capable of precisely inspecting the presence of the nonmetallic inclusion in a surface layer of the component of the rolling apparatus that shortens the life of the rolling apparatus, and to provide a device therefor. <P>SOLUTION: The device for inspecting the presence of the nonmetallic inclusion in the surface layer of the component of the rolling apparatus comprises: an electromagnetic induction sensor 12 having an excitation coil 121 for providing an alternating magnetic field on the surface layer of the component of the rolling apparatus and an induction coil 122 for detecting the magnetic flux density of the alternating magnetic field provided on the surface layer of the component of the rolling apparatus; an inductance change detecting circuit 13 as an induced electromotive force detecting unit for detecting the magnitude of the induced electromotive force generated in induction coil 122; and a comparison and discrimination circuit 14 for comparing the magnitude of the induced electromotive force detected in this inductance change detecting circuit 13 with a threshold to judge the presence of the nonmetallic inclusion. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、転動装置の転動装置部品(転がり軸受の軌道輪や転動体、直動案内軸受装置の案内レールまたはスライダまたは転動体、ボールねじのねじ軸またはナットまたは転動体等)の表層部に、転動装置の寿命を短くするような非金属介在物が存在するか否かを検査する技術に関する。   The present invention relates to a rolling device component of a rolling device (such as a bearing ring or rolling element of a rolling bearing, a guide rail or slider or rolling element of a linear guide bearing device, a screw shaft or nut of a ball screw, or a rolling element). The present invention relates to a technique for inspecting whether or not there are non-metallic inclusions that shorten the life of a rolling device.

転がり軸受の軌道輪は転動体が転動する軌道面を有しており、この軌道面を含めた軌道輪の表層部に存在する非金属介在物の大きさが500μm以上になると、これを起点した亀裂等の欠陥が軌道輪に発生し、転がり軸受の寿命を短くする結果となる。そこで、転がり軸受の寿命を短くするような非金属介在物が軌道輪の表層部に存在するか否かを検査する技術として、非金属介在物の有無を超音波探傷により検査する技術が知られている(例えば、特許文献1及び特許文献2参照)
しかしながら、特許文献1及び特許文献2に記載された技術では、例えば超音波の周波数が2MHz未満で軌道輪の表層部に存在する非金属介在物の大きさが100μm以下の場合には非金属介在物を精度よく検出することが困難になる。また、超音波の周波数が30MHzを超えると、超音波が軌道輪の内部で減衰してしまうため、軌道面から転動体直径の2%に相当する深さまでの表層部を精度よく探傷することが難しくなるという問題があった。また、転がり接触時のせん断応力が最大となる深さ、すなわち軌道面から転動体直径の2%に相当する深さよりさらに深い箇所に非金属介在物や欠陥が存在するケースへの対応も実用的に重要である。
The bearing ring of the rolling bearing has a raceway surface on which the rolling elements roll. When the size of non-metallic inclusions existing on the surface layer of the raceway ring including this raceway surface is 500 μm or more, this is the starting point. Defects such as cracks occur in the bearing ring, resulting in shortening the life of the rolling bearing. Therefore, as a technique for inspecting whether or not non-metallic inclusions that shorten the life of a rolling bearing are present in the surface layer portion of the bearing ring, a technique for inspecting the presence or absence of non-metallic inclusions by ultrasonic flaw detection is known. (For example, see Patent Document 1 and Patent Document 2)
However, in the technique described in Patent Document 1 and Patent Document 2, for example, when the frequency of the ultrasonic wave is less than 2 MHz and the size of the nonmetallic inclusions existing on the surface layer of the raceway is 100 μm or less, the nonmetallic inclusions are used. It becomes difficult to accurately detect an object. In addition, when the frequency of the ultrasonic wave exceeds 30 MHz, the ultrasonic wave is attenuated inside the raceway ring, so that the surface layer portion from the raceway surface to a depth corresponding to 2% of the diameter of the rolling element can be accurately detected. There was a problem that it became difficult. It is also practical to deal with cases where non-metallic inclusions or defects exist at a depth deeper than the depth corresponding to 2% of the rolling element diameter from the raceway surface where the shear stress at the time of rolling contact is maximum. Is important to.

また、タンデム圧延機等の圧延ロールを支持する軸受として用いられる転がり軸受は、多量の冷却水が飛散する環境下で使用される。このため、ワークに散水された冷却水の一部が転がり軸受の内部に侵入して潤滑剤に混入すると、転がり軸受の耐久性が大きく低下する。例えば、潤滑剤中に6%の水分が混入した場合は、水分混入がない場合に比べ、軸受の転がり疲れ寿命が数分の1から20分の1程度に低下することが報告されている(非特許文献1参照)。そこで、冷却水等の液体が転がり軸受の内部に侵入することを防止する方策として、転がり軸受が収容されたチョック(軸受箱)に接触ゴムシールを装着し、チョックの内部を液密に密封して潤滑剤中の水分濃度を40%から10%未満に減少させる技術(例えば、非特許文献2参照)が提案されているが、その後のワークロール用軸受の使用実績を調査した結果、焼き付き事故を低減できるものの剥離発生までの使用時間、すなわち軸受寿命の低下についてはあまり改善されていないことが判明した(例えば、特許文献5参照)。   Moreover, the rolling bearing used as a bearing which supports rolling rolls, such as a tandem rolling mill, is used in the environment where a lot of cooling water scatters. For this reason, if a part of the cooling water sprayed on the work enters the inside of the rolling bearing and enters the lubricant, the durability of the rolling bearing is greatly reduced. For example, it has been reported that when 6% of water is mixed in the lubricant, the rolling fatigue life of the bearing is reduced from a fraction of 1 to about 1/20 compared to the case where no water is mixed ( Non-patent document 1). Therefore, as a measure to prevent liquids such as cooling water from entering the inside of the rolling bearing, a contact rubber seal is attached to the chock (bearing box) in which the rolling bearing is accommodated, and the inside of the chock is sealed in a liquid-tight manner. A technique for reducing the moisture concentration in the lubricant from 40% to less than 10% (for example, see Non-Patent Document 2) has been proposed. Although it can be reduced, it has been found that the use time until the occurrence of peeling, that is, a reduction in bearing life, has not been improved much (for example, see Patent Document 5).

図6は軸受寿命が低下するメカニズムを説明するための図であり、同図(a)に示すように、転動体Tから受けるラジアル荷重によって深さ方向の弾性変形Δhが固定側軌道輪の軌道面Kに発生すると、せん断応力fが転動体Tと軌道面Kとの接触部に発生する。そして、図6(b)に示すように、非金属介在物Wが軌道面Kの表層部に存在すると、転動体Tと軌道面Kとの接触部に発生したせん断応力fによって非金属介在物Wの周囲に空隙Sが発生し、このとき、軌道面K上の潤滑剤に多量の水分が含まれていると、潤滑剤中の水分が空隙Sに浸入することによって金属素地の腐食溶解が起こり、応力腐食割れや剥離が軌道面Kに発生しやすくなる。   FIG. 6 is a diagram for explaining the mechanism for reducing the bearing life. As shown in FIG. 6A, the elastic deformation Δh in the depth direction due to the radial load received from the rolling element T causes the raceway of the fixed side ring. When generated on the surface K, a shear stress f is generated at the contact portion between the rolling element T and the raceway surface K. Then, as shown in FIG. 6B, when the nonmetallic inclusion W is present in the surface layer portion of the raceway surface K, the nonmetallic inclusion is caused by the shear stress f generated at the contact portion between the rolling element T and the raceway surface K. When a gap S is generated around W and a large amount of moisture is contained in the lubricant on the raceway surface K at this time, the moisture in the lubricant enters the gap S, so that the metal substrate is corroded and dissolved. As a result, stress corrosion cracking and peeling easily occur on the raceway surface K.

軌道面を含めた軌道輪の表層部に存在する非金属介在物の悪影響を防止する技術としては、軌道面を含めた軌道輪の表層部(軌道面から転動体直径の2%に相当する深さまでの表層部)に500μmを超える大きさの非金属介在物が存在するか否かを超音波探傷により検査する技術が知られている(例えば、特許文献2−4参照)。また、今回問題点としている水が混入した場合については、固定側軌道輪軌道面と金属素地との間に直径100μmを超える酸化物系非金属介在物が存在するか否かを超音波探傷により検査し、水浸入に伴う応力腐食割れとそれによる軸受の短寿命化を防止する技術が提案されている(特許文献5参照)。   As a technique for preventing the adverse effects of non-metallic inclusions existing on the surface layer of the race ring including the raceway surface, the surface layer portion of the race ring including the raceway surface (the depth corresponding to 2% of the rolling element diameter from the raceway surface). There is known a technique for inspecting whether or not non-metallic inclusions having a size exceeding 500 μm exist in the surface layer part) by ultrasonic flaw detection (see, for example, Patent Documents 2-4). In addition, when water, which is a problem this time, is mixed, whether or not there is an oxide-based nonmetallic inclusion having a diameter exceeding 100 μm exists between the fixed-side raceway surface and the metal substrate by ultrasonic flaw detection. A technique for inspecting and preventing stress corrosion cracking due to water intrusion and thereby shortening the life of the bearing has been proposed (see Patent Document 5).

