JP2004077206A - Ultrasonic flaw detection and inspection method for rolling bearing and rolling element - Google Patents

Ultrasonic flaw detection and inspection method for rolling bearing and rolling element Download PDF

Info

Publication number
JP2004077206A
JP2004077206A JP2002235317A JP2002235317A JP2004077206A JP 2004077206 A JP2004077206 A JP 2004077206A JP 2002235317 A JP2002235317 A JP 2002235317A JP 2002235317 A JP2002235317 A JP 2002235317A JP 2004077206 A JP2004077206 A JP 2004077206A
Authority
JP
Japan
Prior art keywords
rolling
rolling element
ultrasonic
flaw detection
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002235317A
Other languages
Japanese (ja)
Inventor
Masaru Kawabe
川辺 優
Hiroshi Narai
奈良井 弘
Akihiro Kiuchi
木内 昭広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2002235317A priority Critical patent/JP2004077206A/en
Publication of JP2004077206A publication Critical patent/JP2004077206A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/022Liquids
    • G01N2291/0226Oils, e.g. engine oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2696Wheels, Gears, Bearings

Landscapes

  • Mounting Of Bearings Or Others (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To effectively prevent short life separation and roller cracks caused by internal defects in strict usage conditions of a high load and high surface pressure. <P>SOLUTION: In a roller bearing where a plurality of rollers are arranged between inner and outer wheels so that they can be rolled in a peripheral direction, it is assured that there are no defects where square root length exceeds 0.2 mm within a range where an average diameter Da is 2% deep from the surface of the rolling surface in the rollers, and there are no defects where the maximum length exceeds 0.5 mm within the total sectional range of the rollers. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、特に鉄鋼用ロールネック軸受のように大きな荷重が加わる円錐ころ軸受、円筒ころ形軸受、 球面ころ軸受等の転がり軸受及び該転がり軸受の転動体の欠陥検出に好適な超音波探傷検査方法並びに該検査方法を用いた転がり軸受の製造方法に関する。
【0002】
【従来の技術】
従来、 転がり軸受の転動体に使用される鋼材中に存在する欠陥の検出は、製鋼メーカーにおいて例えば製造途中段階で棒鋼に圧延された後、全数を全断面にわたり地きずや穴の未圧着などによる欠陥を超音波探傷による検査により検出することが行われている。 そして、発見された欠陥部の除去が行われることで、 軸受転動体には大きな欠陥はなくなってきている。
【0003】
しかしながら、圧延鋼材に対し超音波探傷によって検出できる欠陥の大きさは、 長さで数十mmを有するものが対象である。 この大きさの欠陥は製鋼工程での検査では、 生産性向上のため高速探傷が行われる点や検査面が圧延したままの表面状態で行われ鋼材内部の結晶粒および表面層が粗いことから、 この影響を受けて探傷の検出ノイズが大きくなって高精度な探傷は不可能であり、 また、検出可能な大きさも数十mm以上のものであった。
【0004】
また、表面きずは蛍光磁粉探傷やECTで表面に開口した欠陥のみしか検出できなかった。
【0005】
【発明が解決しようとする課題】
最近の技術進歩により更に高い周波数(例えば50〜150MHz)を用いることで、 例えば0.01mm(10μm) 程度までの微小な非金属介在物を検出することが可能となってきたものの、 周波数を高くすると鋼材内部での超音波の減衰が大きくなり( 鋼材表面の粗さが悪くなると更に超音波の減衰が大きくなる) 鋼材表面から例えば3mm程度の範囲までしか探傷することができない。 このため、特にころ軸受のころのように径で数十mm有するようワークの内部まで欠陥の探傷が必要な製品を効率良く探傷することは不可能であった。
【0006】
また、転動体に使用される鋼材は近年の製鋼技術の向上により非金属介在物の総量が少なくなって、 特に大型の非金属介在物に代表される地きず等の欠陥はその発生頻度は低くなったものの、 鋼材内部(特に中心部) に残留する場合があり、 これら地きずを起因とする転動体の割れが生じる場合があった。 このため、軸受の信頼性向上のために、 鋼材の内部に残留する地きず等の欠陥を予め効果的に検出する方法が望まれていた
更に、上記のように、従来では、転動体の内部欠陥の検出可能な大きさに限界がある一方で、鉄鋼圧延用軸受等で非常に大きな荷重を受ける軸受に使用されるころは、表面からころの平均直径Daの2%深さの範囲内に平方根長さ0.2mmを超える欠陥(非金属介在物等)が存在すると、転がり疲労によるはくりを起こし、また、ころ全断面範囲内に最大長さ0.5mmを超える欠陥(非金属介在物等)が存在すると、繰り返し曲げや引っ張り、圧縮等の応力を受けるため、ころが割れに至る重大な問題になることがある。
【0007】
本発明はこのような不具合を解消するためになされたものであり、 転動体の表面から心部までの全断面の欠陥、 特に転動体内部の大きな非金属介在物の存在を精度良く検出することができるようにして、 内部欠陥の無い転動体を備えた転がり軸受及び該転動体の超音波探傷検査方法並びに該検査方法を用いた転がり軸受の製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するために、請求項1に係る発明は、内輪と外輪との間に複数の転動体が周方向に転動可能に配設された転がり軸受において、
前記転動体の表面から該転動体の平均直径Daの2%深さの範囲内に平方根長さが0.2mmを超える欠陥が存在せず、且つ前記転動体の全断面範囲内に最大長が0.5mmを超える欠陥がないことが保証されていることを特徴とする。 請求項2に係る発明は、転がり軸受の転動体及び超音波探傷用探触子を例えば水等の超音波伝達媒体中に配置し、 超音波探傷用探触子から前記転動体に向けて超音波を発信して該転動体から反射してくる超音波エコーにより前記転動体の欠陥を検出する転動体の超音波探傷検査方法において、
前記転動体の直径をDとした場合に、該転動体の表面から少なくとも前記転動体の最大せん断応力位置よりも深いD/4までの範囲を入射角10〜28°、好ましくは19〜28°の斜角探傷法で探傷し、 更に斜角探傷法による探傷範囲よりも深い範囲を入射角0〜10°、 好ましくは0〜5°の垂直探傷法を用いて探傷し、 これにより前記転動体の全断面を探傷することを特徴とする。
【0009】
請求項3に係る発明は、転がり軸受の転動体及び超音波探傷用探触子を例えば水等の超音波伝達媒体中に配置し、 超音波探傷用探触子から前記転動体に向けて超音波を発信して該転動体から反射してくる超音波エコーにより、 前記転動体の欠陥を検出する転動体の超音波探傷検査方法において、
超音波探傷用探触子から前記転動体に向けて発信する超音波を周波数30MHz以下、好ましくは5〜30MHzとし、 且つ超音波が発信される該転動体は、 焼入れ、焼戻しの熱硬化処理、 又は浸炭若しくは浸炭窒化、焼入れ、焼戻しの熱硬化処理を行った後に、 外径面に研削加工を施したものを用いることを特徴とする。
【0010】
請求項4に係る発明は、内輪と外輪との間に複数の転動体が周方向に転動可能に配設された転がり軸受の製造方法であって、
請求項2又は3の転動体の超音波探傷検査方法を用いて、前記転動体の表面から該転動体の平均直径Daの2%深さの範囲内に平方根長さが0.2mmを超える欠陥が存在せず、且つ前記転動体の全断面範囲内に最大長が0.5mmを超える欠陥がないことが保証された転がり軸受を製造することを特徴とする。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態を図を参照して説明する。
図1は本発明の第1の実施の形態である転がり軸受の転動体の超音波探傷検査に使用する装置の概略図、図2は寿命試験機の概略を示す断面図、図3は本発明の第2の実施の形態である転動体の超音波探傷検査方法を説明するための説明図で人工欠陥が形成されたころの斜視図、図4及び図5は入射角とエコー強度との関係をころの転動面表面からの深さを変えて比較した結果を示すグラフ図で、図6は入射角5°で探傷を行った際の表面エコーと欠陥エコーの分離距離と反射エコーの強さとの関係を示すグラフ図、図7は入射角19°で探傷を行った際の表面エコーと欠陥エコーの分離距離と反射エコーの強さとの関係を示すグラフ図、図8は本発明の第3の実施の形態である転動体の超音波探傷検査方法を説明するための探傷周波数と欠陥指数との関係を示すグラフ図、図9は探傷周波数と軸受の寿命減少率との関係を示すグラフ図である。
【0012】
まず、第1の実施の形態である転がり軸受から説明すると、本発明者らは、バックアップロール等に組み込まれるころ軸受のころの超音波探傷において、極まれに検出することがあった大きな欠陥エコー部を詳細に調査したところ、長さ数百μmにわたる大きな非金属介在物を見つけた。
そこで、更にこの欠陥エコーの強度と発見した介在物の長さ、大きさ及び軸受寿命との相関を見極めるため、ころの寿命試験を行った結果、平方根長さが0.2mmを超える非金属介在物がころ表面からころの平均直径Daの2%深さ(以下、2%Daという)範囲内に存在したり、ころの全断面範囲に最大長さ0.5mmを超えるの非金属介在物が存在した場合に、ころの寿命が極端に低下することが判った。なお、大きい介在物は長細く、小さい介在物は円形に近くなる傾向があるので、2%Da範囲内の小さい介在物等は平方根長さで、全断面の大きい介在物等は最大長さで規定した。
【0013】
次に、比較試験について述べる。試験軸受は円錐ころ軸受HR32017XJとし、その軸受のころを図1に示す超音波探傷検査装置にて検査した。
超音波探傷検査装置を説明すると、図1において符号1は超音波伝達媒体としての水が貯留された水槽であり、 水槽1内には円錐ころ軸受の転動体としてのころ2及び超音波探傷用探触子3がそれぞれ水に浸漬された状態で配置されている。 超音波探傷用探触子3としては指向性が強く、 ころ2の曲率の影響を受けにくい焦点型探触子を用いている。 ころ2は水槽1内に水平方向に互いに離間配置された2個のプーリ4に載置されており、 各プーリ4及び回転駆動用モータ5のモータ軸に固定されたプーリ6にはベルト7が巻き掛けられている。 回転駆動用モータ5はモータ駆動用制御アンプ8を介して制御装置9によって制御されるようになっており、 回転駆動用モータ5の駆動により各プーリ4に載置されたころ2が所定の速度で回転するようになっている。 なお、 制御装置9はCRT等の表示手段を備えたパーソナルコンピュータ等で構成されている。
【0014】
超音波探傷用探触子3はころ2の軸方向に沿って移動可能に配置されたリニアガイド装置10のXYステージ12に探触子取付具13を介して取り付けられており、 取り付け状態においてはころ2の外周面に対向配置されている。 超音波探傷用探触子3は超音波探傷装置14からの電圧信号に応じて超音波パルスをころ2の外周面に向けて発信すると共に、その反射エコーを受信し、 これを電気信号に変換して超音波探傷装置14に送信する。
【0015】
超音波探傷装置14は制御装置9からの指令に基づいて超音波探傷用探触子3に電気信号からなる指令信号を送信すると共に、 送信した信号と受信した信号とを基にして得られた探傷情報を制御装置9に送信し、 制御装置9がこれをCRT上に表示する。
リニアガイド装置10はリニアガイド用コントローラ16によって制御される図示しないサーボモータを介して超音波探傷用探触子3をころ2の軸方向に移動させるようになっており、 リニアガイド用コントローラ16はころ2の外周面に設置されたロータリエンコーダ15によってころ2が一回転(360°)したことが検知されると、 制御装置9からの指令に基づいてサーボモータを制御して超音波探傷用探触子3をころ2の軸方向に所定寸法移動させる。 これにより、ころ2の全断面の探傷がなされるようになっている。
【0016】
この実施の形態では、従来、 ころの使用数が多いため困難であったころの転動面の超音波探傷が可能となり、 ころの表面から内部までの全断面の欠陥を精度良く、 しかも短時間で検出することができるので、内部欠陥に起因した短寿命はくりやころの割れを効率良く防止することができる。
次に、 図1示す超音波探傷検査装置による超音波探傷にて欠陥が検出されたころ2を使用して円錐ころ軸受を製作し、 図2に示す寿命試験機を用いて、以下の条件で寿命試験を行った。
【0017】
軸受:円錐ころ軸受HR32017XJ
ラジアル荷重:71500N
アキシアル荷重:31360N
内輪回転数:1500min−1
潤滑:グリース
試験結果を表1に示す。
【0018】
【表1】

