JP2006234387A - Evaluation method for flake defect of steel material - Google Patents

Evaluation method for flake defect of steel material Download PDF

Info

Publication number
JP2006234387A
JP2006234387A JP2005044979A JP2005044979A JP2006234387A JP 2006234387 A JP2006234387 A JP 2006234387A JP 2005044979 A JP2005044979 A JP 2005044979A JP 2005044979 A JP2005044979 A JP 2005044979A JP 2006234387 A JP2006234387 A JP 2006234387A
Authority
JP
Japan
Prior art keywords
white spot
flaw detection
evaluation
steel
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005044979A
Other languages
Japanese (ja)
Other versions
JP4559254B2 (en
Inventor
Umihiro Sato
海広 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2005044979A priority Critical patent/JP4559254B2/en
Publication of JP2006234387A publication Critical patent/JP2006234387A/en
Application granted granted Critical
Publication of JP4559254B2 publication Critical patent/JP4559254B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an evaluation method for a flake defect of a steel material allowing efficient and objective detection. <P>SOLUTION: A prescribed range within a test piece prepared from an evaluation objective steel is subjected to ultrasonic flaw detection while bringing flaw detection sensitivity of an ultrasonic flaw detection testing device into a prescribed sensitivity, a relation between a detected object area index by an ultrasonic flaw detection image and a reflected wave intensity is found in every of the detected objects detected by the ultrasonic flaw detection, a prescribed mixed area mixed with an inclusion and a flake defect, and a prescribed flake defect evaluation area that is an area on an orthogonal coordinate system excepting the mixed area are set on the orthogonal coordinate system using the first axis as the reflected wave intensity and using the second axis as the detected object area index, the relation between the detected object area index and the reflected wave intensity is exhibited as coordinates on the orthogonal coordinate system, in the every of the detected objects, and the evaluation objective steel is evaluated to be a normal material, based on the number of the detected objects existing in the flake defect evaluation area. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、鋼材の白点性欠陥の評価方法に関し、特に、高周波超音波探傷法を用いることにより、精密な評価を可能とした鋼材の白点性欠陥の評価方法に関するものである。   The present invention relates to a method for evaluating white spot defects in steel materials, and more particularly, to a method for evaluating white spot defects in steel materials that enables precise evaluation by using a high-frequency ultrasonic flaw detection method.

白点性欠陥は、鋼材の冷却過程で生ずる変態応力や水素集積にともなう内部歪などで誘発される内部割れであり、合金鋼などで発生しやすい。   White spot defects are internal cracks induced by transformation stress generated in the cooling process of steel or internal strain accompanying hydrogen accumulation, and are likely to occur in alloy steel.

特に、SUJ2などの過共析鋼では、白点性欠陥は、Acm変態で析出する網状炭化物中に過飽和な水素の圧力によって、微小亀裂が発生することが素因になる。また、各種応力によっても炭化物に微小亀裂が発生する。   In particular, in hypereutectoid steels such as SUJ2, white spot defects are predisposed to the occurrence of microcracks due to the pressure of supersaturated hydrogen in the net carbide precipitated by the Acm transformation. In addition, microcracks are generated in the carbide by various stresses.

白点性欠陥がある場合には、鋼材の引張・圧縮特性などの機械的特性に悪影響を及ぼすことが多い。しかしながら、生産性との兼ね合いから、必ずしも十分な冷却過程やソーキング過程をとれず、白点性欠陥の完全防止は現実的には困難である。   When there are white spot defects, the mechanical properties such as tensile and compressive properties of steel are often adversely affected. However, in consideration of productivity, it is not always possible to take a sufficient cooling process or soaking process, and it is practically difficult to completely prevent white spot defects.

そこで、鋼材も品質保証というの観点から、白点性欠陥のない正常材と、それ以外の鋼材とを区別するために、鋼片の検査が必要となる。   Therefore, from the viewpoint of quality assurance, it is necessary to inspect the steel slab in order to distinguish between a normal material without white spot defects and other steel materials.

従来の鋼材の白点性欠陥の評価方法としては、JIS規格(JIS G 0553)に規定されたマクロ組織試験法による評価がある(例えば非特許文献1参照)。   As a conventional method for evaluating white spot defects of steel materials, there is an evaluation by a macro structure test method defined in JIS standard (JIS G 0553) (for example, see Non-Patent Document 1).

マクロ組織試験法は、鋼の断面を塩酸、塩化銅アンモニウム、王水などを用い、エッチングして樹枝状結晶、インゴットパターン、中心部偏析、多孔質、ピットなどのマクロ組織を試験する方法である。被検面の粗さは原則として、JIS B0601に規定されている30〜3.5μmRa仕上げる。処理方法は、腐食液を70〜80℃程度に加熱し、組織の出現状況を観察しながら適当な時間浸漬する。そして、組織が出現したら液から取り出し、水洗、中和、乾燥して肉眼にて観察を行う。
JIS規格(規格番号:JIS G 0553) 鋼のマクロ組織試験方法
The macro structure test method is a method for testing the macro structure of dendrites, ingot patterns, center segregation, porosity, pits, etc. by etching the steel cross section with hydrochloric acid, copper chloride ammonium, aqua regia, etc. . As a general rule, the roughness of the test surface is 30 to 3.5 μmRa as defined in JIS B0601. In the treatment method, the corrosive liquid is heated to about 70 to 80 ° C. and immersed for an appropriate time while observing the appearance of the tissue. When the tissue appears, the tissue is taken out from the solution, washed with water, neutralized, dried, and observed with the naked eye.
JIS standard (Standard number: JIS G 0553) Macro structure test method for steel

しかしながら、従来のマクロ組織試験法による白点性欠陥の評価には、以下の問題点がある。   However, the evaluation of white spot defects by the conventional macrostructure test method has the following problems.

従来のマクロ組織試験法による組織の検査は目視にて行う、いわゆる感応検査であるため、検査結果の客観性に乏しい。また、目視にて観察することとなるため検査作業の自動化を図ることも困難である。   Since the inspection of the tissue by the conventional macro structure test method is a so-called sensitive inspection that is performed visually, the objectivity of the inspection result is poor. Moreover, since it will observe visually, it is also difficult to automate the inspection work.

一方、白点性欠陥の出方(広がり)は軽微なことが多いので、高周波超音波探傷法などを用いた精密な白点性欠陥の評価方法が必要と考えられる。   On the other hand, since the appearance (spreading) of white spot defects is often slight, it is considered that a precise white spot defect evaluation method using a high-frequency ultrasonic flaw detection method or the like is necessary.