しかし、転がり軸受のさらに安定した長寿命化を図るためには、実際問題として軸受用鋼材において多く見られる地傷と言われる100μm以上の非金属介在物が存在しないことを保証することが必要となる。このレベルの非金属介在物が存在しないことを保証するためには、超音波波長の1/2に相当する30MHz以上の高周波を用いる必要があり、超音波探傷法を用いた場合、超音波の減衰が著しいといったデメリットが生じる。このため、介在物などの欠陥の安定した検出は材料(軌道面)表面のみに限られてしまい、また、検出の感度は表面粗さにも大きく影響を受けてしまうという問題があった。また、非破壊探傷法の中でも超音波探傷法や放射線探傷法は装置や検査にコストがかかるといった実用上の問題点もある。   However, in order to achieve a more stable and long life of the rolling bearing, it is necessary to ensure that there are no non-metallic inclusions of 100 μm or more, which are said to be ground scratches often seen in steel materials for bearings as a practical problem. Become. In order to guarantee that this level of non-metallic inclusions does not exist, it is necessary to use a high frequency of 30 MHz or higher corresponding to 1/2 of the ultrasonic wavelength, and when using the ultrasonic flaw detection method, There is a demerit such as significant attenuation. For this reason, stable detection of defects such as inclusions is limited only to the material (orbital surface) surface, and the detection sensitivity is greatly affected by the surface roughness. Further, among the nondestructive flaw detection methods, the ultrasonic flaw detection method and the radiation flaw detection method also have a practical problem that the apparatus and inspection are expensive.

鉄鋼圧延用軸受等で非常に大きな荷重を受ける軸受に使用されるころは、その表面からころ平均直径Daの2%に相当する深さまでの範囲内に平方根長さ0.2mmを超える欠陥(非金属介在物等)が存在すると、転がり疲労による剥離が発生し易くなる。また、ころの全断面範囲内に最大長さ0.5mmを超える欠陥(非金属介在物等)が存在すると、繰り返し曲げ応力、引張応力、圧縮応力等の応力を受けるため、割れがころに発生し易くなる。
特許第03653984号公報 特開2000−130447号公報 特開2004−77206号公報 特開2003−139143号公報 特開2000−110841号公報 古村恭三郎、城田伸一、平川清:「表面起点及び内部起点の転がり疲れについて」、 NSK BearingJournal,NO.636,pp.1‐10,1977 K.YAMAMOTO,M.YAMAZAKI,M.AKIYAMA,K.FURUMURA:「Introducingof Sealed Bearings for Work ROll Necks in RollingMills」、Proceedings of the JSLEinternational Tribology Conference,pp.609‐614,July8‐10,1985,Tokyo,Japan
A roller used for a bearing that receives a very large load, such as a steel rolling bearing, has a defect that exceeds a square root length of 0.2 mm within a range from the surface to a depth corresponding to 2% of the average roller diameter Da. In the presence of metal inclusions, peeling due to rolling fatigue is likely to occur. In addition, if there are defects exceeding the maximum length of 0.5 mm (non-metallic inclusions, etc.) within the entire cross-sectional area of the roller, cracks will occur in the roller due to repeated bending, tensile, and compressive stresses. It becomes easy to do.
Japanese Patent No. 0363984 JP 2000-130447 A JP 2004-77206 A JP 2003-139143 A JP 2000-110841 A Shinzaburo Furumura, Shinichi Shirota, Kiyoshi Hirakawa: “Rolling fatigue from surface and internal origins”, NSK Bearing Journal, NO. 636, pp. 1-10, 1977 K. YAMAMOTO, M .; YAMAZAKI, M .; AKIYAMA, K.A. FURUMURA: "Introducing of Sealed Bearings for Work Roll Necks in Rolling Mills", Processeds of the JSL International Tribology Conference, pp. 609-614, July 8-10, 1985, Tokyo, Japan

本発明は上述した問題点に着目してなされたものであり、その目的は、転動装置の寿命を短くするような非金属介在物が転動装置部品の表層部に存在するか否かを精度よく検査することのできる転動装置部品の非金属介在物検査方法および非金属介在物検査装置を提供することにある。また、本発明の他の目的は、非金属介在物等の内部欠陥が転動体に存在しない転がり軸受を得ることのできる転がり軸受の製造方法を提供することにある。   The present invention has been made paying attention to the above-mentioned problems, and its purpose is to determine whether or not non-metallic inclusions that shorten the life of the rolling device are present in the surface layer portion of the rolling device component. An object of the present invention is to provide a non-metallic inclusion inspection method and a non-metallic inclusion inspection apparatus for rolling device parts that can be inspected with high accuracy. Another object of the present invention is to provide a method of manufacturing a rolling bearing capable of obtaining a rolling bearing in which internal defects such as non-metallic inclusions do not exist in the rolling element.

上記の目的を達成するために、請求項1記載の発明に係る転動装置部品の非金属介在物検査方法は、転動装置の短寿命化を招く非金属介在物が転動装置部品の表層部に存在するか否かを検査する方法であって、前記転動装置部品を励磁コイルに印加された交流電圧によって発生した交流磁界に配置し、電磁誘導により誘導コイルに発生した起電力の振幅と位相のうち少なくとも一方の変化量を測定して前記非金属介在物の有無を検査することを特徴とする。   In order to achieve the above object, the non-metallic inclusions inspection method for rolling device parts according to the first aspect of the present invention is such that the non-metallic inclusions that cause a shortened life of the rolling device are the surface layer of the rolling device parts. A method of inspecting whether or not the rolling device part is present in an AC magnetic field generated by an AC voltage applied to an excitation coil and the amplitude of an electromotive force generated in the induction coil by electromagnetic induction And measuring the amount of change of at least one of the phase and the presence or absence of the non-metallic inclusions.

請求項2記載の発明に係る転動装置部品の非金属介在物検査方法は、請求項1記載の転動装置部品の非金属介在物検査方法において、軌道面表面の所定の面積×軌道面表面からの所定の深さで定義される所定の体積内に存在する非金属介在物を所定の寸法以下に管理することを特徴とする。
請求項3記載の発明に係る転動装置部品の非金属介在物検査方法は、請求項2記載の転動装置部品の非金属介在物検査方法において、前記所定の深さが転動体平均直径の2%であり、前記所定の寸法が非金属介在物の最大長さであり、平方根長さが200μmを超える欠陥が存在せず、その長さが500μmであることを特徴とする。
The method for inspecting non-metallic inclusions in rolling device parts according to claim 2 is the method for inspecting non-metallic inclusions in rolling device parts according to claim 1, wherein the predetermined area of the raceway surface × the raceway surface. The non-metallic inclusions existing in a predetermined volume defined by a predetermined depth from the above are controlled to a predetermined dimension or less.
A non-metallic inclusion inspection method for rolling device parts according to a third aspect of the invention is the method for inspecting non-metallic inclusions of a rolling device part according to the second aspect, wherein the predetermined depth is an average diameter of the rolling elements. 2%, the predetermined dimension is the maximum length of the non-metallic inclusion, there is no defect with a square root length exceeding 200 μm, and the length is 500 μm.

請求項4記載の発明に係る転動装置部品の非金属介在物検査方法は、請求項2記載の転動装置部品の非金属介在物検査方法において、前記所定の深さが転動体平均直径の2%であり、前記所定の寸法が非金属介在物の平均直径であり、平方根長さが200μmを超える欠陥が存在せず、その平均直径が100μmであることを特徴とする。
請求項5記載の発明に係る転動装置部品の非金属介在物検査方法は、請求項2記載の転動装置部品の非金属介在物検査方法において、前記所定の深さが転動体平均直径の2%であり、前記所定の寸法が非金属介在物の平均直径であり、平方根長さが200μmを超える欠陥が存在せず、その平均直径が50μmであることを特徴とする。
According to a fourth aspect of the present invention, there is provided a non-metallic inclusion inspection method for rolling device parts according to the second aspect, wherein the predetermined depth is the rolling element average diameter. 2%, the predetermined dimension is an average diameter of non-metallic inclusions, there is no defect having a square root length exceeding 200 μm, and the average diameter is 100 μm.
The non-metallic inclusions inspection method for rolling device parts according to the invention described in claim 5 is the non-metallic inclusions inspection method for rolling device parts according to claim 2, wherein the predetermined depth is the rolling element average diameter. 2%, the predetermined dimension is an average diameter of non-metallic inclusions, there is no defect with a square root length exceeding 200 μm, and the average diameter is 50 μm.

請求項6記載の発明に係る転動装置部品の非金属介在物検査方法は、請求項1〜5のいずれか一項記載の転動装置部品の非金属介在物検査方法において、前記転動装置部品が固定側の軌道輪であることを特徴とする。
請求項7記載の発明に係る転動装置部品の非金属介在物検査方法は、請求項1〜6のいずれか一項記載の転動装置部品の非金属介在物検査方法において、転動装置部品の表面から転動装置部品の直径の1/4に相当する深さまでの範囲と転動装置部品の全断面の範囲に対して電磁誘導検査を行なうことを特徴とする。
The non-metallic inclusions inspection method for rolling device parts according to the invention described in claim 6 is the non-metallic inclusions inspection method for rolling device parts according to any one of claims 1 to 5, wherein The component is a fixed-side race.
The non-metallic inclusions inspection method for rolling device parts according to the invention of claim 7 is the rolling device parts inspection method for non-metallic inclusions of rolling device parts according to any one of claims 1 to 6. The electromagnetic induction inspection is carried out over a range from the surface of the roller to a depth corresponding to ¼ of the diameter of the rolling device component and a range of the entire cross section of the rolling device component.

請求項8記載の発明に係る転動装置部品の非金属介在物検査装置は、転動装置の短寿命化を招く非金属介在物が転動装置部品の表層部に存在するか否かを検査する装置であって、前記転動装置部品の表層部に交流磁界を付与する励磁コイルと、該励磁コイルから前記転動装置部品の表層部に付与された交流磁界の磁束密度を検出するための誘導コイルとを有する電磁誘導センサを具備してなることを特徴とする。   The non-metallic inclusions inspection apparatus for rolling device parts according to the invention of claim 8 inspects whether or not non-metallic inclusions that cause a shortened life of the rolling apparatus are present in the surface layer portion of the rolling device parts. An excitation coil for applying an alternating magnetic field to the surface layer portion of the rolling device component, and a magnetic flux density of the alternating magnetic field applied to the surface layer portion of the rolling device component from the excitation coil An electromagnetic induction sensor having an induction coil is provided.