Figure 2004077206
【0019】
表1から判るように、ころ2の転動面表面から2 %Da深さまでの欠陥平方根長さが0.2mm以下の軸受(試料No.1〜No.3)と、欠陥平方根長さが0.2mmを超えていたが、ころ2の転動面表面から2%Daより深い位置にあった軸受(試料No.6)は、 試験時間の500時間を達成し試験を中断した。 これに対し、ころ2の転動面表面から2%Da範囲までの欠陥平方根長さが0.2mmを超えた軸受(試料No.4、No.5)は試験時間が500時間未満でころのはくりを起こし短寿命であった。
【0020】
一方、 ころ2の全断面範囲内に欠陥最大長さ0.5mm以下の軸受(試料No.7、No.8)は試験時間の500時間を達成し試験を中断した。
これに対し、ころ2の全断面範囲内に欠陥最大長さ0.5mmを超える軸受(試料No.9、No.10)は370、430時間でころの割れを起した。
したがって、超音波探傷を行うことにより、 ころの表面から内部までの全断面の欠陥を精度良く、 しかも短時間で検出することができるので、 ころの寿命低下に大きく影響を及ぼす介在物等の欠陥を効果的に検出することが可能になり、 この結果、内部欠陥に起因した短寿命はくりや割れを効率的に防止することができる。
【0021】
次に、本発明の第2実施の形態である転動体の超音波探傷検査方法を説明する。図1の超音波探傷検査装置を用い、円筒ころ軸受のころ(外径30mm)2を超音波探傷用探触子3としての焦点型探触子(周波数10MHz、 振動子径10mm) と共に水槽1内の水に浸漬し、 この状態でころ2の転動面(外周面) の表面からころ2のD(ころ直径)/4 となる8mm程度までの探傷及びそれより更に深い範囲の探傷を上述したころ2の回転と超音波探傷用探触子3をころ2の軸方向移動により行い、 ころ2の全断面を探傷する。
【0022】
なお、 ころ2の転動面表面から8mm(D/4)程度までの斜角探傷については、水中焦点距離25mmの探触子を用いて水距離(ころ2の外周面と超音波探傷用探触子3との距離) を15mmにセットし、 それより更に深い範囲の垂直探傷については、水中焦点距離50mmの探触子を用いて水距離を10mmにセットした。
【0023】
まず、 ころ2の転動面表面から8mm(D/4)までの深さの探傷について説明すると、 図3に示すように、ころ2の転動面表面に探傷方向(円周方向)に対して垂直になるように長さ10mm、 幅0.5mm、 深さ0.5mmの人工欠陥30を形成すると共に、 ころ2の転動面に探傷方向(円周方向)に対して垂直にφ0.5mm×20mmの穴(人工欠陥)50をころ2の転動面表面からの深さA=2, 5, 8, 15mmの位置に個別に形成した試験片を作製し、 図1の超音波探傷検査装置を用いて超音波探傷用探触子3から発疹される超音波の入射角(転動面に立てた法線に対して円周方向に傾く角度)を0〜28°の間で変更して探傷を行った。
【0024】
探傷結果を図4及び図5に示す。図4から明らかなように、入射角が10〜28°の斜角探傷で人工欠陥30の検出が可能であったが、0°と5°では表面欠陥(A=0mm)との分離ができず、探傷不可能であった。
図4より、ころ2の転動面表面からの深さA=2〜8mmの欠陥の探傷では、入射角が0〜5°の場合において高い探傷感度が得られたが、入射角が0°と5°では表面エコーと欠陥エコー(欠陥がある時のみ出る信号)の位置(最大高さの距離)が接近しており、目視での分類は可能であるものの自動探傷とした場合に分類の判断が困難な場合があるため、2〜8mmまでの深さの欠陥については、各深さ毎のエコー強度の差が小さい、入射角が19〜28°の条件が好適である。
【0025】
図6に入射角5°、図7に入射角19°にて探傷を行った際に、パソコンCRT上に表示された探傷結果を示す。CRT上では入射角19°より入射角5°の方が表面エコーと欠陥エコーの距離が接近しているのが判る。
次に、ころ2の転動面表面から8mm(D/4)より深い位置の探傷について説明する。
【0026】
図5より、ころ2の転動面表面からの深さA=8〜15mmの探傷では、入射角が0〜5°の垂直探傷での検出結果がエコー強度が高く好適であった。また、ころ2の転動面表面から8mmを越える深い位置の欠陥であるため、垂直探傷を利用した場合でも表面エコーと欠陥エコーとの分類性もよい。
これらのことから、 ころ2の転動面表面から8mm(D/4)より深い位置の探傷については、 入射角は0〜5°がより好ましいことが判る。 また、 入射角が0°の場合は垂直波の伝播が欠陥に対して最短距離となるため、表面エコーと欠陥エコーの判別の点から少し傾きを持たせた入射角5°が最も好ましい。 但し、分類性に問題がない場合は、(D/4)にこだわらず、深さを変更して探傷を行うことができる。
【0027】
上記の記載から明らかなように、 この実施の形態では、従来、 生産性の観点から、 数百μmレベルの大型介在物の検出が困難であったころ転動面の超音波探傷が可能となり、 ころの表面から内部までの全断面の欠陥を精度良く、 しかも短時間で検出することができるので、内部欠陥に起因した短寿命はくりやころの割れを効率良く防止することができる。
【0028】
円筒ころ軸受のころ2(外径30mm)を図1の超音波探傷検査装置にセットし、 ころ2を回転速度250mm/sで回転させ、 軸方向の探傷ピッチを0.5mmとして300個のころ2について探傷を行った。
ここで、ころ2の転動面表面から8mm(D/4)までの深さの探傷は入射角が19°の斜角探傷法で行い、 それより更に深い範囲の探傷は入射角が5°の垂直探傷法で行った。
【0029】
300個のころ2を探傷した結果、3個について欠陥エコーが観察され、1個は表面近傍で、2個は内部に観察された。 この欠陥部を切断、 研削にて詳細に調査したところ、 それぞれに幅0.05〜0. 2mm程度、 長さ0.2〜最大で3mmの欠陥が発見され、分析調査の結果、 大型の非金属介在物であることが判った。
【0030】
次に、 本発明における第3の実施の形態である転動体の超音波探傷検査方法を図1、図2、図8、図9を参照して説明する。
この実施の形態では、超音波の減衰及び林状エコーの影響を少なくすべく、焼入れ、焼戻しの熱硬化処理(又は浸炭若しくは浸炭窒化、焼入れ、焼戻しの熱硬化処理) を行って熱処理後の結晶粒度が8番以上となるマルテンサイト組織とした後に、外径面に研削加工を施して円錐ころ軸受HR32017XJのころ2を作製し、図1の超音波探傷検査装置で各種の周波数の超音波探傷用探触子3を用いて300個のころ2について、5,10,15,20,30,50MHzと低い周波数から順に全断面の探傷を行った。
【0031】
この際、それぞれの周波数で欠陥が検出されたころ2は取り除き、欠陥が検出されなかったころ2のみを次の大きな周波数での探傷検査へと使用した。なお、超音波探傷法としては斜角探傷法及び垂直探傷法の両方を用いることができるが、この実施の形態では斜角探傷法を用いた。
図8に探傷結果を示す。図8の縦軸の欠陥指数は周波数5MHzで探傷を行った際に、欠陥が発見されたころ2の内での欠陥の平均数を1として、 それぞれの5,10,15,20,30,50MHz周波数で発見されたころ2の欠陥数の平均値を欠陥指数として示したものである。
【0032】
図8から明らかなように、 探傷にて欠陥が検出されたころ2の中でのころ1個あたりに存在する欠陥数は、 周波数30MHzを超えると急激に増えることが分かる。
周波数特性より低い周波数にて検出される欠陥は、比較的大きな欠陥しか検出できない。 周波数を高くした場合は、 大きい欠陥はもとより小さな欠陥までも検出することができるから、 ころ2には30MHzを超えた周波数で検出できるレベルの小さな介在物等の欠陥が数多く存在することが良く分かる。
【0033】
次に、 各周波数にて欠陥が検出されたころ2を使用して円錐ころ軸受を製作し、 図2に示す寿命試験機を用いて以下の条件で寿命試験を行った。
軸受:円錐ころ軸受HR32017XJ
ラジアル荷重:35750N
アキシアル荷重:15680N
内輪回転数:1500min−1
潤滑:グリース
寿命評価は、 各々の周波数にて欠陥が検出されたころ2を寿命試験して各々のL10寿命を求め、 周波数50MHzの条件にて欠陥が検出されたころ2のL10寿命を100とした場合のL10寿命に対する30MHz以下の周波数で欠陥が検出されたころ2のL10寿命の寿命減少率を求めた。
【0034】
試験結果を図9に示す。
図9から明らかなように、30MHz以下の周波数で欠陥が検出されたころ2は50MHzの周波数で欠陥が検出されたころ2に比べて大幅に寿命が低下しているのが分かる。
なお、 周波数が5MHz以下でも探傷は可能であるが、 ころ2内部の小さな欠陥を検出することが極めて困難なため、 周波数は5〜30MHzが好ましい。
【0035】
上記の記載から明らかなように、 この実施の形態では、マルテンサイト組織のころに対して30MHz以下の周波数で超音波探傷を行うことにより、 ころの表面から内部までの全断面の欠陥を精度良く、 しかも短時間で検出することができるので、 軸受の寿命低下に大きく影響を及ぼす介在物等の欠陥を効果的に検出することが可能になり、 この結果、内部欠陥に起因した短寿命はくりを効率的に防止することができる。
【0036】
【発明の効果】
上記の説明から明らかなように、請求項1の転がり軸受によれば、転動体の2%Da範囲内に平方根長さが0.2mmを超える欠陥が存在せず、且つ前記転動体の全断面範囲内に最大長さが0.5mmを超える欠陥がないことが保証されているため、高荷重、高面圧という苛酷な使用条件においても内部欠陥に起因した短寿命はくりやころ割れを効果的に防止することができるという効果が得られる。
【0037】
請求項2又は3の転動体の超音波探傷検査方法では、転動体の表面から内部までの全断面の欠陥、 特に転動体内部の大きな非金属介在物の存在を精度良く検出することができる。
請求項4の転がり軸受の製造方法では、転動体の表面から内部までの全断面の欠陥、 特に転動体内部の大きな非金属介在物の存在を精度良く検出することができるので、高荷重、高面圧という苛酷な使用条件においても内部欠陥に起因した短寿命はくりやころ割れを効果的に防止することができる信頼性の高い転がり軸受を提供することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態である転がり軸受の転動体の超音波探傷検査に使用する装置の概略図である。
【図2】寿命試験機の概略を示す断面図である。
【図3】本発明の第2の実施の形態である転動体の超音波探傷検査方法を説明するための説明図であり、人工欠陥が形成されたころの斜視図である。
【図4】入射角とエコー強度との関係をころの転動面表面からの深さを変えて比較した結果を示すグラフ図である。
【図5】入射角とエコー強度との関係をころの転動面表面からの深さを変えて比較した結果を示すグラフ図である。
【図6】入射角5°で探傷を行った際の表面エコーと欠陥エコーの分離距離と反射エコーの強さとの関係を示すグラフ図である。
【図7】入射角19°で探傷を行った際の表面エコーと欠陥エコーの分離距離と反射エコーの強さとの関係を示すグラフ図である。
【図8】本発明の第3の実施の形態である転動体の超音波探傷検査方法を説明するための探傷周波数と欠陥指数との関係を示すグラフ図である。
【図9】探傷周波数と軸受の寿命減少率との関係を示すグラフ図である。
【符号の説明】
1…水槽
2…ころ(転動体)
3…超音波探傷用探触子
5…回転駆動用モータ
7…ベルト
8…モータ駆動用制御アンプ
9…制御装置
10…リニアガイド装置
14…超音波探傷装置
15…ロータリエンコーダ
16…リニアガイド用コントローラ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an ultrasonic flaw inspection which is particularly suitable for detecting rolling bearings such as tapered roller bearings, cylindrical roller bearings, and spherical roller bearings to which a large load is applied, such as roll neck bearings for steel, and for detecting defects in the rolling elements of the rolling bearings. TECHNICAL FIELD The present invention relates to a method and a method for manufacturing a rolling bearing using the inspection method.
[0002]
[Prior art]
Conventionally, the detection of defects existing in the steel material used in the rolling element of the rolling bearing is, for example, after being rolled into a steel bar in the middle of manufacturing in a steelmaking maker, the entire number is due to unbonded ground flaws and holes over the entire cross section Defects are detected by inspection using ultrasonic flaw detection. The removal of the defects found has eliminated major defects in the bearing rolling elements.
[0003]
However, the size of a defect that can be detected by ultrasonic flaw detection for a rolled steel material is one having a length of several tens of mm. Defects of this size are inspected in the steelmaking process in the point where high-speed flaw detection is performed in order to improve productivity and the inspection surface is performed in a rolled surface state and the crystal grains and surface layer inside the steel material are rough, Under the influence of this, the detection noise of the flaw detection increases, so that high-precision flaw detection is impossible, and the detectable size is several tens mm or more.