本発明は、このような従来の問題を解決するためになされたもので、より精密な鋼材の白点性欠陥の評価が可能であり、自動化を図ることが可能な鋼材の白点性欠陥の評価方法を提供しようとするものである。   The present invention has been made in order to solve such a conventional problem, and it is possible to evaluate the white spot defect of a steel material with higher precision, and the white spot defect of the steel material that can be automated. It is intended to provide an evaluation method.

本願請求項1に記載の発明は、超音波探傷試験装置の探傷感度を所定の感度として、評価対象鋼から作成された試験片内の所定の評価範囲について超音波探傷を行い、超音波探傷により検出された検出物毎に、超音波探傷映像による検出物面積指標と、反射波強度との関係を求め、第1の軸を反射波強度とし、第2の軸を検出物面積指標とした直交座標系上に、介在物と白点性欠陥とが混在する所定の混在領域と、混在領域を除いた直交座標系上の領域である白点性欠陥評価領域とを設定し、直交座標系上に、検出物毎の反射波強度と検出物面積指標との関係を座標に示し、白点性欠陥評価領域に存在する検出物の数に基づいて、評価対象鋼を正常材と評価することを特徴とする鋼材の白点性欠陥の評価方法である。   In the invention described in claim 1 of the present application, the flaw detection sensitivity of the ultrasonic flaw detection test apparatus is set as a predetermined sensitivity, and ultrasonic flaw detection is performed for a predetermined evaluation range in a test piece made from the steel to be evaluated. For each detected object, the relationship between the detected object area index based on the ultrasonic flaw detection image and the reflected wave intensity is obtained, and the first axis is the reflected wave intensity, and the second axis is the detected object area index. A predetermined mixed area where inclusions and white spot defects are mixed on the coordinate system and a white spot defect evaluation area which is an area on the Cartesian coordinate system excluding the mixed area are set on the Cartesian coordinate system. In addition, the relationship between the reflected wave intensity for each detection object and the detection object area index is shown in coordinates, and the evaluation target steel is evaluated as a normal material based on the number of detection objects existing in the white spot defect evaluation region. This is a method for evaluating white spot defects of steel.

また、本願請求項2に記載の発明は、白点性欠陥評価領域は、評価除外領域をさらに除いた直交座標系上の領域であることを特徴とする鋼材の白点性欠陥の評価方法である。   Further, the invention according to claim 2 of the present application is a method for evaluating a white spot defect of a steel material, wherein the white spot defect evaluation region is a region on an orthogonal coordinate system excluding the evaluation exclusion region. is there.

また、本願請求項3に記載の発明は、評価対象鋼は、圧鍛比6から30で圧延及び/又は鍛伸された鋼であることを特徴とする鋼材の白点性欠陥の評価方法である。   The invention according to claim 3 is a method for evaluating white spot defects in a steel material, in which the steel to be evaluated is steel rolled and / or forged at a forge ratio of 6 to 30. is there.

また、本願請求項4に記載の発明は、超音波探傷試験装置の探傷周波数は、5〜25MHzであることを特徴とする鋼材の白点性欠陥の評価方法である。   Further, the invention according to claim 4 of the present application is the method for evaluating a white spot defect of a steel material, wherein the flaw detection frequency of the ultrasonic flaw detection test apparatus is 5 to 25 MHz.

また、本願請求項5に記載の発明は、超音波探傷試験装置は、試験片中焦点でのビーム径がφ0.5から1.5mmの焦点型探触子を使用することを特徴とする鋼材の白点性欠陥の評価方法である。   The invention described in claim 5 is a steel material characterized in that the ultrasonic flaw detection test apparatus uses a focus type probe having a beam diameter at the focal point in the test piece of φ0.5 to 1.5 mm. This is a method for evaluating white spot defects.

また、本願請求項6に記載の発明は、試験片内の所定の評価範囲は、試験片の内部全体の範囲から、ポロシティ存在範囲と周辺部を除外した範囲であることを特徴とする鋼材の白点性欠陥の評価方法である。   Further, in the invention according to claim 6 of the present invention, the predetermined evaluation range in the test piece is a range in which the porosity existing range and the peripheral portion are excluded from the entire range of the inside of the test piece. This is a method for evaluating white spot defects.

また、本願請求項7に記載の発明は、評価対象鋼は、高炭素クロム鋼であることを特徴とする鋼材の白点性欠陥の評価方法である。   The invention according to claim 7 of the present application is a method for evaluating white spot defects of a steel material, characterized in that the steel to be evaluated is a high carbon chromium steel.

また、本願請求項8に記載の発明は、試験片は、焼なまし処理をされたものであることを特徴とする鋼材の白点性欠陥の評価方法である。   The invention according to claim 8 of the present application is the method for evaluating a white spot defect of a steel material, wherein the test piece is subjected to an annealing treatment.

本発明によれば、超音波探傷装置により白点性欠陥の検出が可能となるため、軽微な白点性欠陥を効率的かつ客観的に検出することが可能となる。これにより、白点性欠陥の少ない高品質の鋼材の供給が可能となる。   According to the present invention, it becomes possible to detect white spot defects using an ultrasonic flaw detector, and therefore, it is possible to efficiently and objectively detect minor white spot defects. Thereby, it is possible to supply a high-quality steel material with few white spot defects.

以下、本発明の実施形態である鋼材の白点性欠陥の評価方法について、図を参照して詳細に説明をする。   Hereinafter, a method for evaluating white spot defects of a steel material according to an embodiment of the present invention will be described in detail with reference to the drawings.

図1は、本発明の実施形態である鋼材の白点性欠陥の評価方法に使用する試験片の外形を示す図である。   FIG. 1 is a diagram showing an outer shape of a test piece used in a method for evaluating a white spot defect of a steel material according to an embodiment of the present invention.

本実施形態の試験片1の作成にあたっては、丸棒鋼のビレットを用いるが、丸棒鋼に限られるものではない。また、本実施形態の白点性欠陥の評価の対象となる鋼材は、高炭素クロム鋼とする。これは、高炭素クロム鋼は、特に白点性欠陥が生じやすいからである。もちろん、評価の対象となる鋼材は、これに限られるものではない。   In producing the test piece 1 of the present embodiment, a billet of round bar steel is used, but is not limited to round bar steel. Moreover, the steel material used as the object of evaluation of the white spot defect of this embodiment is high carbon chromium steel. This is because high-carbon chromium steel is particularly susceptible to white spot defects. Of course, the steel material to be evaluated is not limited to this.