請求項9記載の発明に係る転動装置部品の非金属介在物検査装置は、請求項8記載の転動装置部品の非金属介在物検査装置において、前記転動装置部品と前記電磁誘導センサのうち少なくとも一方が回転、直動、揺動可能であることを特徴とする。
請求項10記載の発明に係る転動装置部品の非金属介在物検査装置は、請求項8または9記載の転動装置部品の非金属介在物検査装置において、前記電磁誘導センサの出力をデータ処理するデータ処理部と、該データ処理部で処理されたデータを閾値と比較して非金属介在物の有無を判定する判定部とを具備したことを特徴とする。
A non-metallic inclusion inspection apparatus for a rolling device part according to a ninth aspect of the invention is the non-metallic inclusion inspection apparatus for a rolling device part according to the eighth aspect, wherein the rolling device part and the electromagnetic induction sensor At least one of them can rotate, linearly move, or swing.
A non-metallic inclusion inspection apparatus for rolling device parts according to claim 10 is the non-metallic inclusion inspection apparatus for rolling device parts according to claim 8 or 9, wherein the output of the electromagnetic induction sensor is subjected to data processing. And a determination unit that compares the data processed by the data processing unit with a threshold value and determines the presence or absence of non-metallic inclusions.

請求項11記載の発明に係る転動装置部品の非金属介在物検査装置は、請求項10記載の転動装置部品の非金属介在物検査装置において、前記判定部の判定結果を表示する表示手段と前記電磁誘導センサの出力を記憶する記憶手段のうち少なくとも一方を具備したことを特徴とする。
請求項12記載の発明に係る転動装置部品の非金属介在物検査装置は、請求項8〜11のいずれか一項記載の転動装置部品の非金属介在物検査装置において、前記電磁誘導センサが、前記転動装置部品の表面から転動装置部品の直径の1/4に相当する深さまでの範囲と転動装置部品の全断面の範囲に対して電磁誘導検査を行なうことを特徴とする。
The non-metallic inclusions inspection device for rolling device parts according to the invention of claim 11 is the non-metallic inclusions inspection device for rolling device parts according to claim 10, wherein the display means displays the determination result of the determination unit. And at least one of storage means for storing the output of the electromagnetic induction sensor.
A non-metallic inclusion inspection apparatus for rolling device parts according to claim 12 is the non-metallic inclusion inspection apparatus for rolling device parts according to any one of claims 8 to 11, wherein the electromagnetic induction sensor. However, the electromagnetic induction inspection is performed on a range from the surface of the rolling device component to a depth corresponding to ¼ of the diameter of the rolling device component and a range of the entire cross section of the rolling device component. .

請求項13記載の発明に係る転がり軸受の製造方法は、外輪と内輪との間に複数の転動体を有する転がり軸受の製造方法であって、前記転動体の表面から転動体の平均直径の2%深さの範囲内に平方根長さが200μmを超える欠陥が存在せず、かつ前記転動体の全断面範囲内に最大長が500μmを超える欠陥が存在しないことが保証された転がり軸受を製造することを特徴とする。   A method for manufacturing a rolling bearing according to a thirteenth aspect of the present invention is a method for manufacturing a rolling bearing having a plurality of rolling elements between an outer ring and an inner ring, and has an average diameter of 2 from the surface of the rolling element. A rolling bearing is manufactured in which no defect having a square root length exceeding 200 μm exists in the range of% depth, and no defect having a maximum length exceeding 500 μm exists in the entire cross-sectional area of the rolling element. It is characterized by that.

本発明によれば、転動装置の寿命を短くする非金属介在物が転動装置部品の表層部に存在するか否かを精度よく検査することができる。   ADVANTAGE OF THE INVENTION According to this invention, it can test | inspect accurately whether the nonmetallic inclusion which shortens the lifetime of a rolling device exists in the surface layer part of rolling device components.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本発明の第1の実施形態に係る非金属介在物検査装置の概略構成を示す図である。同図に示される非金属介在物検査装置は、被検査対象物である転動装置部品18の表層部に交流磁界を付与する励磁コイル121と、この励磁コイル121から転動装置部品18の表層部に付与された交流磁界の磁束密度を検出するための誘導コイル122とを備えており、これらの両コイル121,122は電磁誘導センサ12を構成している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing a schematic configuration of a non-metallic inclusion inspection apparatus according to the first embodiment of the present invention. The non-metallic inclusion inspection apparatus shown in FIG. 1 includes an exciting coil 121 that applies an alternating magnetic field to the surface layer portion of the rolling device component 18 that is the object to be inspected, and the surface layer of the rolling device component 18 from the exciting coil 121. And an induction coil 122 for detecting the magnetic flux density of the alternating magnetic field applied to the unit, and both the coils 121 and 122 constitute the electromagnetic induction sensor 12.

また、図1に示される非金属介在物検査装置は、誘導コイル122のインダクタンス変化(誘導コイル122に発生した誘導起電力の振幅変化量または位相変化量)を検出するインダクタンス変化検出回路(データ処理部)13と、このインダクタンス変化検出回路13で検出されたインダクタンス変化を予め設定された閾値と比較して非金属介在物の有無を判定する判定部として比較判定回路14と、この比較判定回路14の判定結果を表示する表示装置15とを備えており、比較判定回路14では、誘導コイル122に発生した誘導起電力の振幅変化量または位相変化量が閾値より大きい場合に非金属介在物が転動装置部品18の表層部に存在すると判定し、さらに転動装置部品18の表層部に存在する非金属介在物の最大長さが500μm以上であると判定するようになっている。また、図1に示される非金属介在物検査装置は比較判定回路14の判定結果を記録用紙等の記録媒体に記録する記録装置16と、電磁誘導センサ12の出力を記憶する記憶装置17とを備えている。なお、電磁誘導センサ12の励磁コイル121には、交流電源11から交流電流が供給されるようになっている。   Further, the non-metallic inclusion inspection apparatus shown in FIG. 1 has an inductance change detection circuit (data processing) that detects an inductance change of the induction coil 122 (amplitude change amount or phase change amount of the induced electromotive force generated in the induction coil 122). 13) and a comparison / determination circuit 14 as a determination unit for comparing the inductance change detected by the inductance change detection circuit 13 with a preset threshold value to determine the presence or absence of non-metallic inclusions. The comparison and determination circuit 14 is configured to display non-metallic inclusions when the amplitude change amount or phase change amount of the induced electromotive force generated in the induction coil 122 is larger than the threshold value. The maximum length of the non-metallic inclusion existing in the surface layer portion of the rolling device component 18 is determined to be 500. It is adapted to determined to be equal to or greater than m. The non-metallic inclusion inspection apparatus shown in FIG. 1 includes a recording device 16 that records the determination result of the comparison determination circuit 14 on a recording medium such as recording paper, and a storage device 17 that stores the output of the electromagnetic induction sensor 12. I have. An alternating current is supplied from the alternating current power supply 11 to the exciting coil 121 of the electromagnetic induction sensor 12.

図2は電磁誘導センサ12の概略構成を示す図であり、同図に示されるように、電磁誘導センサ12の誘導コイル122は、その一部を励磁コイル121に接触させて励磁コイル121と同軸に巻回されている。
図1に示した非金属介在物検査装置を用いて、最大長さが500μmを超える非金属介在物が軌道輪等の転動装置部品の表層部に存在するか否かを検査する場合は、先ず、図3に示すように、転動装置部品18の表面に電磁誘導センサ12を近づける。そして、この状態で電磁誘導センサ12の励磁コイル121に交流電流を供給して転動装置部品18の表層部に交流磁界19を付与すると、電磁誘導センサ12の誘導コイル122に誘導起電力が発生する。このとき、電磁誘導センサ12の誘導コイル122に発生した誘導起電力は転動装置部品18の表層部に付与された交流磁界19の磁束密度に応じて変化し、交流磁界19の磁束密度は転動装置部品18の表層部に存在する非金属介在物の大きさに応じて変化する。
FIG. 2 is a diagram showing a schematic configuration of the electromagnetic induction sensor 12. As shown in the figure, the induction coil 122 of the electromagnetic induction sensor 12 is coaxial with the excitation coil 121 by bringing a part of the induction coil 122 into contact with the excitation coil 121. It is wound around.
When inspecting whether or not non-metallic inclusions having a maximum length exceeding 500 μm are present in the surface layer portion of a rolling device part such as a bearing ring, using the non-metallic inclusion inspection apparatus shown in FIG. First, as shown in FIG. 3, the electromagnetic induction sensor 12 is brought close to the surface of the rolling device component 18. In this state, when an alternating current is supplied to the excitation coil 121 of the electromagnetic induction sensor 12 and the alternating magnetic field 19 is applied to the surface layer portion of the rolling device component 18, an induced electromotive force is generated in the induction coil 122 of the electromagnetic induction sensor 12. To do. At this time, the induced electromotive force generated in the induction coil 122 of the electromagnetic induction sensor 12 changes in accordance with the magnetic flux density of the AC magnetic field 19 applied to the surface layer portion of the rolling device component 18, and the magnetic flux density of the AC magnetic field 19 is switched. It changes according to the size of the non-metallic inclusion existing in the surface layer portion of the moving device part 18.