[0004]
In addition, only the defects opened on the surface by flaw detection or ECT could be detected.
[0005]
[Problems to be solved by the invention]
Recent technological advances have made it possible to detect fine non-metallic inclusions up to about 0.01 mm (10 μm) by using higher frequencies (for example, 50 to 150 MHz). Then, the attenuation of the ultrasonic wave inside the steel material increases (the lower the roughness of the steel material surface, the greater the attenuation of the ultrasonic wave). It is possible to detect a flaw only from the surface of the steel material to, for example, about 3 mm. For this reason, it has not been possible to efficiently detect a product that requires flaw detection of a defect to the inside of a work so as to have a diameter of several tens of mm, such as a roller bearing roller.
[0006]
In addition, the total amount of nonmetallic inclusions in steel materials used for rolling elements has decreased due to recent improvements in steelmaking technology, and defects such as ground flaws typified by large nonmetallic inclusions have a low frequency of occurrence. However, they could remain inside the steel material (especially at the center), and the rolling elements could crack due to these ground flaws. For this reason, in order to improve the reliability of the bearing, a method of effectively detecting a defect such as a ground flaw remaining inside the steel material in advance has been desired. While there is a limit to the size at which defects can be detected, the rollers used in bearings that receive extremely large loads, such as steel rolling bearings, are within a depth of 2% of the average diameter Da of the rollers from the surface. Defects exceeding 0.2 mm square root length (non-metallic inclusions, etc.) cause peeling due to rolling fatigue, and defects (non-metallic inclusions) exceeding a maximum length of 0.5 mm within the entire cross-sectional area of the roller. ) Is repeatedly subjected to stresses such as bending, pulling, and compression, which may cause a serious problem that causes the rollers to crack.
[0007]
The present invention has been made in order to solve such a problem, and it is necessary to accurately detect defects in the entire cross section from the surface of the rolling element to the core, particularly, the presence of large non-metallic inclusions inside the rolling element. It is an object of the present invention to provide a rolling bearing provided with a rolling element having no internal defect, an ultrasonic inspection method for the rolling element, and a method for manufacturing a rolling bearing using the inspection method.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, an invention according to claim 1 is a rolling bearing in which a plurality of rolling elements are arranged between an inner ring and an outer ring so as to be able to roll in a circumferential direction.
There is no defect whose square root length exceeds 0.2 mm within a range of 2% of the average diameter Da of the rolling element from the surface of the rolling element, and the maximum length is within the entire cross-sectional area of the rolling element. It is guaranteed that there is no defect exceeding 0.5 mm. The invention according to claim 2 is that the rolling element of the rolling bearing and the probe for ultrasonic flaw detection are arranged in an ultrasonic transmission medium such as water, for example, and the probe for ultrasonic flaw detection is directed toward the rolling element from the probe for ultrasonic flaw detection. In an ultrasonic flaw detection inspection method for a rolling element for detecting a defect of the rolling element by an ultrasonic echo reflected from the rolling element by transmitting an acoustic wave,
Assuming that the diameter of the rolling element is D, the range from the surface of the rolling element to at least D / 4 deeper than the maximum shear stress position of the rolling element is an incident angle of 10 to 28 °, preferably 19 to 28 °. Flaw detection using a vertical flaw detection method at an incident angle of 0 to 10 °, preferably 0 to 5 °, which is deeper than the flaw detection range obtained by the bevel flaw detection method. Is characterized in that the entire cross section is flaw-detected.
[0009]
The invention according to claim 3 is that the rolling element of the rolling bearing and the ultrasonic test probe are arranged in an ultrasonic transmission medium such as water, and the ultrasonic test probe is directed toward the rolling element from the ultrasonic test probe. An ultrasonic flaw inspection method for a rolling element for detecting a defect of the rolling element by transmitting an acoustic wave and reflecting an ultrasonic echo reflected from the rolling element,
The ultrasonic wave transmitted from the ultrasonic flaw detector to the rolling element has a frequency of 30 MHz or less, preferably 5 to 30 MHz, and the rolling element from which the ultrasonic wave is transmitted is a quenching and tempering thermosetting treatment. Alternatively, after carburizing or carbonitriding, quenching, and tempering, a thermosetting treatment is performed, and an outer diameter surface is subjected to a grinding process.
[0010]
The invention according to claim 4 is a method for manufacturing a rolling bearing in which a plurality of rolling elements are arranged between an inner ring and an outer ring so as to be rollable in a circumferential direction,
A defect whose square root length exceeds 0.2 mm within a range of 2% of the average diameter Da of the rolling element from the surface of the rolling element using the ultrasonic inspection method for rolling elements according to claim 2 or 3. The present invention is characterized in that a rolling bearing is manufactured in which there is no defect and that there is no defect having a maximum length exceeding 0.5 mm in the entire cross-sectional area of the rolling element.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic view of an apparatus used for ultrasonic inspection of a rolling element of a rolling bearing according to a first embodiment of the present invention, FIG. 2 is a cross-sectional view schematically showing a life tester, and FIG. FIG. 4 is an explanatory view for explaining an ultrasonic inspection method for rolling elements according to a second embodiment of the present invention. FIG. 4 is a perspective view of a roller in which an artificial defect is formed. FIGS. FIG. 6 is a graph showing the results of comparing the depth of the roller from the rolling surface and changing the depth. FIG. 6 shows the separation distance between the surface echo and the defect echo and the intensity of the reflection echo when a flaw was detected at an incident angle of 5 °. FIG. 7 is a graph showing the relationship between the separation distance between a surface echo and a defect echo and the intensity of a reflected echo when flaw detection is performed at an incident angle of 19 °, and FIG. Flaw detection frequency and defect for explaining the ultrasonic flaw detection method for rolling elements according to the third embodiment. FIG. 9 is a graph showing the relationship between the index and the flaw detection frequency and the life reduction rate of the bearing.