ここで、ビレットは、ブルームを圧鍛したビレットを用意する。一般に、金属材料においては、鋳造のままではミクロのポロシティ(細かい空洞のこと)が無数に存在し、超音波探傷による検査が困難となる場合がある。これに対し、ブルームを圧鍛したビレットから採取した試験片は、ポロシティが減少し、試験片に入射した超音波の乱反射などの弊害が軽減され、最良の検出能を得ることができ、より精密な超音波探傷による評価が可能となる。   Here, a billet prepared by forging Bloom is prepared. In general, in metal materials, countless microporosities (fine cavities) exist in the as-cast state, and inspection by ultrasonic flaw detection may be difficult. In contrast, specimens taken from billets that have been forged with bloom have reduced porosity and reduced adverse effects such as diffuse reflection of ultrasonic waves incident on the specimen, resulting in the best detection performance and more precision. Evaluation by simple ultrasonic flaw detection becomes possible.

ここで圧鍛比を6以上30以下、好ましくは6以上10以下とする。圧鍛比を6以上とした場合には、ポロシティが圧着されてポロシティが減少し、ポロシティ以外の超音波欠陥の検出精度を高めることが可能となる。また、最終圧鍛比を30より大きくできる鋼材では、白点性欠陥も圧着されて減少するため問題になりにくい。   Here, the forging ratio is 6 or more and 30 or less, preferably 6 or more and 10 or less. When the forge ratio is 6 or more, the porosity is pressure-bonded and the porosity is reduced, and the detection accuracy of ultrasonic defects other than the porosity can be increased. Further, in a steel material in which the final forge ratio can be made larger than 30, white spot defects are also pressed and reduced, so that it is difficult to cause a problem.

試験片1は、上記のビレットを軸方向に垂直な平面で切断し、さらに、ビレットの中心軸からほぼ等距離、かつ、ほぼ平行の2平面A・Bを形成する。そして試験片1は、W×D×Hの外形寸法を有するほぼ直方体形状に加工される。その後、焼きなまし等の熱処理を行う。これにより、試験片1内の組織を、微細かつ均質な組織とし、機械的性質を改善する。   The test piece 1 cuts the billet in a plane perpendicular to the axial direction, and further forms two planes A and B that are substantially equidistant from the center axis of the billet and substantially parallel. And the test piece 1 is processed into the substantially rectangular parallelepiped shape which has an external dimension of WxDxH. Thereafter, heat treatment such as annealing is performed. Thereby, the structure | tissue in the test piece 1 is made into a fine and homogeneous structure | tissue, and a mechanical property is improved.

最後に、ほぼ平行の2平面の面A及び面Bについて平面研磨を行い、試験片1の表面を平滑なものとする。このように作成した図1に示す試験片1は、超音波入射面である面Aにおける伝達損失が少なく、正確な介在物の検出評価が可能となる。   Finally, planar polishing is performed on two substantially parallel planes A and B to make the surface of the test piece 1 smooth. The test piece 1 shown in FIG. 1 created in this way has little transmission loss on the surface A which is the ultrasonic incident surface, and enables accurate detection and evaluation of inclusions.

次に、超音波探傷試験装置の感度校正を行う。例えば、感度校正は、STB−A22試験片における深さ11mmでφ1.5mmの平底孔から得られる最大反射波強度が80%となる感度を基準感度とし、基準感度を20dB増感した値を探傷感度とするように行われる。   Next, sensitivity calibration of the ultrasonic flaw detection test apparatus is performed. For example, in the calibration of sensitivity, the sensitivity at which the maximum reflected wave intensity obtained from a flat bottom hole of 11 mm in depth and φ1.5 mm in the STB-A22 specimen is 80% is used as the reference sensitivity, and the value obtained by increasing the reference sensitivity by 20 dB is used for flaw detection. Sensitivity is done.

次に、上述の如く作製した試験片を水浸超音波探傷法により、超音波探傷を行う。本実施形態の鋼材の白点性欠陥評価方法において超音波探傷を行う装置は、市販の超音波探傷装置を適宜使用するものとする。また、本実施形態においては、超音波探傷探触子として、焦点型探触子を使用する。   Next, ultrasonic testing is performed on the test piece prepared as described above by the water immersion ultrasonic testing method. A commercially available ultrasonic flaw detector is appropriately used as an apparatus for performing ultrasonic flaw detection in the white spot defect evaluation method for steel materials of the present embodiment. In the present embodiment, a focal probe is used as the ultrasonic flaw detector.

図5は、焦点のビーム径の相違によるUT映像の例を示す図である。図5(a)は、ビーム径約φ0.15mmによるUT映像であり、図5(b)は、ビーム径約φ1.0mmによるUT映像である。   FIG. 5 is a diagram illustrating an example of a UT image based on a difference in focal beam diameter. FIG. 5A shows a UT image with a beam diameter of about φ0.15 mm, and FIG. 5B shows a UT image with a beam diameter of about φ1.0 mm.

ここで、焦点型探触子の鋼材中のビーム径はφ0.5〜2.0mmであることが好ましい。この理由は、白点性欠陥は密集して存在しがちだが、ビーム径φ0.5mmより小さい場合にはそれらが分離して検出され、図5(a)に示すように、個々の欠陥が小さく評価されることがあるので介在物性欠陥との区別が必ずしも適切には行われないためである。ビーム径をφ0.5mm以上とした場合には、図5(b)に示すように白色性欠陥が適切に検出されることとなる。また、ビーム径φ2.0mmより大きい場合には検出能が低下し、適切な白点性欠陥の評価を行うことが困難となるためである。   Here, the beam diameter in the steel material of the focus type probe is preferably φ0.5 to 2.0 mm. This is because white spot defects tend to be dense, but when the beam diameter is smaller than 0.5 mm, they are detected separately, and as shown in FIG. 5A, individual defects are small. This is because there is a case where it is evaluated, so that it is not always properly distinguished from inclusion physical property defects. When the beam diameter is φ0.5 mm or more, whiteness defects are appropriately detected as shown in FIG. Further, when the beam diameter is larger than 2.0 mm, the detection ability is lowered, and it is difficult to evaluate a suitable white spot defect.

また、超音波探傷装置の探傷周波数は5〜25MHzであることが好ましい。これは、探傷周波数5MHzより小さい場合には白点性欠陥の検出能が不十分となり、探傷周波数25MHzより大きい場合では探傷体積が少なくなるためである。   The flaw detection frequency of the ultrasonic flaw detector is preferably 5 to 25 MHz. This is because when the flaw detection frequency is lower than 5 MHz, the detection ability of white spot defects is insufficient, and when the flaw detection frequency is higher than 25 MHz, the flaw detection volume is reduced.