したがって、電磁誘導センサ12の誘導コイル122に発生した誘導起電力をインダクタンス変化検出回路13に供給し、インダクタンス変化検出回路13で検出された誘導起電力の振幅変化量または位相変化量を予め設定された閾値と比較することで、転動装置部品18の表層部(軌道面から転動体直径2%の深さまでの領域)に非金属介在物が存在するか否かを精度よく検査でき、さらに転動装置部品18の表層部に存在する非金属介在物の最大長さが500μm以上であるか否かを精度よく検査することができる。   Therefore, the induced electromotive force generated in the induction coil 122 of the electromagnetic induction sensor 12 is supplied to the inductance change detection circuit 13, and the amplitude change amount or phase change amount of the induced electromotive force detected by the inductance change detection circuit 13 is set in advance. By comparing with the above threshold value, it is possible to accurately inspect whether or not non-metallic inclusions exist in the surface layer portion (region from the raceway surface to the depth of the rolling element diameter of 2%) of the rolling device component 18, and further, It is possible to accurately inspect whether or not the maximum length of the non-metallic inclusion existing in the surface layer portion of the moving device part 18 is 500 μm or more.

上述した本発明の第1の実施形態では、比較判定回路14の判定結果を表示する表示装置15と、比較判定回路14の判定結果を記録用紙等の記録媒体に記録する記録装置16と、電磁誘導センサ12の出力を記憶する記憶装置17とを備えたものを例示したが、本発明はこれに限定されるものではない。たとえば、表示装置15、記録装置16及び記憶装置17のうちの少なくとも1つを備えたものでもよい。   In the first embodiment of the present invention described above, the display device 15 that displays the determination result of the comparison determination circuit 14, the recording device 16 that records the determination result of the comparison determination circuit 14 on a recording medium such as recording paper, and the electromagnetic Although what has the memory | storage device 17 which memorize | stores the output of the induction sensor 12 was illustrated, this invention is not limited to this. For example, it may include at least one of the display device 15, the recording device 16, and the storage device 17.

図4は本発明の第2の実施形態に係る非金属介在物検査装置を示す図であり、同図に示される非金属介在物検査装置は、平均直径100μmを超える非金属介在物が軌道面を含む外輪の表層部(軌道面から転動体平均直径2%の深さまでの領域)に存在するか否かを検査する場合に用いられるものである。
第2の実施形態に係る非金属介在物検査装置は転がり軸受の外輪20を載置するためのターンテーブル21と、このターンテーブル21の上方に配置された電磁誘導センサ12と、この電磁誘導センサ12をZ軸回り(図中矢印θ方向)に揺動駆動するセンサ揺動機構22と、このセンサ揺動機構22を介して電磁誘導センサ12を図中Z軸方向に昇降駆動するセンサ昇降機構23と、電磁誘導センサ12を図中X軸方向及びY軸方向に動かしてセンサ12を位置決めするセンサ位置決め機構24とを備えており、ターンテーブル21は外輪20を位置決めする位置決め機構25により図中X軸方向に移動可能となっている。
FIG. 4 is a view showing a non-metallic inclusion inspection apparatus according to the second embodiment of the present invention. The non-metallic inclusion inspection apparatus shown in FIG. 4 has a non-metallic inclusion exceeding an average diameter of 100 μm. It is used when inspecting whether or not it exists in the surface layer portion (region from the raceway surface to the depth of the rolling element average diameter of 2%) including the outer ring.
The non-metallic inclusion inspection apparatus according to the second embodiment includes a turntable 21 for mounting an outer ring 20 of a rolling bearing, an electromagnetic induction sensor 12 disposed above the turntable 21, and the electromagnetic induction sensor. A sensor swing mechanism 22 that swings 12 around the Z axis (arrow θ Z direction in the figure), and a sensor lift that drives the electromagnetic induction sensor 12 up and down in the Z axis direction in the figure via the sensor swing mechanism 22. A mechanism 23 and a sensor positioning mechanism 24 for positioning the sensor 12 by moving the electromagnetic induction sensor 12 in the X-axis direction and the Y-axis direction in the drawing are provided. The turntable 21 is illustrated by a positioning mechanism 25 for positioning the outer ring 20. It is movable in the middle X-axis direction.

電磁誘導センサ12は外輪20の表層部に交流磁界を付与する励磁コイル121(図2参照)と、この励磁コイル121から外輪20の表層部に付与された交流磁界の磁束密度を検出するための誘導コイル122とから構成されている。
図4に示した非金属介在物検査装置を使用して平均直径100μmを超える非金属介在物が軌道面を含む外輪20の表層部に存在するか否かを検査する場合は、先ず、外輪20をターンテーブル21上に載置する。次に、センサ揺動機構22、センサ昇降機構23、センサ位置決め機構24及び位置決め機構25を駆動して電磁誘導センサ12を外輪20の軌道面に近づけた後、電磁誘導センサ12の励磁コイル121に交流電流を供給して外輪20の表層部に交流磁界を付与すると、電磁誘導センサ12の誘導コイル122に誘導起電力が発生する。このとき、誘導コイル122に発生した誘導起電力の大きさは外輪20の表層部に付与された交流磁界の磁束密度に応じて変化し、交流磁界の磁束密度は外輪20の表層部に存在する非金属介在物の大きさに応じて変化する。
The electromagnetic induction sensor 12 detects an excitation coil 121 (see FIG. 2) for applying an AC magnetic field to the surface layer portion of the outer ring 20 and a magnetic flux density of the AC magnetic field applied from the excitation coil 121 to the surface layer portion of the outer ring 20. The induction coil 122 is configured.
When inspecting whether or not non-metallic inclusions having an average diameter of more than 100 μm are present in the surface layer portion of the outer ring 20 including the raceway surface using the non-metallic inclusion inspection apparatus shown in FIG. Is placed on the turntable 21. Next, after driving the sensor swing mechanism 22, the sensor elevating mechanism 23, the sensor positioning mechanism 24, and the positioning mechanism 25 to bring the electromagnetic induction sensor 12 close to the raceway surface of the outer ring 20, the excitation coil 121 of the electromagnetic induction sensor 12 is applied. When an alternating current is supplied and an alternating magnetic field is applied to the surface layer portion of the outer ring 20, an induced electromotive force is generated in the induction coil 122 of the electromagnetic induction sensor 12. At this time, the magnitude of the induced electromotive force generated in the induction coil 122 changes according to the magnetic flux density of the AC magnetic field applied to the surface layer portion of the outer ring 20, and the magnetic flux density of the AC magnetic field exists in the surface layer portion of the outer ring 20. It varies depending on the size of non-metallic inclusions.

したがって、電磁誘導センサ12の誘導コイル122に発生した誘導起電力の大きさを予め設定された閾値と比較することで、外輪20の表層部(軌道面から転動体平均直径2%の深さまでの領域)に非金属介在物が精度よく検査でき、さらに外輪20の表層部に存在する非金属介在物の平均直径が100μmを超えるか否かを精度よく検査することできる。   Therefore, by comparing the magnitude of the induced electromotive force generated in the induction coil 122 of the electromagnetic induction sensor 12 with a preset threshold value, the surface layer portion of the outer ring 20 (from the raceway surface to the depth of the rolling element average diameter of 2%). The non-metallic inclusions can be accurately inspected in the region), and further, it can be accurately inspected whether the average diameter of the non-metallic inclusions existing in the surface layer portion of the outer ring 20 exceeds 100 μm.

図5は本発明の第3の実施形態に係る非金属介在物検査装置を示す図であり、同図に示される非金属介在物検査装置は、平均直径50μmを超える非金属介在物が軌道面を含む内輪の表層部(軌道面から転動体平均直径2%の深さまでの領域)に存在するか否かを検査する場合に用いられるものである。
第3の実施形態に係る非金属介在物検査装置は転がり軸受の内輪26を載置するためのターンテーブル21と、このターンテーブル21の上方に配置された電磁誘導センサ12と、この電磁誘導センサ12をZ軸回り(図中矢印θ方向)に揺動駆動可能としたセンサ揺動機構22と、このセンサ揺動機構22を介して電磁誘導センサ12を図中Z軸方向に昇降駆動するセンサ昇降機構23と、電磁誘導センサ12を図中X軸方向及びY軸方向に動かしてセンサ12を位置決めするセンサ位置決め機構24とを備えて構成されており、電磁誘導センサ12は内輪26の表層部に交流磁界を付与する励磁コイル121(図2参照)と、この励磁コイル121により内輪26の表層部に付与された交流磁界の磁束密度を検出するための誘導コイル122とから構成されている。
FIG. 5 is a view showing a non-metallic inclusion inspection apparatus according to a third embodiment of the present invention. The non-metallic inclusion inspection apparatus shown in FIG. It is used when inspecting whether or not it exists in the surface layer portion (region from the raceway surface to the depth of the rolling element average diameter of 2%) including the inner ring.
The non-metallic inclusion inspection apparatus according to the third embodiment includes a turntable 21 for placing an inner ring 26 of a rolling bearing, an electromagnetic induction sensor 12 disposed above the turntable 21, and the electromagnetic induction sensor. The sensor oscillating mechanism 22 that can oscillate 12 around the Z axis (arrow θ Z direction in the figure), and the electromagnetic induction sensor 12 is driven up and down in the Z axis direction in the figure via the sensor oscillating mechanism 22. The sensor elevating mechanism 23 and a sensor positioning mechanism 24 for positioning the sensor 12 by moving the electromagnetic induction sensor 12 in the X-axis direction and the Y-axis direction in the figure are configured. The electromagnetic induction sensor 12 is a surface layer of the inner ring 26. And an induction coil for detecting the magnetic flux density of the AC magnetic field applied to the surface layer portion of the inner ring 26 by the excitation coil 121. And a 22..