[0012]
First, the rolling bearing according to the first embodiment will be described. The present inventors have found that a large defect echo portion that is rarely detected in ultrasonic flaw detection of a roller bearing incorporated in a backup roll or the like. When they were examined in detail, large non-metallic inclusions having a length of several hundred μm were found.
Therefore, in order to further determine the correlation between the intensity of this defect echo and the length, size, and bearing life of the found inclusions, a roller life test was performed. Non-metallic inclusions exist within a range of 2% depth (hereinafter, referred to as 2% Da) of the average diameter Da of the rollers from the roller surface or in the entire cross-sectional area of the rollers. When present, it was found that the life of the rollers was extremely reduced. Since large inclusions tend to be long and small inclusions tend to be close to circular, small inclusions within the 2% Da range have a square root length, and large inclusions having a total cross section have a maximum length. Stipulated.
[0013]
Next, a comparative test will be described. The test bearing was a tapered roller bearing HR32017XJ, and the rollers of the bearing were inspected by an ultrasonic flaw detector shown in FIG.
The ultrasonic flaw detector will be described. In FIG. 1, reference numeral 1 denotes a water tank in which water as an ultrasonic transmission medium is stored. In the water tank 1, a roller 2 as a rolling element of a tapered roller bearing and an ultrasonic flaw detector The probes 3 are arranged in a state of being immersed in water, respectively. As the ultrasonic flaw detector 3, a focus type probe having strong directivity and less affected by the curvature of the roller 2 is used. The roller 2 is mounted on two pulleys 4 horizontally spaced from each other in the water tank 1, and a belt 7 is fixed to each pulley 4 and a pulley 6 fixed to the motor shaft of the rotation driving motor 5. It is wound. The rotation driving motor 5 is controlled by a control device 9 via a motor driving control amplifier 8. The rollers 2 mounted on each pulley 4 by the rotation driving motor 5 drive at a predetermined speed. It is designed to rotate. The control device 9 is constituted by a personal computer or the like having a display means such as a CRT.
[0014]
The ultrasonic inspection probe 3 is attached via a probe attachment 13 to an XY stage 12 of a linear guide device 10 movably arranged along the axial direction of the roller 2. The roller 2 is arranged to face the outer peripheral surface. The ultrasonic test probe 3 transmits an ultrasonic pulse toward the outer peripheral surface of the roller 2 according to a voltage signal from the ultrasonic test device 14, receives a reflected echo thereof, and converts it into an electric signal. And transmits it to the ultrasonic flaw detector 14.
[0015]
The ultrasonic flaw detector 14 transmits a command signal consisting of an electric signal to the ultrasonic flaw detector 3 based on a command from the control device 9 and is obtained based on the transmitted signal and the received signal. The flaw detection information is transmitted to the control device 9, which displays the information on the CRT.
The linear guide device 10 moves the ultrasonic inspection probe 3 in the axial direction of the roller 2 via a servo motor (not shown) controlled by the linear guide controller 16. When the rotary encoder 15 installed on the outer peripheral surface of the roller 2 detects that the roller 2 has made one rotation (360 °), the servo motor is controlled based on a command from the control device 9 to perform ultrasonic flaw detection. The contact 3 is moved by a predetermined dimension in the axial direction of the roller 2. As a result, flaw detection of the entire cross section of the roller 2 is performed.
[0016]
According to this embodiment, ultrasonic inspection of the rolling surface of the roller, which has been difficult because of the large number of rollers used in the past, can be performed. , The short life caused by the internal defect can be effectively prevented from being broken and the roller from cracking.
Next, a tapered roller bearing was manufactured using the roller 2 in which a defect was detected by ultrasonic inspection using the ultrasonic inspection apparatus shown in FIG. 1, and a life tester shown in FIG. 2 was used under the following conditions. A life test was performed.
[0017]
Bearing: tapered roller bearing HR32017XJ
Radial load: 71500N
Axial load: 31360N
Inner ring rotation speed: 1500 min -1
Lubrication: Table 1 shows the grease test results.
[0018]
[Table 1]
Figure 2004077206
[0019]
As can be seen from Table 1, a bearing having a defect square root length of 0.2 mm or less from the rolling surface surface of the roller 2 to a depth of 2% Da (Sample Nos. 1 to 3) and a defect square root length of 0 mm The bearing (sample No. 6), which was larger than 0.2 mm but was deeper than 2% Da from the surface of the rolling surface of the roller 2, achieved the test time of 500 hours and stopped the test. On the other hand, the bearings (samples No. 4 and No. 5) in which the square root length of the defect from the rolling surface surface of the roller 2 to the range of 2% Da exceeded 0.2 mm (sample Nos. 4 and 5) had a test time of less than 500 hours. It was short-lived due to peeling.
[0020]
On the other hand, the bearings with a maximum defect length of 0.5 mm or less (samples No. 7 and No. 8) in the entire cross-sectional area of the roller 2 achieved the test time of 500 hours and the test was stopped.
On the other hand, the bearings (samples No. 9 and No. 10) exceeding the maximum defect length of 0.5 mm in the entire cross-sectional area of the roller 2 caused the roller to crack in 370 and 430 hours.
Therefore, by performing ultrasonic testing, defects in all cross sections from the roller surface to the inside can be detected accurately and in a short time, and defects such as inclusions that greatly affect the life of the rollers can be detected. Can be effectively detected, and as a result, the short life caused by the internal defect can be effectively prevented from cracking or cracking.