図2は、焦点型探触子を備えた超音波探傷装置の概略構成図である。超音波探傷には、焦点型探触子を備えた全没式の水浸超音波探傷装置を用いた。超音波探傷装置は、焦点型探触子11と、超音波探傷ユニット12と、走査ユニット13と、マイクロプロセッサを備えたパーソナルコンピュータ(以下「PC」という)14と、映像化ユニット15からなる。   FIG. 2 is a schematic configuration diagram of an ultrasonic flaw detector provided with a focus-type probe. For ultrasonic flaw detection, an all-immersion water immersion ultrasonic flaw detector equipped with a focus type probe was used. The ultrasonic flaw detection apparatus includes a focus type probe 11, an ultrasonic flaw detection unit 12, a scanning unit 13, a personal computer (hereinafter referred to as “PC”) 14 having a microprocessor, and an imaging unit 15.

超音波探傷は、試験片1を水槽にセットした後、PC14に試験片のデータ、測定感度、焦点位置、ゲート位置および探傷ピッチを入力し、焦点型探触子11を作動させ、超音波探傷を開始する。   For ultrasonic flaw detection, after setting the test piece 1 in the water tank, the test piece data, measurement sensitivity, focus position, gate position, and flaw detection pitch are input to the PC 14, and the focus type probe 11 is operated. To start.

焦点型探触子11から超音波が発信され、白点性欠陥等の対象物にあたり、その反射波を検出して、その反射波強度および反射波形情報(グラフとして出力された波形、正半波強度、負半波強度など)に基づいて所望の情報を得る。焦点型探触子11による走査は、試験片1の所定の間隔をおいた複数箇所の超音波の発射、反射波の受信を行う(この間隔のことを「探傷走査ピッチ」または、単に「走査ピッチ」という)。   An ultrasonic wave is transmitted from the focus-type probe 11, hits an object such as a white spot defect, and the reflected wave is detected, and the reflected wave intensity and reflected waveform information (waveform output as graph, positive half wave) Desired information based on intensity, negative half-wave intensity, etc.). The scanning by the focus type probe 11 emits a plurality of ultrasonic waves and receives reflected waves at a predetermined interval of the test piece 1 (this interval is referred to as “flaw detection scanning pitch” or simply “scanning”). "Pitch").

なお、反射波強度は、反射波強度=MAX(正半波強度,負半波強度)、に示す関係式により求められる。   The reflected wave intensity is obtained by the relational expression shown as reflected wave intensity = MAX (positive half wave intensity, negative half wave intensity).

図3は、超音波探傷される試験片内部の範囲を示す図である。   FIG. 3 is a diagram showing a range inside a test piece to be ultrasonically detected.

白点性欠陥の評価の対象となる試験片1の内部の範囲は、ゲート部2であり、ポロシティが存在する試験片1の中心付近のポロシティ存在範囲3については、走査終了後に評価対象から除外される。試験片1は、圧鍛処理され、試験片1内のポロシティの多くは圧着されて、ポロシティの存在する範囲は狭められている。しかしながら、試験片1の中心から所定の範囲におけるポロシティは、圧着されることなく依然として存在する。したがって、試験片1の中心から所定の範囲を除外して白点性欠陥の評価を行うことにより、超音波探傷時のポロシティ等の大型介在物の影響を低減することができ、白点性欠陥のより適切な評価が可能となる。   The range inside the test piece 1 to be evaluated for white spot defects is the gate portion 2, and the porosity existing range 3 near the center of the test piece 1 where porosity exists is excluded from the evaluation target after the end of scanning. Is done. The test piece 1 is subjected to a pressure forging treatment, and most of the porosity in the test piece 1 is pressure-bonded, and the range where the porosity exists is narrowed. However, the porosity in a predetermined range from the center of the test piece 1 still exists without being crimped. Therefore, by evaluating a white spot defect by excluding a predetermined range from the center of the test piece 1, the influence of large inclusions such as porosity during ultrasonic flaw detection can be reduced. It is possible to evaluate more appropriately.

試験片1の中心部のポロシティ存在範囲3は、鋼材に含まれる炭素の濃度によって異なる。そこで、あらかじめ試験片1の中心部のポロシティ存在範囲3を明らかにし、介在物を評価する対象範囲から除外する範囲を定める。ポロシティ存在範囲3は、以下のように定められる。   The porosity existing range 3 at the center of the test piece 1 varies depending on the concentration of carbon contained in the steel material. Therefore, the porosity existence range 3 at the center of the test piece 1 is clarified in advance, and a range to be excluded from the target range for evaluating inclusions is determined. The porosity existing range 3 is determined as follows.

まず、炭素濃度の異なる試験片について削り込みを行うことにより、ポロシティの存在する位置を確認し、その結果を縦軸がポロシティの存在する径方向の位置すなわちポロシティの分布範囲[%D]([%D]の「D」はDIAMETERの略であり、直径を意味する)、横軸が試験片の炭素濃度であるC%を表すグラフにプロットする。   First, the position where the porosity exists is confirmed by grinding the test pieces having different carbon concentrations, and the result indicates the radial position where the vertical axis exists, that is, the distribution range [% D] ([ % D] is an abbreviation for DIAMETER, meaning diameter), and the horizontal axis is plotted in a graph representing C%, which is the carbon concentration of the test piece.

そして、各炭素濃度の異なる試験片のそれぞれの中心から最も離れた位置に存在するポロシティを示す点を結ぶと、図6に示すグラフとなる。   And if the point which shows the porosity which exists in the position most distant from each center of each test piece from which each carbon concentration differs is connected, it will become a graph shown in FIG.

かかるグラフより介在物評価対象範囲から除外する範囲であるポロシティ存在範囲3を試験片1の炭素濃度に応じて以下の(1)及び(2)に示すように定めることができる。   From this graph, the porosity existence range 3, which is a range excluded from the inclusion evaluation target range, can be determined according to the carbon concentration of the test piece 1 as shown in the following (1) and (2).