図5に示した非金属介在物検査装置を使用して平均直径50μmを超える非金属介在物が軌道面を含む内輪26の表層部に存在するか否かを検査する場合は、先ず、内輪26をターンテーブル21上に載置する。次に、センサ揺動機構22(本実施例ではターンテーブル21を回転させ、センサ揺動機構22を固定)、センサ昇降機構23及びセンサ位置決め機構24を駆動して電磁誘導センサ12を内輪26の軌道面に近づけた後、電磁誘導センサ12の励磁コイル121に交流電流を供給して内輪26の表層部に交流磁界を付与すると、電磁誘導センサ12の誘導コイル122に誘導起電力が発生する。このとき、誘導コイル122に発生した誘導起電力の大きさは内輪26の表層部に付与された交流磁界の磁束密度に応じて変化し、交流磁界の磁束密度は内輪26の表層部に存在する非金属介在物の大きさに応じて変化する。   When inspecting whether or not non-metallic inclusions having an average diameter of more than 50 μm are present on the surface layer portion of the inner ring 26 including the raceway surface using the non-metallic inclusion inspection apparatus shown in FIG. Is placed on the turntable 21. Next, the sensor swing mechanism 22 (in this embodiment, the turntable 21 is rotated and the sensor swing mechanism 22 is fixed), the sensor lifting mechanism 23 and the sensor positioning mechanism 24 are driven to move the electromagnetic induction sensor 12 to the inner ring 26. When an alternating current is applied to the excitation coil 121 of the electromagnetic induction sensor 12 and an alternating magnetic field is applied to the surface layer portion of the inner ring 26 after approaching the raceway surface, an induced electromotive force is generated in the induction coil 122 of the electromagnetic induction sensor 12. At this time, the magnitude of the induced electromotive force generated in the induction coil 122 changes according to the magnetic flux density of the AC magnetic field applied to the surface layer portion of the inner ring 26, and the magnetic flux density of the AC magnetic field exists in the surface layer portion of the inner ring 26. It varies depending on the size of non-metallic inclusions.

したがって、電磁誘導センサ12の誘導コイル122に発生した誘導起電力の大きさを予め設定された閾値と比較することで、内輪26の表層部(軌道面から転動体平均直径2%の深さまでの領域)に非金属介在物が存在するか否かを検査でき、さらに内輪26の表層部に存在する非金属介在物の平均直径が50μmを超えるか否かを精度よく検査することできる。   Therefore, by comparing the magnitude of the induced electromotive force generated in the induction coil 122 of the electromagnetic induction sensor 12 with a preset threshold value, the surface layer portion of the inner ring 26 (from the raceway surface to the depth of the rolling element average diameter of 2%). It is possible to inspect whether or not non-metallic inclusions are present in the region), and it is possible to accurately inspect whether or not the average diameter of non-metallic inclusions existing in the surface layer portion of the inner ring 26 exceeds 50 μm.

図7は本発明の第4の実施形態に係る非金属介在物検査装置の概略構成を示す図であり、同図に示される非金属介在物検査装置は、電磁誘導センサ12、電磁誘導ユニット31、コンピュータユニット32、液晶表示装置(LCD)33、センサ位置決め装置34、ローラ回転装置35および位置決め制御装置36を備えている。
電磁誘導センサ12は励磁コイル121と検出用の誘導コイル122とが一体になっていて、漏れ磁束を極力減らし、相互インダクタンスを高める構成となっている。このため、一般の渦流探傷と違って表面の欠陥のみならず、表面下の内部にも磁束が及ぶため、内部欠陥による磁束変化によって誘導コイル122のインダクタンスが変化する。
FIG. 7 is a diagram showing a schematic configuration of a non-metallic inclusion inspection apparatus according to the fourth embodiment of the present invention. The non-metallic inclusion inspection apparatus shown in FIG. 7 includes an electromagnetic induction sensor 12 and an electromagnetic induction unit 31. A computer unit 32, a liquid crystal display (LCD) 33, a sensor positioning device 34, a roller rotating device 35, and a positioning control device 36.
In the electromagnetic induction sensor 12, an excitation coil 121 and a detection induction coil 122 are integrated, and the configuration is such that the leakage magnetic flux is reduced as much as possible and the mutual inductance is increased. For this reason, unlike a general eddy current flaw detection, the magnetic flux reaches not only the surface defect but also the interior below the surface, so that the inductance of the induction coil 122 changes due to the magnetic flux change due to the internal defect.

電磁誘導ユニット31は、電磁誘導センサ12の励磁コイル121に交流電流を供給する励磁発振回路311を備えている。また、電磁誘導ユニット31は誘導コイル122のインダクタンス変化を検出回路312で検出し、これを増幅回路313で増幅してコンピュータユニット32に送るように構成されている。
コンピュータユニット32はAD変換器321、CPU322、タイマパルスユニット323、PIO324、LCDドライバ325、メモリ(図示せず)等を備えており、増幅回路313で増幅された信号はAD変換器321でデジタル信号に変換され、センサ位置決め装置34の位置情報と共にデータ化される。
The electromagnetic induction unit 31 includes an excitation oscillation circuit 311 that supplies an alternating current to the excitation coil 121 of the electromagnetic induction sensor 12. Further, the electromagnetic induction unit 31 is configured to detect a change in inductance of the induction coil 122 by the detection circuit 312, amplify the detection result by the amplification circuit 313, and send it to the computer unit 32.
The computer unit 32 includes an AD converter 321, a CPU 322, a timer pulse unit 323, a PIO 324, an LCD driver 325, a memory (not shown), and the like. The signal amplified by the amplifier circuit 313 is converted into a digital signal by the AD converter 321. And is converted into data together with position information of the sensor positioning device 34.

人工欠陥を導入した円筒ころ37や超音波検査で内部欠陥が見つかった試料を用いて較正しておけば、電磁誘導検査でも欠陥の大きさを知ることができる。
超音波検査では、水中超音波が必要となるので、防錆剤のコストまで要するのに対し、電磁誘導式では、そのようなコストは不要である。
検査速度については、音速と電磁気の速度とでは比較にならないが、実際には、一定体積以上の検査を要し、センサと被検体の走査を要するため、走査ピッチが同じであれば、大差はない。しかし、一般的に、超音波検査はパルスエコー法であり、高圧転動面寿命に影響を与えるほどの小さな鋼中介在物を検出可能な高周波集束型プローブの鋼中スポット径は、検出したい欠陥の大きさ程度までに絞る必要があるため、欠陥の大きさ程度の走査ピッチを必要とし、被検体体積や被検体面積が大きいほど検査時間は負担になる。
If calibration is performed using the cylindrical roller 37 into which an artificial defect has been introduced or a sample in which an internal defect has been found by ultrasonic inspection, the size of the defect can also be known by electromagnetic induction inspection.
Ultrasonic inspection requires underwater ultrasonic waves, and thus costs up to the cost of the rust preventive, whereas the electromagnetic induction type does not require such costs.
Regarding the inspection speed, the speed of sound and electromagnetic speed are not comparable, but in reality, inspection of a certain volume or more is required, and scanning of the sensor and the subject is required. Absent. However, in general, the ultrasonic inspection is a pulse echo method, and the spot diameter in the steel of the high-frequency focusing probe that can detect inclusions in the steel that are small enough to affect the life of the high-pressure rolling surface depends on the defect to be detected. Therefore, it is necessary to reduce the scanning pitch to about the size of the defect, so that a scanning pitch of about the size of the defect is required, and the inspection time becomes more burdensome as the subject volume and the subject area are larger.

超音波検査は超音波のエコーが戻る必要があり、ピンポイント的な手法であるのに対し、電磁誘導検査方式は磁束の乱れをインダクタンスの変化として捉える方式であるため、バルキー(bulky)的な手法であり、従って、走査ピッチも大きく取れる可能性が高く、検査時間は相当早くなると予測できる。
超音波で必要な高周波回路は、電磁誘導では、より低い周波数で済む(超音波は50MHz前後であるのに対して、電磁誘導では、1KHz〜1MHzであり、桁が違うので、回路のコストに差で生じる。)。
Ultrasonic inspection requires the return of ultrasonic echoes and is a pinpoint method, whereas the electromagnetic induction inspection method is a method that captures magnetic flux disturbance as a change in inductance, so it is bulky. Therefore, there is a high possibility that a large scanning pitch can be obtained, and it can be predicted that the inspection time will be considerably faster.
The high-frequency circuit required for ultrasonic waves requires a lower frequency for electromagnetic induction (ultrasonic waves are around 50 MHz, whereas for electromagnetic induction, the frequency is 1 KHz to 1 MHz. Caused by the difference).

電磁誘導検査では、励磁電圧と周波数によって、検査する深さと検出できる介在物の大きさを決めることができ、複数の周波数と電圧を切り替えて、深さに対する感度を変えながらの検査も可能であるし、被検体に適した一定の周波数と振幅で検査を行ない、コンピュータの演算処理(ソフトウェア)によって深さに対する感度を変えることができる。また、センサコイルを変えることによっても深さに対する感度を変えることができるが、本例では、速度を重視するため、センサ交換はしない。   In electromagnetic induction inspection, the depth to be inspected and the size of detectable inclusions can be determined by the excitation voltage and frequency, and it is possible to inspect while changing the sensitivity to depth by switching between multiple frequencies and voltages. In addition, the inspection can be performed at a certain frequency and amplitude suitable for the subject, and the sensitivity to the depth can be changed by computer processing (software). Also, the sensitivity to depth can be changed by changing the sensor coil, but in this example, the sensor is not replaced because the speed is important.