[0021]
Next, an ultrasonic inspection method for rolling elements according to a second embodiment of the present invention will be described. Using the ultrasonic inspection device shown in FIG. 1, a water tank 1 is mounted on a cylindrical roller bearing roller (outer diameter 30 mm) 2 together with a focus type probe (frequency 10 MHz, transducer diameter 10 mm) as an ultrasonic inspection probe 3. In this state, the flaw detection from the surface of the rolling surface (outer peripheral surface) of the roller 2 to about 8 mm which is D (roller diameter) / 4 of the roller 2 and the flaw detection in a deeper range are performed as described above. The roller 2 is rotated and the ultrasonic inspection probe 3 is moved in the axial direction of the roller 2 to detect the entire cross section of the roller 2.
[0022]
In addition, for the oblique flaw detection up to about 8 mm (D / 4) from the surface of the rolling surface of the roller 2, a probe having an underwater focal length of 25 mm was used to measure the water distance (the outer circumferential surface of the roller 2 and the ultrasonic flaw detection). The distance to the probe 3 was set to 15 mm, and for vertical flaw detection in a deeper range, the water distance was set to 10 mm using a probe with an underwater focal length of 50 mm.
[0023]
First, the flaw detection at a depth of 8 mm (D / 4) from the surface of the rolling surface of the roller 2 will be described. As shown in FIG. The artificial defect 30 having a length of 10 mm, a width of 0.5 mm, and a depth of 0.5 mm is formed so as to be perpendicular to the surface of the roller 2. A test piece in which a hole (artificial defect) 50 of 5 mm × 20 mm was individually formed at a depth A = 2, 5, 8, 15 mm from the surface of the rolling surface of the roller 2 was prepared, and the ultrasonic test shown in FIG. Using an inspection device, change the incident angle (angle inclined in the circumferential direction with respect to the normal set on the rolling surface) of the ultrasonic rash from the ultrasonic flaw detector 3 between 0 and 28 °. And conducted flaw detection.
[0024]
The results of the flaw detection are shown in FIGS. As is clear from FIG. 4, the artificial defect 30 could be detected by oblique flaw detection at an incident angle of 10 to 28 °, but at 0 ° and 5 °, a surface defect (A = 0 mm) could be separated. No flaw detection was possible.
From FIG. 4, in the flaw detection of a defect having a depth A = 2 to 8 mm from the rolling surface of the roller 2, high flaw detection sensitivity was obtained when the incident angle was 0 to 5 °, but the incident angle was 0 °. At 5 ° and 5 °, the positions (maximum height distance) of the surface echo and the defect echo (a signal that is emitted only when there is a defect) are close to each other. Since it may be difficult to make a determination, it is preferable for a defect having a depth of 2 to 8 mm that the difference in echo intensity at each depth is small and the incident angle is 19 to 28 °.
[0025]
FIG. 6 shows a flaw detection result displayed on a personal computer CRT when flaw detection was performed at an incident angle of 5 ° and FIG. 7 shows a flaw detection at an incident angle of 19 °. On the CRT, it can be seen that the distance between the surface echo and the defect echo is closer at an incident angle of 5 ° than at an incident angle of 19 °.
Next, flaw detection at a position deeper than 8 mm (D / 4) from the surface of the rolling surface of the roller 2 will be described.
[0026]
From FIG. 5, in the flaw detection at a depth A = 8 to 15 mm from the surface of the rolling surface of the roller 2, the detection result obtained by the vertical flaw detection at an incident angle of 0 to 5 ° has a high echo intensity and is suitable. In addition, since the defect is located at a position deeper than 8 mm from the rolling surface of the roller 2, the classification of the surface echo and the defect echo is good even when the vertical flaw detection is used.
From these facts, it can be seen that for flaw detection at a position deeper than 8 mm (D / 4) from the rolling surface of the roller 2, the incident angle is more preferably 0 to 5 °. When the incident angle is 0 °, the propagation of the vertical wave is the shortest distance to the defect. Therefore, the incident angle of 5 ° with a slight inclination from the point of discriminating between the surface echo and the defect echo is most preferable. However, when there is no problem in the classification property, the flaw detection can be performed by changing the depth without being limited to (D / 4).
[0027]
As is apparent from the above description, in this embodiment, from the viewpoint of productivity, it has been possible to perform ultrasonic flaw detection of the rolling contact surface at the time when it was difficult to detect a large inclusion of several hundred μm level, Since defects in the entire cross section from the roller surface to the inside can be detected with high accuracy and in a short time, the short life caused by the internal defect can be efficiently prevented from cutting and roller cracking.
[0028]
The roller 2 (outer diameter 30 mm) of the cylindrical roller bearing is set in the ultrasonic inspection equipment shown in FIG. 1, and the roller 2 is rotated at a rotation speed of 250 mm / s. No. 2 was inspected for flaws.
Here, flaw detection at a depth of 8 mm (D / 4) from the surface of the rolling surface of the roller 2 is performed by the oblique flaw detection method with an incident angle of 19 °, and flaw detection in a deeper range with an incident angle of 5 °. Vertical inspection method.
[0029]
As a result of inspecting 300 rollers 2, defect echoes were observed in three of them, one in the vicinity of the surface, and two in the inside. When this defective portion was examined in detail by cutting and grinding, each had a width of 0.05-0. A defect with a length of about 2 mm and a length of 0.2 to 3 mm at the maximum was found, and as a result of analysis and investigation, it was found to be a large nonmetallic inclusion.
[0030]
Next, an ultrasonic inspection method for rolling elements according to a third embodiment of the present invention will be described with reference to FIGS. 1, 2, 8, and 9. FIG.
In this embodiment, in order to reduce the effects of ultrasonic attenuation and forest echo, a quenching and tempering thermosetting treatment (or a carburizing or carbonitriding, quenching and tempering thermosetting treatment) is performed to obtain a crystal after the heat treatment. After forming a martensite structure having a grain size of 8 or more, the outer diameter surface is subjected to grinding to produce rollers 2 of a tapered roller bearing HR32017XJ, and ultrasonic inspection of various frequencies by the ultrasonic inspection apparatus of FIG. For the 300 rollers 2, flaw detection was performed on all cross sections of the 300 rollers 2 in ascending order of frequency from 5, 10, 15, 20, 30, 50 MHz.