炭素濃度(C%)≦0.4% 試験片の中心から除外する範囲(%)=30・・・(1)
炭素濃度(C%)>0.4% 試験片の中心から除外する範囲(%)=16.7×(C%)+23.3・・・(2)
すなわち、鋼種ごとに(1)の範囲又は(2)の式より導き出される範囲が介在物評価対象範囲から除外されるポロシティ存在範囲3として明確となり、ポロシティが存在する範囲を除外した範囲において、正確に鋼材の清浄度を測定することができる。本実施形態の方法は、特に危険体積が表面からD/4程度となる材料であれば、素材としてユーザが直接使用する鋼材部位を直接評価できるので有効である。
Carbon concentration (C%) ≦ 0.4% Range excluded from center of test piece (%) = 30 (1)
Carbon concentration (C%)> 0.4% Range excluded from the center of the test piece (%) = 16.7 × (C%) + 23.3 (2)
That is, for each steel type, the range derived from the range of (1) or the formula of (2) is clarified as the porosity existing range 3 excluded from the inclusion evaluation target range, and in the range excluding the range where the porosity exists, The cleanliness of steel can be measured. The method according to the present embodiment is particularly effective if the material has a dangerous volume of about D / 4 from the surface, because the steel part used directly by the user as the material can be directly evaluated.

また、不感帯4と外周部5と端部6とを含む試験片1の周辺部は、ノイズが多い等の理由により白点性欠陥の正確な検出が困難であるため、走査範囲から除外される。なお、試験片の外周部5とは、例えば、試験片1の中心からほぼ90〜100%Dの範囲とする。   Further, the peripheral portion of the test piece 1 including the dead zone 4, the outer peripheral portion 5, and the end portion 6 is excluded from the scanning range because it is difficult to accurately detect white spot defects due to a large amount of noise. . Note that the outer peripheral portion 5 of the test piece is, for example, approximately 90 to 100% D from the center of the test piece 1.

図4は、本実施形態の鋼材の白点性欠陥評価方法における、超音波探傷装置の測定結果の一例を示す図である。縦軸(y軸)は、超音波探傷(UT)映像による検出物面積の平方根(√AREA)(mm)を示し、横軸(x軸)は、超音波反射波強度(%)を示す。   FIG. 4 is a diagram illustrating an example of a measurement result of an ultrasonic flaw detector in the white spot defect evaluation method for steel according to the present embodiment. The vertical axis (y-axis) represents the square root (√AREA) (mm) of the detected object area based on the ultrasonic flaw detection (UT) image, and the horizontal axis (x-axis) represents the ultrasonic reflected wave intensity (%).

なお、本実施形態においては、検出物面積を表す指標(検出物面積指標)として、検出物面積の平方根(√AREA)を用いるが、検出物面積を表す指標はこれに限られるものではない。例えば、検出物の面積を表す指標として、検出物の円換算径を用いることも可能である。   In the present embodiment, the square root (√AREA) of the detected object area is used as an index representing the detected object area (detected object area index), but the index representing the detected object area is not limited to this. For example, the circle-converted diameter of the detected object can be used as an index representing the area of the detected object.

ここで、超音波探傷領域中で白点性欠陥の評価の対象とする領域は図中の線Aと線Bとに挟まれた領域Cとする。   Here, a region to be evaluated for white spot defects in the ultrasonic flaw detection region is a region C sandwiched between lines A and B in the figure.

図中の線Aより大きい領域(評価除外領域)を評価の対象としない理由は、強度と白点性欠陥の大きさにはある程度の相関があり、これより上の領域の白点性欠陥はあまり考えられないからである。また、図中の線Bより小さな領域(混在領域)を評価の対象としない理由は、これより下の領域は介在物(図中の黒四角)と白色性欠陥(図中の白丸)とが混在し、識別することが困難であるからである。つまり、図中の領域C(白点性欠陥評価領域)は、白点性欠陥のみを検出する領域であるといえる。   The reason why the area larger than the line A (evaluation exclusion area) in the figure is not subject to evaluation is that there is a certain degree of correlation between the intensity and the size of the white spot defect. It is because it is not considered much. The reason why the area smaller than the line B (mixed area) in the figure is not subject to the evaluation is that the area below this includes inclusions (black squares in the figure) and white defects (white circles in the figure). This is because they are mixed and difficult to identify. That is, it can be said that the region C (white spot defect evaluation region) in the figure is a region in which only white spot defects are detected.

なお、上記線Aと線Bとを求める手法は、まず、あらかじめ、白点性欠陥評価に用いる超音波探傷装置を用いて、超音波探傷試験装置の探傷感度を所定の感度として介在物と白点性欠陥について超音波探傷試験を行い、反射波強度とUT映像による√AREAとの関係図を作成する。   The method for obtaining the line A and the line B is as follows. First, an ultrasonic flaw detection apparatus used for white spot defect evaluation is used, and the flaw detection sensitivity of the ultrasonic flaw detection test apparatus is set to a predetermined sensitivity. An ultrasonic flaw detection test is performed on the point defect, and a relationship diagram between the reflected wave intensity and √AREA by the UT image is created.

白点性欠陥について、例えばn=10〜20程度のサンプル数で、反射波強度とUT映像による√AREAとの関係をプロットして、それらを包含するエリアを作成し、線Aを決定する。   For white spot defects, for example, with a number of samples of about n = 10 to 20, the relationship between reflected wave intensity and √AREA based on the UT image is plotted, an area including them is created, and line A is determined.

同様に、白点性欠陥と同程度の反射波強度が得られる(大型)介在物それぞれについて、例えばn=10〜20程度のサンプル数で、反射波強度とUT映像による√AREAとの関係をプロットして、それらを包含するエリアを作成し、線Bを作成する。   Similarly, for each (large) inclusion that provides a reflected wave intensity comparable to that of a white spot defect, the relationship between the reflected wave intensity and √AREA based on the UT image is obtained with, for example, n = about 10 to 20 samples. Plot to create an area that encompasses them and create line B.

白点性欠陥や(大型)介在物のプロットのnの数は、多い方が信頼性の面から好ましい。また、線Aと線Bのy切片、傾き等は、白点性欠陥の検出の厳密性により適宜決定しうるものである。   A larger number of n in the plot of white spot defects and (large) inclusions is preferable from the viewpoint of reliability. Further, the y-intercept, inclination, etc. of the lines A and B can be determined as appropriate depending on the accuracy of detection of white spot defects.

また、本実施形態では線Aと線Bとを直線としたが、これに限られるものではなく、評価方法により、適宜、曲線等の形態をとることも可能である。   In the present embodiment, the line A and the line B are straight lines. However, the present invention is not limited to this, and a form such as a curve can be appropriately taken depending on the evaluation method.