本例では、転動装置部品表面から最大せん断応力発生位置よりも深い位置(転動装置部品直径Dの1/4深さ位置)までの範囲と転動装置部品の全断面の範囲とに分けて、電磁誘導検査を行なう場合、主に周波数の違いでD/4までの検査と全断面の検査とを使い分ける。すなわち、表面付近に近いD/4までは、比較的高い周波数で励磁誘導を行ない、比較的小さな欠陥を検出するように検査する。   In this example, it is divided into a range from the rolling device component surface to a position deeper than the position where the maximum shear stress is generated (a 1/4 depth position of the rolling device component diameter D) and a range of the entire cross section of the rolling device component. When performing the electromagnetic induction inspection, the inspection up to D / 4 and the inspection of the entire cross section are selectively used mainly due to the difference in frequency. That is, up to D / 4 close to the vicinity of the surface, excitation induction is performed at a relatively high frequency, and inspection is performed so as to detect relatively small defects.

全断面検査では、比較的小さい周波数で磁束が転動装置部品中心部まで減衰しにくく比較的大きな欠陥を検出する検査を行なう。
図7に示した円筒ころ用のローラ回転装置35は回転速度と位置を制御できるサーボモータで駆動され、このローラ回転装置35により被検体としての円筒ころ37を回転させると同時に、センサ位置決め装置34により電磁誘導センサ12を円筒ころ37の軸方向に移動させることで、円筒ころ37の軌道面全体を走査できる。
In the entire cross-section inspection, an inspection is performed to detect a relatively large defect in which the magnetic flux is not easily attenuated to the center of the rolling device part at a relatively low frequency.
The roller rotating device 35 for cylindrical rollers shown in FIG. 7 is driven by a servo motor capable of controlling the rotation speed and position. The roller rotating device 35 rotates a cylindrical roller 37 as an object, and at the same time, a sensor positioning device 34. Therefore, the entire raceway surface of the cylindrical roller 37 can be scanned by moving the electromagnetic induction sensor 12 in the axial direction of the cylindrical roller 37.

較正用の被検体としては、図8に示すような人工欠陥38を持った円筒ころ37を用いる。
電磁誘導検査は、被検体内に発生した内部欠陥を検出側コイル(誘導コイル)により磁束の乱れによって検出する。磁束の乱れは相対的なものであるから、同形のころを用いて正常品と欠陥品で比較をする必要がある。
As an object to be calibrated, a cylindrical roller 37 having an artificial defect 38 as shown in FIG. 8 is used.
In the electromagnetic induction inspection, an internal defect generated in a subject is detected by a disturbance of magnetic flux by a detection side coil (induction coil). Since the magnetic flux disturbance is relative, it is necessary to compare normal and defective products using the same type of rollers.

図8(a)に示す試料は、表面に近い部分に、ころの端面から直径0.2mmの穴を放電加工により一定の深さで加工して人工欠陥を形成したものである。また、図8(b)に示す試料は、中心付近の端面から直径0.5mmの穴を放電加工により一定の深さで加工して人工欠陥を形成したものである。
本例では、被検体の電磁誘導検査を行なう前に、人工欠陥が形成された較正用試料の電磁誘導検査を行なう。具体的には、発振周波数、発振電圧、検出アンプのゲインなどを調整しながら、電磁誘導センサと被検体の相対位置とともに検出波形あるいは磁束の乱れを示す電圧などを記録して、表面付近の欠陥と中心部付近の欠陥に適した発振周波数と閾値を探す。
In the sample shown in FIG. 8A, an artificial defect is formed by machining a hole having a diameter of 0.2 mm from the end face of the roller at a certain depth by electric discharge machining in a portion close to the surface. Further, the sample shown in FIG. 8B is a sample in which a hole having a diameter of 0.5 mm is processed from the end face near the center to a certain depth by electric discharge machining to form an artificial defect.
In this example, the electromagnetic induction inspection of the calibration sample in which the artificial defect is formed is performed before the electromagnetic induction inspection of the subject. Specifically, while adjusting the oscillation frequency, oscillation voltage, gain of the detection amplifier, etc., record the detected waveform or voltage indicating magnetic flux disturbance as well as the relative position of the electromagnetic induction sensor and the subject to detect defects near the surface. And search for an oscillation frequency and threshold value suitable for defects near the center.

さらに可能であれば、超音波検査やX線CT検査など別の非破壊検査で欠陥の混入が認められ、寸法と位置が特定されている自然欠陥を用いて較正の精度を高めていけば、欠陥の寸法も計測できるようになる。
電磁誘導検査は磁束の乱れを検出するが、磁束の大きさに比べれば、非常に小さな欠陥を検出できる。これが超音波検査と大きく違うところであり、小さな欠陥でも大まかな走査ピッチで欠陥を捉えることができ、高速な検査を行なうことができる。また、本例で用いる電磁誘導検査方式は、一般の渦流検査とは違い、金属内部に磁束を透過させるタイプの検査装置およびプローブコイルであるから、内部の欠陥まで検出することができる。
In addition, if possible, if non-destructive inspection such as ultrasonic inspection and X-ray CT inspection is allowed to contain defects, and using natural defects whose dimensions and positions are specified, calibration accuracy can be improved. Defect dimensions can also be measured.
The electromagnetic induction inspection detects a magnetic flux disturbance, but can detect a very small defect compared to the magnitude of the magnetic flux. This is a significant difference from ultrasonic inspection, and even small defects can be detected with a rough scanning pitch, and high-speed inspection can be performed. Further, unlike the general eddy current inspection, the electromagnetic induction inspection method used in this example is a type of inspection device and probe coil that transmits magnetic flux inside the metal, so that even internal defects can be detected.

ころの直径が一定以下の大きさであれば、表面付近と全断面の欠陥検出において、全断面の検査のみを行なうことも可能である。
また、手間はかかるが、全断面検査用と表面近傍検査用のセンサコイルを準備して、2回の検査を行なってもよい。
図9は本発明の第5の実施形態に係る非金属介在物検査装置の概略構成を示す図であり、同図に示される非金属介在物検査装置は、電磁誘導センサ12、電磁誘導ユニット31、センサ位置決め装置34、ローラ回転装置35、位置決め制御装置36、コントローラ40およびデジタル信号処理ユニット41を備えている。
If the diameter of the roller is a certain size or less, it is possible to inspect only the entire cross section in detecting defects in the vicinity of the surface and in the entire cross section.
Moreover, although it takes time, two inspections may be performed by preparing sensor coils for the entire cross-section inspection and the surface vicinity inspection.
FIG. 9 is a diagram showing a schematic configuration of a non-metallic inclusion inspection apparatus according to the fifth embodiment of the present invention. The non-metallic inclusion inspection apparatus shown in FIG. 9 includes an electromagnetic induction sensor 12 and an electromagnetic induction unit 31. , A sensor positioning device 34, a roller rotating device 35, a positioning control device 36, a controller 40, and a digital signal processing unit 41.

コントローラ40は、センサプローブ走査装置とローラ回転装置35の走査ピッチや速度などを制御するコントロール信号を位置決め制御装置36に出力する。また、コントローラ40はアンプのゲインを設定する信号を電磁誘導ユニット31に出力するとともに、走査位置や判定条件(閾値)を設定する信号をデジタル信号処理ユニット41に出力するようになっている。   The controller 40 outputs a control signal for controlling the scanning pitch and speed of the sensor probe scanning device and the roller rotating device 35 to the positioning control device 36. The controller 40 outputs a signal for setting the gain of the amplifier to the electromagnetic induction unit 31 and also outputs a signal for setting the scanning position and the determination condition (threshold) to the digital signal processing unit 41.

デジタル信号処理ユニット41はAD変換器411と判定回路412を内蔵しているが、判定回路412はCPUとソフトを含む場合であれば、すべてハードウェアのデジタル回路でデジタル信号処理ユニット41を構成してもよい。
図9に示す第5の実施形態では、第4の実施形態と同様の方法で、所定にころ径を持った熱処理研磨完成品ころに対する表面付近と全断面における欠陥寸法に対する検出感度や閾値を求めておけば、コントローラ40から電磁誘導ユニット31及びデジタル信号処理ユニット41に供給される各種設定信号の設定値を求めることができる。
The digital signal processing unit 41 includes an AD converter 411 and a determination circuit 412. However, if the determination circuit 412 includes a CPU and software, the digital signal processing unit 41 is configured by a hardware digital circuit. May be.
In the fifth embodiment shown in FIG. 9, the detection sensitivity and threshold value for the defect size in the vicinity of the surface and the entire cross section for the heat-treated polished finished roller having a predetermined roller diameter are obtained by the same method as in the fourth embodiment. In this case, setting values of various setting signals supplied from the controller 40 to the electromagnetic induction unit 31 and the digital signal processing unit 41 can be obtained.

円筒ころ37の直径が20mmの場合に、円筒ころ37の表面から深さ5mm以内に0.1mm以上の欠陥が存在する場合に不良(NG)とし、かつ円筒ころ37の全断面にわたって0.3mm以上の欠陥が存在する場合に不良という設定をしておけば、転動体の平均直径Daの2%深さの範囲内に平方根長さが0.2mmを超える欠陥が存在せず、かつ転動体の全断面範囲内に最大長が0.5mmを超える欠陥がないことを保証された転がり軸受を得ることができる。   When the diameter of the cylindrical roller 37 is 20 mm, if there is a defect of 0.1 mm or more within a depth of 5 mm from the surface of the cylindrical roller 37, a defect (NG) is determined and 0.3 mm over the entire cross section of the cylindrical roller 37. If the defect is set when the above defects exist, there is no defect having a square root length exceeding 0.2 mm within the range of 2% depth of the average diameter Da of the rolling element, and the rolling element It is possible to obtain a rolling bearing in which it is ensured that there is no defect having a maximum length exceeding 0.5 mm within the entire cross-sectional area.