[0031]
At this time, the roller 2 where a defect was detected at each frequency was removed, and only the roller 2 where no defect was detected was used for the flaw detection inspection at the next larger frequency. As the ultrasonic flaw detection method, both the oblique flaw detection method and the vertical flaw detection method can be used. In this embodiment, the oblique flaw detection method is used.
FIG. 8 shows the results of flaw detection. The defect index on the vertical axis of FIG. 8 indicates that the average number of defects in the roller 2 when the defect was found when the flaw detection was performed at a frequency of 5 MHz was 1, and that the respective defects were 5, 10, 15, 20, 30, and 30, respectively. The average value of the number of defects of roller 2 discovered at a frequency of 50 MHz is shown as a defect index.
[0032]
As is clear from FIG. 8, it can be seen that the number of defects existing per roller among the rollers 2 in which defects were detected by the flaw detection sharply increases when the frequency exceeds 30 MHz.
Defects detected at a frequency lower than the frequency characteristic can only detect relatively large defects. When the frequency is increased, not only a large defect but also a small defect can be detected. Therefore, it is clear that there are many defects such as small inclusions at the roller 2 which can be detected at a frequency exceeding 30 MHz. .
[0033]
Next, tapered roller bearings were manufactured using the rollers 2 in which a defect was detected at each frequency, and a life test was performed using the life tester shown in FIG. 2 under the following conditions.
Bearing: tapered roller bearing HR32017XJ
Radial load: 35750N
Axial load: 15680N
Inner ring rotation speed: 1500 min -1
Lubrication: grease life rating is calculated each L 10 life of 2 days a defect is detected in each frequency to life test, the second L 10 life time the defect is detected at a frequency of 50MHz 100 defects at frequencies below 30MHz for L 10 life in the case of the calculated service life reduction rate of 2 L 10 life time was detected.
[0034]
The test results are shown in FIG.
As is clear from FIG. 9, it can be seen that the life of the roller 2 where a defect is detected at a frequency of 30 MHz or less is significantly shorter than that of the roller 2 where a defect is detected at a frequency of 50 MHz.
Although flaw detection is possible even at a frequency of 5 MHz or less, it is extremely difficult to detect a small defect inside the roller 2. Therefore, the frequency is preferably 5 to 30 MHz.
[0035]
As is clear from the above description, in this embodiment, by performing ultrasonic flaw detection at a frequency of 30 MHz or less on the rollers of the martensite structure, defects in the entire cross section from the surface to the inside of the rollers can be accurately detected. In addition, since it can be detected in a short period of time, it is possible to effectively detect defects such as inclusions that greatly affect the life of the bearing. As a result, the short life caused by internal defects is reduced. Can be efficiently prevented.
[0036]
【The invention's effect】
As is clear from the above description, according to the rolling bearing of claim 1, there is no defect whose square root length exceeds 0.2 mm within the 2% Da range of the rolling element, and the entire cross section of the rolling element. It is guaranteed that there is no defect whose maximum length exceeds 0.5 mm within the range, so even under severe conditions such as high load and high surface pressure, short life due to internal defect is effective for cutting and roller cracking Is obtained.
[0037]
According to the ultrasonic inspection method for a rolling element according to the second or third aspect, it is possible to accurately detect defects in the entire cross section from the surface to the inside of the rolling element, particularly, the presence of large nonmetallic inclusions inside the rolling element.
According to the method for manufacturing a rolling bearing according to the fourth aspect, it is possible to accurately detect defects in the entire cross section from the surface to the inside of the rolling element, in particular, the presence of a large nonmetallic inclusion inside the rolling element. It is possible to provide a highly reliable rolling bearing capable of effectively preventing cutting and roller cracking due to short life caused by internal defects even under severe use conditions such as surface pressure.
[Brief description of the drawings]
FIG. 1 is a schematic view of an apparatus used for ultrasonic inspection of a rolling element of a rolling bearing according to a first embodiment of the present invention.
FIG. 2 is a sectional view schematically showing a life tester.
FIG. 3 is an explanatory diagram for explaining an ultrasonic inspection method for rolling elements according to a second embodiment of the present invention, and is a perspective view of a roller where an artificial defect is formed.
FIG. 4 is a graph showing the result of comparing the relationship between the incident angle and the echo intensity by changing the depth of the roller from the surface of the rolling surface.
FIG. 5 is a graph showing the result of comparing the relationship between the incident angle and the echo intensity by changing the depth of the roller from the surface of the rolling surface.
FIG. 6 is a graph showing the relationship between the separation distance between a surface echo and a defect echo and the intensity of a reflected echo when flaw detection is performed at an incident angle of 5 °.
FIG. 7 is a graph showing the relationship between the separation distance between a surface echo and a defect echo and the intensity of a reflected echo when flaw detection is performed at an incident angle of 19 °.
FIG. 8 is a graph showing a relationship between a flaw detection frequency and a defect index for describing an ultrasonic flaw detection method for rolling elements according to a third embodiment of the present invention.
FIG. 9 is a graph showing a relationship between a flaw detection frequency and a life reduction rate of a bearing.
[Explanation of symbols]
1 ... water tank 2 ... roller (rolling element)
3 Ultrasonic flaw detector 5 Rotary drive motor 7 Belt 8 Motor drive control amplifier 9 Controller 10 Linear guide device 14 Ultrasonic flaw detector 15 Rotary encoder 16 Linear guide controller