そして、超音波探傷試験の結果を図中にプロットし、領域Cにおける白点性欠陥の個数が0の場合に鋼材を正常材とする。なお、本実施形態では、白点性欠陥の個数が0の鋼材を正常材とするが、これに限られず、白点性欠陥の個数が、所定の数以下の場合を正常材としてもよい。   Then, the results of the ultrasonic flaw detection test are plotted in the figure, and when the number of white spot defects in the region C is 0, the steel material is regarded as a normal material. In the present embodiment, a steel material having zero white spot defects is used as a normal material. However, the present invention is not limited to this, and a normal material may be used when the number of white spot defects is a predetermined number or less.

以上説明したように、本発明の実施形態による鋼材の白点性欠陥の評価方法によれば、感応検査によらず超音波探傷法により白点性欠陥を検出するために、鋼材の白点性欠陥の客観的な評価が可能となる。   As described above, according to the evaluation method for white spot defects of steel materials according to the embodiment of the present invention, in order to detect white spot defects by the ultrasonic flaw detection method regardless of the sensitive inspection, Objective evaluation of defects is possible.

次に、本発明の実施形態による鋼材の白点性欠陥の評価方法について、実施例を示し、より詳細に説明する。ただし、本発明の鋼材の白点性欠陥の評価方法は、以下の実施例に限定されるものではない。   Next, a method for evaluating a white spot defect of a steel material according to an embodiment of the present invention will be described in more detail with reference to examples. However, the evaluation method of the white spot defect of the steel material of the present invention is not limited to the following examples.

まず、SUJ2φ167mmビレット1本1本の端部から80mmの長さの小片を採取し、W167mm×D80mm×H47mmに粗加工で成形し、800℃球状化焼鈍処理を実施し、複数の超音波探傷試験片(図1参照)に仕上げる。試験片の外形は、W167mm×D80mm×H45mmのほぼ直方体に仕上げられる。   First, a small piece of 80mm length is taken from the end of each SUJ2φ167mm billet, shaped into W167mm x D80mm x H47mm by roughing, and subjected to 800 ° C spheroidizing annealing, and multiple ultrasonic flaw detection tests Finish in a piece (see Figure 1). The outer shape of the test piece is finished into a substantially rectangular parallelepiped of W167 mm × D80 mm × H45 mm.

そして、探傷周波数15MHzの水浸超音波探傷試験を行う。探傷条件は、鋼中焦点における超音波ビーム径が約1mmの探触子を使用し、探傷感度は、STB−A22試験片(JIS G 2345参照)の深さ11mmでφ1.5mmの平底孔から得られる最大反射波強度が80%となる感度を基準感度とし、基準感度より20dB増感した値を探傷感度とする。また、探傷ピッチを、0.2mm×0.2mmの平面走査とし、鋼中焦点は、深さ22.5mm(評価範囲の中央深さ)とする。そして、超音波探傷試験片の中心部に位置し、不感帯や端部などを除いた範囲であるW(=WT1+WT2)83.5mm×D70mm×H25mmの範囲を評価範囲として設定する(図3参照)。この場合の評価範囲の総重量は、SUJ2の場合は、約1.15kgとなる。 Then, a water immersion ultrasonic flaw detection test with a flaw detection frequency of 15 MHz is performed. For the flaw detection conditions, a probe having an ultrasonic beam diameter of about 1 mm at the focal point in the steel was used. The sensitivity at which the maximum reflected wave intensity obtained is 80% is defined as the reference sensitivity, and the value obtained by sensitizing the reference sensitivity by 20 dB is defined as the flaw detection sensitivity. Further, the flaw detection pitch is a plane scan of 0.2 mm × 0.2 mm, and the focal point in the steel is 22.5 mm deep (the center depth of the evaluation range). An evaluation range is a range of W T (= W T1 + W T2 ) 83.5 mm × D T 70 mm × H T 25 mm, which is located in the center of the ultrasonic flaw detection specimen and excludes the dead zone and the end. (See FIG. 3). The total weight of the evaluation range in this case is about 1.15 kg in the case of SUJ2.

また、S53Cの場合には、超音波探傷試験片の中心部に位置し、不感帯や端部などを除いた範囲であるW(=WT1+WT2)96.5mm×D70mm×H25mmの範囲を評価範囲として設定する。そして、この場合の評価範囲の総重量は約1.33kgとなる。 In the case of S53C, W T (= W T1 + W T2 ) 96.5 mm × D T 70 mm × H T, which is located in the center of the ultrasonic flaw detection test piece and excludes the dead zone and the end. A range of 25 mm is set as the evaluation range. In this case, the total weight of the evaluation range is about 1.33 kg.

また、SUS440Cの場合には、SUJ2同様、超音波探傷試験片の中心部に位置し、不感帯や端部などを除いた範囲であるW(=WT1+WT2)83.5mm×D70mm×H25mmの範囲を評価範囲として設定する。そして、この場合の評価範囲の総重量は約1.15kgとなる。 Further, in the case of SUS440C, W T (= W T1 + W T2 ) 83.5 mm × D T 70 mm, which is located in the center of the ultrasonic flaw detection test piece and excludes the dead zone and the end, as in SUJ2. The range of xH T 25 mm is set as the evaluation range. In this case, the total weight of the evaluation range is about 1.15 kg.

次に、超音波探傷試験の結果から検出物ごとの反射波強度と√AREAとの関係を求め、図4に示す関係図を作成する。本実施例において、√AREAは、反射波強度30%を閾値とした閾値法での値である。また、図4の線Aは、y=0.074x−1.102となり、線Bは、y=0.031x−0.151となる。そして、線Aと線Bとにより挟まれた領域である0.074x−1.102≦y≦0.031x−0.151の領域を領域Cとする。   Next, the relationship between the reflected wave intensity for each detected object and √AREA is obtained from the result of the ultrasonic flaw detection test, and the relationship diagram shown in FIG. 4 is created. In the present embodiment, √AREA is a value obtained by a threshold method using a reflected wave intensity of 30% as a threshold. Also, the line A in FIG. 4 is y = 0.074x−1.102, and the line B is y = 0.031x−0.151. Then, an area between 0.074x−1.102 ≦ y ≦ 0.031x−0.151, which is an area sandwiched between the line A and the line B, is defined as an area C.

そして、領域Cは、白点性欠陥のみが検出される領域となる。試験片1の評価範囲内で、図4の領域C範囲の15MHzUT欠陥個数が、0である鋼材を正常材とする。   The region C is a region where only white spot defects are detected. Within the evaluation range of the test piece 1, a steel material in which the number of 15 MHz UT defects in the region C range of FIG.