図7及び図9に示した検査装置の稼動中は、定期的に較正を行い、人工欠陥を有する試料で同じ出力が得られることを確認することが好ましい。
図10は本発明の第6の実施形態に係る非金属介在物検査装置の概略構成を示す図であり、同図に示されるように、第6の実施形態に係る非金属介在物検査装置は、電磁誘導センサ12、プーリ51a,51b、プーリ駆動用ベルト52、モータ53、制御アンプ54、制御装置55、リニアガイド装置56、コントローラ57およびロータリーエンコーダ58を備えている。
During the operation of the inspection apparatus shown in FIGS. 7 and 9, it is preferable to periodically perform calibration to confirm that the same output can be obtained with a sample having an artificial defect.
FIG. 10 is a diagram showing a schematic configuration of a non-metallic inclusion inspection apparatus according to the sixth embodiment of the present invention. As shown in FIG. 10, the non-metallic inclusion inspection apparatus according to the sixth embodiment , Electromagnetic induction sensor 12, pulleys 51 a and 51 b, pulley driving belt 52, motor 53, control amplifier 54, control device 55, linear guide device 56, controller 57 and rotary encoder 58.

被検体としての軸受リング50は、プーリ51a,51bの周面部に載置されている。これらのプーリ51a,51bはプーリ駆動用ベルト52により回転駆動されるようになっており、プーリ51a,51bが回転すると、これに同期して軸受リング50も回転するようになっている。
プーリ駆動用ベルト52を走行駆動するモータ53は制御アンプ54を介して制御装置55により制御され、図示しないサーボモータを介して電磁誘導センサ12を軸受リング50の軸方向に移動させるリニアガイド装置56はコントローラ57により制御されている。
A bearing ring 50 as a subject is placed on the peripheral surface portions of the pulleys 51a and 51b. These pulleys 51a and 51b are rotationally driven by a pulley driving belt 52. When the pulleys 51a and 51b rotate, the bearing ring 50 also rotates in synchronization therewith.
A motor 53 that travels and drives the pulley driving belt 52 is controlled by a control device 55 via a control amplifier 54, and a linear guide device 56 that moves the electromagnetic induction sensor 12 in the axial direction of the bearing ring 50 via a servo motor (not shown). Is controlled by the controller 57.

軸受リング50の回転位置を検出するロータリーエンコーダ58から出力された回転位置検出信号は、コントローラ57に供給されている。
コントローラ57はロータリーエンコーダ58からの回転位置検出信号により軸受リング50が一回転したことを検知すると、制御装置55からの指令に基づいてサーボモータを制御し、電磁誘導センサ12を軸受リング50の軸方向に所定寸法移動させる。これにより、軸受リング全体の探傷が電磁誘導センサ12により行なわれる。
The rotational position detection signal output from the rotary encoder 58 that detects the rotational position of the bearing ring 50 is supplied to the controller 57.
When the controller 57 detects that the bearing ring 50 has made one rotation based on the rotational position detection signal from the rotary encoder 58, the controller 57 controls the servo motor based on a command from the control device 55, and the electromagnetic induction sensor 12 is connected to the shaft of the bearing ring 50. Move a certain dimension in the direction. Thereby, flaw detection of the entire bearing ring is performed by the electromagnetic induction sensor 12.

したがって、第6の実施形態では、上述した第1ないし第5の実施形態と同様に、非金属介在物等の微小な欠陥が軸受リングの内部に存在するか否かを精度よく検査することができる。   Therefore, in the sixth embodiment, as in the first to fifth embodiments described above, it is possible to accurately inspect whether minute defects such as non-metallic inclusions are present in the bearing ring. it can.

本発明の第1の実施形態に係る非金属介在物検査装置の概略構成を示す図である。It is a figure which shows schematic structure of the nonmetallic inclusion inspection apparatus which concerns on the 1st Embodiment of this invention. 電磁誘導センサの概略構成を示す図である。It is a figure which shows schematic structure of an electromagnetic induction sensor. 電磁誘導センサの励磁コイルから転動装置部品の表層部に付与される交流磁界を示す図である。It is a figure which shows the alternating current magnetic field provided to the surface layer part of rolling device components from the exciting coil of an electromagnetic induction sensor. 本発明の第2の実施形態に係る非金属介在物検査装置の概略構成を示す図である。It is a figure which shows schematic structure of the nonmetallic inclusion inspection apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る非金属介在物検査装置の概略構成を示す図である。It is a figure which shows schematic structure of the nonmetallic inclusion inspection apparatus which concerns on the 3rd Embodiment of this invention. 軸受寿命が低下するメカニズムを説明するための図である。It is a figure for demonstrating the mechanism in which a bearing life falls. 本発明の第4の実施形態に係る非金属介在物検査装置の概略構成を示す図である。It is a figure which shows schematic structure of the nonmetallic inclusion inspection apparatus which concerns on the 4th Embodiment of this invention. 人工欠陥を有する校正用試料の一例を示す図である。It is a figure which shows an example of the sample for a calibration which has an artificial defect. 本発明の第5の実施形態に係る非金属介在物検査装置の概略構成を示す図である。It is a figure which shows schematic structure of the nonmetallic inclusion inspection apparatus which concerns on the 5th Embodiment of this invention. 本発明の第6の実施形態に係る非金属介在物検査装置の概略構成を示す図である。It is a figure which shows schematic structure of the nonmetallic inclusion inspection apparatus which concerns on the 6th Embodiment of this invention.

符号の説明Explanation of symbols

11 交流電源
12 電磁誘導センサ
121 励磁コイル
122 誘導コイル
13 インダクタンス検出回路(データ処理部)
14 比較判定回路(判定部)
15 表示装置
16 記録装置
17 記憶装置
21 ターンテーブル
22 センサ揺動機構
23 センサ昇降機構
24 センサ位置決め機構
31 電磁誘導ユニット
311 励磁発振回路
312 検出回路
313 増幅回路
32 コンピュータユニット
321 AD変換器
322 CPU
323 タイマパルスユニット
324 PIO
325 LCDドライバ
33 液晶表示装置
34 センサ位置決め装置
35 ローラ回転装置
36 位置決め制御装置
37 円筒ころ
38 人工欠陥
40 コントローラ
41 デジタル信号処理ユニット
411 AD変換器
412 判定回路
51a,51b プーリ
52 プーリ駆動用ベルト
53 モータ
54 制御アンプ
55 制御装置
56 リニアガイド装置
57 コントローラ
58 ロータリーエンコーダ
11 AC Power Supply 12 Electromagnetic Induction Sensor 121 Excitation Coil 122 Induction Coil 13 Inductance Detection Circuit (Data Processing Unit)
14 Comparison determination circuit (determination unit)
DESCRIPTION OF SYMBOLS 15 Display apparatus 16 Recording apparatus 17 Memory | storage device 21 Turntable 22 Sensor swing mechanism 23 Sensor raising / lowering mechanism 24 Sensor positioning mechanism 31 Electromagnetic induction unit 311 Excitation oscillation circuit 312 Detection circuit 313 Amplification circuit 32 Computer unit 321 AD converter 322 CPU
323 Timer pulse unit 324 PIO
325 LCD driver 33 Liquid crystal display device 34 Sensor positioning device 35 Roller rotation device 36 Positioning control device 37 Cylindrical roller 38 Artificial defect 40 Controller 41 Digital signal processing unit 411 AD converter 412 Determination circuit 51a, 51b Pulley 52 Pulley driving belt 53 Motor 54 Control Amplifier 55 Control Device 56 Linear Guide Device 57 Controller 58 Rotary Encoder

Claims (13)