Claims (4)

内輪と外輪との間に複数の転動体が周方向に転動可能に配設された転がり軸受において、
前記転動体の表面から該転動体の平均直径Daの2%深さの範囲内に平方根長さが0.2mmを超える欠陥が存在せず、且つ前記転動体の全断面範囲内に最大長が0.5mmを超える欠陥がないことが保証されていることを特徴とする転がり軸受。
In a rolling bearing in which a plurality of rolling elements are arranged so as to be able to roll in a circumferential direction between an inner ring and an outer ring,
There is no defect whose square root length exceeds 0.2 mm within a range of 2% of the average diameter Da of the rolling element from the surface of the rolling element, and the maximum length is within the entire cross-sectional area of the rolling element. A rolling bearing characterized in that no defect exceeding 0.5 mm is guaranteed.
転がり軸受の転動体及び超音波探傷用探触子を超音波伝達媒体中に配置し、 超音波探傷用探触子から前記転動体に向けて超音波を発信して該転動体から反射してくる超音波エコーにより前記転動体の欠陥を検出する転動体の超音波探傷検査方法において、
前記転動体の直径をDとした場合に、該転動体の表面から少なくとも前記転動体の最大せん断応力位置よりも深いD/4までの範囲を斜角探傷法で探傷し、 更に斜角探傷法による探傷範囲よりも深い範囲を垂直探傷法を用いて探傷し、 これにより前記転動体の全断面を探傷することを特徴とする転動体の超音波探傷検査方法。
The rolling element of the rolling bearing and the probe for ultrasonic flaw detection are arranged in an ultrasonic transmission medium, and ultrasonic waves are transmitted from the probe for ultrasonic flaw detection toward the rolling element and reflected from the rolling element. In the ultrasonic inspection method for rolling elements for detecting defects of the rolling elements by ultrasonic echo coming,
When the diameter of the rolling element is D, at least a range from the surface of the rolling element to D / 4 deeper than the maximum shear stress position of the rolling element is inspected by oblique flaw detection. A flaw detection area deeper than the flaw detection range by the flaw detection using the vertical flaw detection method, thereby flaw-detecting the entire cross section of the rolling element.
転がり軸受の転動体及び超音波探傷用探触子を超音波伝達媒体中に配置し、 超音波探傷用探触子から前記転動体に向けて超音波を発信して該転動体から反射してくる超音波エコーにより、 前記転動体の欠陥を検出する転動体の超音波探傷検査方法において、
超音波探傷用探触子から前記転動体に向けて発信する超音波を周波数30MHz以下とし、 且つ超音波が発信される該転動体は、 焼入れ、焼戻しの熱硬化処理、 又は浸炭若しくは浸炭窒化、焼入れ、焼戻しの熱硬化処理を行った後に、 外径面に研削加工を施したものを用いることを特徴とする転動体の超音波探傷検査方法。
The rolling element of the rolling bearing and the probe for ultrasonic flaw detection are arranged in an ultrasonic transmission medium, and ultrasonic waves are transmitted from the probe for ultrasonic flaw detection toward the rolling element and reflected from the rolling element. In the ultrasonic flaw detection inspection method for the rolling element for detecting the defect of the rolling element by the ultrasonic echo coming,
The ultrasonic wave transmitted from the ultrasonic flaw detector to the rolling element has a frequency of 30 MHz or less. An ultrasonic flaw inspection method for rolling elements, characterized in that a quenching and tempering heat-hardening treatment is performed, and then an outer diameter surface is subjected to grinding processing.
内輪と外輪との間に複数の転動体が周方向に転動可能に配設された転がり軸受の製造方法であって、
請求項2又は3の転動体の超音波探傷検査方法を用いて、前記転動体の表面から該転動体の平均直径Daの2%深さの範囲内に平方根長さが0.2mmを超える欠陥が存在せず、且つ前記転動体の全断面範囲内に最大長が0.5mmを超える欠陥がないことが保証された転がり軸受を製造することを特徴とする転がり軸受の製造方法。
A method for manufacturing a rolling bearing in which a plurality of rolling elements are disposed so as to be able to roll in a circumferential direction between an inner ring and an outer ring,
A defect whose square root length exceeds 0.2 mm within a range of 2% of the average diameter Da of the rolling element from the surface of the rolling element by using the ultrasonic inspection method for rolling elements according to claim 2 or 3. A method for producing a rolling bearing, characterized by producing a rolling bearing that is free from defects and is guaranteed not to have a defect whose maximum length exceeds 0.5 mm in the entire cross-sectional area of the rolling element.
JP2002235317A 2002-08-13 2002-08-13 Ultrasonic flaw detection and inspection method for rolling bearing and rolling element Pending JP2004077206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002235317A JP2004077206A (en) 2002-08-13 2002-08-13 Ultrasonic flaw detection and inspection method for rolling bearing and rolling element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002235317A JP2004077206A (en) 2002-08-13 2002-08-13 Ultrasonic flaw detection and inspection method for rolling bearing and rolling element