また、試験条件としては次の2つのケースを設定した。1つ目は、連続的に製造された複数のビレットであって、非定常操業があったビレットから始めて8本のビレットを抜き出し、8本のビレットの末端位置を試験片として切断し超音波探傷試験を行った(図7のcase1)。2つ目は、連続的に製造された複数のビレットであって、定常操業によるビレット4本と非定常操業が生じた後の3本の、計7本のビレットの末端位置を試験片として切断し超音波探傷試験を行った(図7のcase2)。   The following two cases were set as test conditions. The first is a plurality of continuously manufactured billets, starting with a billet that has been in an unsteady operation, withdrawing eight billets, cutting the end positions of the eight billets as test pieces, and ultrasonic flaw detection A test was conducted (case 1 in FIG. 7). The second is a plurality of billets manufactured continuously, with 4 billets by steady operation and 3 after unsteady operation, cutting the end positions of 7 billets as a test piece. Then, an ultrasonic flaw detection test was conducted (case 2 in FIG. 7).

そして、本実施例の白点性欠陥の検出結果と、マクロ試験による評価結果とを比較した。図8は、本実施例の白点性欠陥の検出結果と、マクロ試験による評価結果とを比較した結果を示す図である。   And the detection result of the white spot defect of a present Example was compared with the evaluation result by a macro test. FIG. 8 is a diagram illustrating a result of comparing the detection result of the white spot defect of this example with the evaluation result by the macro test.

なお、マクロ試験の評価において、A,B,Cとは、φ167ビレットT面観察による白点性欠陥の個数に関する指数が、Aは、50未満、Bは、50〜200、Cは、200以上(ランクBの平均的なものの評点を100とする)を示すものとする。また、本実施例の白点性欠陥の評価における判定の○、×は、○が正常材を示し、×がそれ以外を示すものとする。   In the macro test evaluation, A, B, and C are indices related to the number of white spot defects by φ167 billet T plane observation, A is less than 50, B is 50 to 200, and C is 200 or more. (The average score of rank B is 100). In addition, in the evaluation of the white spot defect of this example, ○ and × indicate that ○ indicates a normal material and × indicates the other.

図に示すように、本実施例の白点性欠陥の評価の○と、マクロ試験による白点性欠陥の個数評価であるAとが一致しており、本白点性欠陥の評価方法の妥当性が証明された。   As shown in the figure, the evaluation of the white spot defect in this example is consistent with the evaluation A of the number of white spot defects by the macro test. Sex was proved.

本実施形態の鋼材の白点性欠陥の評価方法に使用する試験片の外形を示す図である。It is a figure which shows the external shape of the test piece used for the evaluation method of the white spot defect of the steel materials of this embodiment. 本実施形態の焦点型探触子を備えた超音波探傷装置の概略構成図である。It is a schematic block diagram of the ultrasonic flaw detector provided with the focus type probe of this embodiment. 本実施形態の超音波探傷される試験片内部の範囲を示す図であるIt is a figure which shows the range inside the test piece by which ultrasonic testing of this embodiment is carried out. 本実施形態の鋼材の白点性欠陥評価方法における超音波探傷装置の測定結果の一例を示す図である。It is a figure which shows an example of the measurement result of the ultrasonic flaw detector in the white spot defect evaluation method of the steel material of this embodiment. 焦点のビーム径の相違によるUT映像の例を示す図であるIt is a figure which shows the example of the UT image | video by the difference in the beam diameter of a focus. ポロシティの最大分布範囲と炭素濃度との関係を表したグラフである。It is a graph showing the relationship between the maximum distribution range of porosity and carbon concentration. 本実施例に使用する試験片の採取法を示す図である。It is a figure which shows the sampling method of the test piece used for a present Example. 本実施例の白点性欠陥の検出結果と、マクロ試験による評価結果とを比較した結果を示す図であるIt is a figure which shows the result of having compared the detection result of the white spot defect of a present Example, and the evaluation result by a macro test.

符号の説明Explanation of symbols

1・・試験片
2・・ゲート部
3・・ポロシティ存在範囲
4・・不感帯
5・・外周部
6・・端部
11・・焦点型探触子
12・・超音波探傷ユニット
13・・走査ユニット
14・・PC
15・・映像化ユニット
1. Test piece 2. Gate part 3. Porosity presence range 4. Dead band 5. Outer part 6. End part 11. Focal probe 12. Ultrasonic flaw detection unit 13. Scanning unit 14. PC
15. Visualization unit

Claims (8)