転動装置の短寿命化を招く非金属介在物が転動装置部品の表層部に存在するか否かを検査する方法であって、前記転動装置部品を励磁コイルに印加された交流電圧によって発生した交流磁界に配置し、電磁誘導により発生した起電力の振幅と位相のうち少なくとも一方の変化量を測定して前記非金属介在物の有無を検査することを特徴とする転動装置部品の非金属介在物検査方法。   A method for inspecting whether or not non-metallic inclusions that cause a shortened life of a rolling device are present in a surface layer portion of the rolling device component, wherein the rolling device component is applied by an alternating voltage applied to an exciting coil. A rolling device component, characterized by being placed in an alternating magnetic field generated and measuring the amount of change of at least one of the amplitude and phase of an electromotive force generated by electromagnetic induction to inspect for the presence of the non-metallic inclusions Non-metallic inclusion inspection method. 請求項1記載の転動装置部品の非金属介在物検査方法において、軌道面表面の所定の面積×軌道面表面からの所定の深さで定義される所定の体積内に存在する非金属介在物を所定の寸法以下に管理することを特徴とする転動装置部品の非金属介在物検査方法。   2. The non-metallic inclusion inspection method for rolling device parts according to claim 1, wherein the non-metallic inclusion is present in a predetermined volume defined by a predetermined area of the raceway surface × a predetermined depth from the raceway surface. Is controlled to be equal to or less than a predetermined dimension. A non-metallic inclusion inspection method for rolling device parts. 請求項2記載の転動装置部品の非金属介在物検査方法において、前記所定の深さが転動体平均直径の2%であり、平方根長さが200μmを超える欠陥が存在せず、前記所定の寸法が非金属介在物の最大長さであり、その長さが500μmであることを特徴とする転動装置部品の非金属介在物検査方法。   3. The method for inspecting non-metallic inclusions in a rolling device part according to claim 2, wherein the predetermined depth is 2% of an average diameter of the rolling elements, and there is no defect having a square root length exceeding 200 μm. A method for inspecting non-metallic inclusions in a rolling device part, characterized in that the dimension is the maximum length of non-metallic inclusions and the length is 500 μm. 請求項2記載の転動装置部品の非金属介在物検査方法において、前記所定の深さが転動体平均直径の2%であり、平方根長さが200μmを超える欠陥が存在せず、前記所定の寸法が非金属介在物の平均直径であり、その平均直径が100μmであることを特徴とする転動装置部品の非金属介在物検査方法。   3. The method for inspecting non-metallic inclusions in a rolling device part according to claim 2, wherein the predetermined depth is 2% of an average diameter of the rolling elements, and there is no defect having a square root length exceeding 200 μm. A method for inspecting non-metallic inclusions in a rolling device part, characterized in that the dimension is an average diameter of non-metallic inclusions and the average diameter is 100 μm. 請求項2記載の転動装置部品の非金属介在物検査方法において、前記所定の深さが転動体平均直径の2%であり、平方根長さが200μmを超える欠陥が存在せず、前記所定の寸法が非金属介在物の平均直径であり、その平均直径が50μmであることを特徴とする転動装置部品の非金属介在物検査方法。   3. The method for inspecting non-metallic inclusions in a rolling device part according to claim 2, wherein the predetermined depth is 2% of an average diameter of the rolling elements, and there is no defect having a square root length exceeding 200 μm. A method for inspecting non-metallic inclusions in a rolling device part, wherein the dimension is an average diameter of non-metallic inclusions, and the average diameter is 50 μm. 請求項1〜5のいずれか一項記載の転動装置部品の非金属介在物検査方法において、前記転動装置部品が固定側の軌道輪であることを特徴とする転動装置部品の非金属介在物検査方法。   The non-metallic inclusion inspection method for a rolling device part according to any one of claims 1 to 5, wherein the rolling device part is a fixed-side raceway ring. Inclusion inspection method. 請求項1〜6のいずれか一項記載の転動装置部品の非金属介在物検査方法において、転動装置部品の表面から転動装置部品の直径の1/4に相当する深さまでの範囲と転動装置部品の全断面の範囲に対して電磁誘導検査を行なうことを特徴とする転動装置部品の非金属介在物検査方法。   In the non-metallic inclusions inspection method for a rolling device part according to any one of claims 1 to 6, a range from the surface of the rolling device part to a depth corresponding to ¼ of the diameter of the rolling device part; A method for inspecting non-metallic inclusions in a rolling device part, comprising performing an electromagnetic induction inspection over a range of the entire cross section of the rolling device part. 転動装置の短寿命化を招く非金属介在物が転動装置部品の表層部に存在するか否かを検査する装置であって、前記転動装置部品の表層部に交流磁界を付与する励磁コイルと、該励磁コイルから前記転動装置部品の表層部に付与された交流磁界の磁束密度を検出するための誘導コイルとを有する電磁誘導センサを具備してなることを特徴とする転動装置部品の非金属介在物検査装置。   An apparatus for inspecting whether or not non-metallic inclusions that cause a shortened life of a rolling device are present in the surface layer portion of the rolling device component, and for applying an alternating magnetic field to the surface layer portion of the rolling device component A rolling device comprising an electromagnetic induction sensor having a coil and an induction coil for detecting a magnetic flux density of an alternating magnetic field applied to a surface layer portion of the rolling device component from the exciting coil Non-metallic inclusion inspection system for parts. 前記転動装置部品と前記電磁誘導センサのうち少なくとも一方が回転、直動、揺動可能であることを特徴とする請求項8記載の転動装置部品の非金属介在物検査装置。   9. The non-metallic inclusion inspection apparatus for a rolling device part according to claim 8, wherein at least one of the rolling device part and the electromagnetic induction sensor is rotatable, linearly movable, and swingable. 前記電磁誘導センサの出力をデータ処理するデータ処理部と、該データ処理部で処理されたデータを閾値と比較して非金属介在物の有無を判定する判定部とを具備したことを特徴とする請求項8または9記載の転動装置部品の非金属介在物検査装置。   A data processing unit that performs data processing on the output of the electromagnetic induction sensor, and a determination unit that compares the data processed by the data processing unit with a threshold value to determine the presence or absence of non-metallic inclusions. The non-metallic inclusion inspection apparatus for rolling device parts according to claim 8 or 9. 前記判定部の判定結果を表示する表示手段と前記電磁誘導センサの出力を記憶する記憶手段のうち少なくとも一方を具備したことを特徴とする請求項10記載の転動装置部品の非金属介在物検査装置。   The non-metallic inclusion inspection of rolling device parts according to claim 10, further comprising at least one of display means for displaying the determination result of the determination section and storage means for storing the output of the electromagnetic induction sensor. apparatus. 前記電磁誘導センサは、前記転動装置部品の表面から転動装置部品の直径の1/4に相当する深さまでの範囲と転動装置部品の全断面の範囲に対して電磁誘導検査を行なうことを特徴とする請求項8〜11のいずれか一項記載の転動装置部品の非金属介在物検査装置。   The electromagnetic induction sensor performs an electromagnetic induction inspection on a range from the surface of the rolling device component to a depth corresponding to ¼ of the diameter of the rolling device component and a range of the entire cross section of the rolling device component. The non-metallic inclusion inspection apparatus for rolling device parts according to any one of claims 8 to 11. 外輪と内輪との間に複数の転動体を有する転がり軸受の製造方法であって、前記転動体の表面から転動体の平均直径の2%深さの範囲内に平方根長さが200μmを超える欠陥が存在せず、かつ前記転動体の全断面範囲内に最大長が500μmを超える欠陥が存在しないことが保証された転がり軸受を製造することを特徴とする転がり軸受の製造方法。   A method for manufacturing a rolling bearing having a plurality of rolling elements between an outer ring and an inner ring, wherein the defect has a square root length exceeding 200 μm within a range of 2% depth of the average diameter of the rolling elements from the surface of the rolling element. And a rolling bearing in which it is ensured that there is no defect having a maximum length exceeding 500 μm in the entire cross-sectional area of the rolling element.
JP2007045377A 2006-05-26 2007-02-26 Method and device for inspecting nonmetallic inclusion in component of rolling apparatus Pending JP2008170408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007045377A JP2008170408A (en) 2006-05-26 2007-02-26 Method and device for inspecting nonmetallic inclusion in component of rolling apparatus

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2006147117 2006-05-26
JP2006162413 2006-06-12
JP2006181704 2006-06-30
JP2006338551 2006-12-15
JP2007045377A JP2008170408A (en) 2006-05-26 2007-02-26 Method and device for inspecting nonmetallic inclusion in component of rolling apparatus

Publications (1)

Publication Number Publication Date
JP2008170408A true JP2008170408A (en) 2008-07-24

Family

ID=39698627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007045377A Pending JP2008170408A (en) 2006-05-26 2007-02-26 Method and device for inspecting nonmetallic inclusion in component of rolling apparatus

Country Status (1)

Country Link
JP (1) JP2008170408A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010054500A (en) * 2008-07-29 2010-03-11 Nsk Ltd Rolling apparatus and interior observation method of rolling apparatus using the same
US8520927B2 (en) 2009-01-07 2013-08-27 Kabushiki Kaisha Toshiba Medical image processing apparatus and ultrasonic imaging apparatus
CN103630602A (en) * 2013-11-27 2014-03-12 国家电网公司 Detection device and detection method for texture of coil of transformer type electrical equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010054500A (en) * 2008-07-29 2010-03-11 Nsk Ltd Rolling apparatus and interior observation method of rolling apparatus using the same
US8520927B2 (en) 2009-01-07 2013-08-27 Kabushiki Kaisha Toshiba Medical image processing apparatus and ultrasonic imaging apparatus
CN103630602A (en) * 2013-11-27 2014-03-12 国家电网公司 Detection device and detection method for texture of coil of transformer type electrical equipment

Similar Documents

Publication Publication Date Title
US20070289385A1 (en) Ultrasonic Flaw Detection Method For Roller Bearing, And Method For Detecting Flaws
JP3653984B2 (en) Ultrasonic flaw detection method for bearing rings
KR20130008093A (en) Method and apparwtus for detecting concavo-convex shape surface defects of ferromagnetic metal
JP2008032681A (en) Inspection method of rolling device component, and inspection device for rolling device component
JP2008032677A (en) Method and device for inspecting rolling device component
KR100799334B1 (en) Crack detection apparatus in press fit railway axle
JP2008170408A (en) Method and device for inspecting nonmetallic inclusion in component of rolling apparatus
JP2008256624A (en) Method, apparatus, and system for ultrasonic flaw detection of shaft member
JP2006153856A (en) Device and method for inspecting scratch on external case for cell
JP4645289B2 (en) Ultrasonic flaw detection method for rolling bearings
JP2008032674A (en) Quality inspection method of rolling device component, and quality inspection device for the rolling device component
JP2008032682A (en) Method and apparatus for inspecting rolling device component
JP2009222075A (en) Roller bearing and its manufacturing method
JP2008032680A (en) Inspection method of rolling device component, and inspection device for rolling device component
CN111465845B (en) Method and device for inspecting rotary member
JP2008089337A (en) Defect inspection method and defect inspection device for metal component
JP2008128829A (en) Ultrasonic inspection method and ultrasonic inspection device for rolling bearing
JP2006234807A (en) Defect detecting method
JP2003139143A (en) Rolling bearing
CN2391203Y (en) Rotary eddy current detecting probe
JP2004077206A (en) Ultrasonic flaw detection and inspection method for rolling bearing and rolling element
JP2003301850A (en) Roller bearing
JP2021060373A (en) Steel material cleanliness evaluation method
JP2913600B2 (en) Surface inspection of nuclear fuel cladding
JP2016102665A (en) Ultrasonic flaw detection device