Publications (1)

Publication Number Publication Date
JP2004077206A true JP2004077206A (en) 2004-03-11

Family

ID=32019828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002235317A Pending JP2004077206A (en) 2002-08-13 2002-08-13 Ultrasonic flaw detection and inspection method for rolling bearing and rolling element

Country Status (1)

Country Link
JP (1) JP2004077206A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006214931A (en) * 2005-02-04 2006-08-17 Kochi Univ Of Technology Measuring device of rolling bearing
JP2006234387A (en) * 2005-02-22 2006-09-07 Sanyo Special Steel Co Ltd Evaluation method for flake defect of steel material
CN112379001A (en) * 2020-11-17 2021-02-19 洛阳Lyc轴承有限公司 Process method for reducing detection blind area of railway bearing ring by ultrasonic flaw detection
JP7485564B2 (en) 2019-08-09 2024-05-16 Ntn株式会社 Calculation method, inspection method and bearing manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006214931A (en) * 2005-02-04 2006-08-17 Kochi Univ Of Technology Measuring device of rolling bearing
JP4642496B2 (en) * 2005-02-04 2011-03-02 公立大学法人高知工科大学 Measuring equipment for rolling bearings
JP2006234387A (en) * 2005-02-22 2006-09-07 Sanyo Special Steel Co Ltd Evaluation method for flake defect of steel material
JP4559254B2 (en) * 2005-02-22 2010-10-06 山陽特殊製鋼株式会社 Method for evaluating white spot defects in steel
JP7485564B2 (en) 2019-08-09 2024-05-16 Ntn株式会社 Calculation method, inspection method and bearing manufacturing method
CN112379001A (en) * 2020-11-17 2021-02-19 洛阳Lyc轴承有限公司 Process method for reducing detection blind area of railway bearing ring by ultrasonic flaw detection
CN112379001B (en) * 2020-11-17 2024-03-29 洛阳轴承集团股份有限公司 Technological method for reducing detection blind area by ultrasonic flaw detection of railway bearing ring

Similar Documents

Publication Publication Date Title
CN100390534C (en) Bearing steel, method for evaluating large-sized inclusions in the steel, and rolling bearing
CN101023344B (en) Ultrasonic defect detector and defect detection method for rolling bearing
JP3653984B2 (en) Ultrasonic flaw detection method for bearing rings
US20080041160A1 (en) Method of inspecting a component and an apparatus for inspecting a component
US20150330948A1 (en) Method and device for the non-destructive inspection of a rotationally symmetric workpiect having sections with difference diameters
JP4006972B2 (en) Rolling bearing
JP2004077206A (en) Ultrasonic flaw detection and inspection method for rolling bearing and rolling element
CN101135671B (en) Method for evaluating large-sized inclusions in the bearing steel
JP4284762B2 (en) Evaluation method of sliding member for highly reliable toroidal continuously variable transmission
JP4645289B2 (en) Ultrasonic flaw detection method for rolling bearings
WO2002057656A1 (en) Toroidal type stepless speed changer slide rotation body and method of evaluating the same
WO2021070751A1 (en) Method for evaluating purity of steel material
JP4015935B2 (en) Inclusion detection evaluation method in steel by water immersion ultrasonic flaw detection
JP2009222075A (en) Roller bearing and its manufacturing method
JP4084979B2 (en) Detection method of inclusions in steel by water immersion ultrasonic flaw detection
JP2003301850A (en) Roller bearing
JP2008170408A (en) Method and device for inspecting nonmetallic inclusion in component of rolling apparatus
JP2003139143A (en) Rolling bearing
JP2006234807A (en) Defect detecting method
CN115097007B (en) Holographic ultrasonic detection method for internal tissue of bearing
JP2008128863A (en) Method for estimating diameter of inclusion in steel
GB2463293A (en) Ultrasonically inspecting a dual microstructure component
Wilson et al. Correlation of ultrasonic inspection of bearing components with bearing fatigue life
JP2003329653A (en) Evaluation method of copper alloy and copper alloy for bearing cage
JP2007285431A (en) Rolling bearing