超音波探傷試験装置の探傷感度を所定の感度として、評価対象鋼から作成された試験片内の所定の評価範囲について超音波探傷を行い、
前記超音波探傷により検出された検出物毎に、
超音波探傷映像による検出物面積指標と、
反射波強度と、の関係を求め、
第1の軸を反射波強度とし、第2の軸を検出物面積指標とした直交座標系上に、
介在物と白点性欠陥とが混在する所定の混在領域と、
該混在領域を除いた前記直交座標系上の領域である白点性欠陥評価領域と、を設定し、
前記直交座標系上に、前記検出物毎の前記反射波強度と前記検出物面積指標との関係を座標に示し、
前記白点性欠陥評価領域に存在する前記検出物の数に基づいて、前記評価対象鋼を正常材と評価することを特徴とする鋼材の白点性欠陥の評価方法。
With the flaw detection sensitivity of the ultrasonic flaw detection test apparatus as a predetermined sensitivity, ultrasonic flaw detection is performed for a predetermined evaluation range in a test piece made from steel to be evaluated,
For each detected object detected by the ultrasonic flaw detection,
Detected object area index by ultrasonic flaw detection image,
Find the relationship with reflected wave intensity,
On an orthogonal coordinate system with the first axis as the reflected wave intensity and the second axis as the detected object area index,
A predetermined mixed area in which inclusions and white spot defects are mixed;
A white spot defect evaluation area that is an area on the orthogonal coordinate system excluding the mixed area, and
On the orthogonal coordinate system, the relationship between the reflected wave intensity for each detection object and the detection object area index is shown in coordinates,
A method for evaluating a white spot defect in a steel material, wherein the steel to be evaluated is evaluated as a normal material based on the number of detected objects existing in the white spot defect evaluation region.
前記白点性欠陥評価領域は、評価除外領域をさらに除いた前記直交座標系上の領域であることを特徴とする請求項1に記載の鋼材の白点性欠陥の評価方法。   The method for evaluating a white spot defect of a steel material according to claim 1, wherein the white spot defect evaluation area is an area on the orthogonal coordinate system excluding an evaluation exclusion area. 前記評価対象鋼は、圧鍛比6から30で圧延及び/又は鍛伸された鋼であることを特徴とする請求項1または2に記載の鋼材の白点性欠陥の評価方法。   3. The method for evaluating white spot defects of a steel material according to claim 1, wherein the steel to be evaluated is steel rolled and / or forged at a forging ratio of 6 to 30. 4. 前記超音波探傷試験装置の探傷周波数は、5〜25MHzであることを特徴とする請求項1から3のいずれかに記載の鋼材の白点性欠陥の評価方法。   The method for evaluating a white spot defect in a steel material according to any one of claims 1 to 3, wherein a flaw detection frequency of the ultrasonic flaw detection test apparatus is 5 to 25 MHz. 前記超音波探傷試験装置は、試験片中焦点でのビーム径がφ0.5から2.0mmの焦点型探触子を使用することを特徴とする請求項1から4のいずれかに記載の鋼材の白点性欠陥の評価方法。   5. The steel material according to claim 1, wherein the ultrasonic flaw detection apparatus uses a focus type probe having a beam diameter at a focal point in a test piece of φ0.5 to 2.0 mm. Evaluation method for white spot defects. 前記試験片内の所定の評価範囲は、前記試験片の内部全体の範囲から、ポロシティ存在範囲と周辺部を除外した範囲であることを特徴とする請求項1から5のいずれかに記載の鋼材の白点性欠陥の評価方法。   The steel material according to any one of claims 1 to 5, wherein the predetermined evaluation range in the test piece is a range in which the porosity existing range and the peripheral portion are excluded from the entire internal range of the test piece. Evaluation method for white spot defects. 前記評価対象鋼は、高炭素クロム鋼であることを特徴とする請求項1から6のいずれかに記載の鋼材の白点性欠陥の評価方法。   The method for evaluating white spot defects of a steel material according to any one of claims 1 to 6, wherein the steel to be evaluated is high-carbon chromium steel. 前記試験片は、焼なまし処理をされたものであることを特徴とする請求項1から7のいずれかに記載の鋼材の白点性欠陥の評価方法。
The method for evaluating a white spot defect in a steel material according to any one of claims 1 to 7, wherein the test piece is subjected to an annealing treatment.
JP2005044979A 2005-02-22 2005-02-22 Method for evaluating white spot defects in steel Expired - Fee Related JP4559254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005044979A JP4559254B2 (en) 2005-02-22 2005-02-22 Method for evaluating white spot defects in steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005044979A JP4559254B2 (en) 2005-02-22 2005-02-22 Method for evaluating white spot defects in steel

Publications (2)

Publication Number Publication Date
JP2006234387A true JP2006234387A (en) 2006-09-07
JP4559254B2 JP4559254B2 (en) 2010-10-06

Family

ID=37042233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005044979A Expired - Fee Related JP4559254B2 (en) 2005-02-22 2005-02-22 Method for evaluating white spot defects in steel

Country Status (1)

Country Link
JP (1) JP4559254B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113029569A (en) * 2021-03-11 2021-06-25 北京交通大学 Train bearing autonomous fault identification method based on cyclic strength index

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10168515A (en) * 1996-10-11 1998-06-23 Nippon Seiko Kk Heat treated article
JPH1143739A (en) * 1997-07-22 1999-02-16 Nippon Seiko Kk Roller bearing
JP2000192192A (en) * 1998-12-22 2000-07-11 Nippon Koshuha Steel Co Ltd White spot preventive steel, and its manufacture
JP2000214142A (en) * 1999-01-20 2000-08-04 Sanyo Special Steel Co Ltd Method for evaluating cleanliness of metal material by ultrasonic flaw detection
JP2001240937A (en) * 2000-02-29 2001-09-04 Sanyo Special Steel Co Ltd High cleanliness steel
JP2002286702A (en) * 2001-03-27 2002-10-03 Sanyo Special Steel Co Ltd Macro-segregation evaluating method for steel material
WO2003060507A1 (en) * 2002-01-17 2003-07-24 Nsk Ltd. Bearing steel, method for evaluating large-sized inclusions in the steel, and rolling bearing
JP2004045095A (en) * 2002-07-09 2004-02-12 Sanyo Special Steel Co Ltd Method of evaluating cleanliness of steel by submerged ultrasonic flaw detection method
JP2004077206A (en) * 2002-08-13 2004-03-11 Nsk Ltd Ultrasonic flaw detection and inspection method for rolling bearing and rolling element
JP2004177168A (en) * 2002-11-25 2004-06-24 Sanyo Special Steel Co Ltd In-steel inclusion detection/evaluating method by submerged ultrasonic flaw detection
JP2004219086A (en) * 2003-01-09 2004-08-05 Sanyo Special Steel Co Ltd Cleanliness evaluation method of steel by immersion ultrasonic inspection method
JP2006064569A (en) * 2004-08-27 2006-03-09 Sanyo Special Steel Co Ltd Bearing steel high in reliability

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10168515A (en) * 1996-10-11 1998-06-23 Nippon Seiko Kk Heat treated article
JPH1143739A (en) * 1997-07-22 1999-02-16 Nippon Seiko Kk Roller bearing
JP2000192192A (en) * 1998-12-22 2000-07-11 Nippon Koshuha Steel Co Ltd White spot preventive steel, and its manufacture
JP2000214142A (en) * 1999-01-20 2000-08-04 Sanyo Special Steel Co Ltd Method for evaluating cleanliness of metal material by ultrasonic flaw detection
JP2001240937A (en) * 2000-02-29 2001-09-04 Sanyo Special Steel Co Ltd High cleanliness steel
JP2002286702A (en) * 2001-03-27 2002-10-03 Sanyo Special Steel Co Ltd Macro-segregation evaluating method for steel material
WO2003060507A1 (en) * 2002-01-17 2003-07-24 Nsk Ltd. Bearing steel, method for evaluating large-sized inclusions in the steel, and rolling bearing
JP2004045095A (en) * 2002-07-09 2004-02-12 Sanyo Special Steel Co Ltd Method of evaluating cleanliness of steel by submerged ultrasonic flaw detection method
JP2004077206A (en) * 2002-08-13 2004-03-11 Nsk Ltd Ultrasonic flaw detection and inspection method for rolling bearing and rolling element
JP2004177168A (en) * 2002-11-25 2004-06-24 Sanyo Special Steel Co Ltd In-steel inclusion detection/evaluating method by submerged ultrasonic flaw detection
JP2004219086A (en) * 2003-01-09 2004-08-05 Sanyo Special Steel Co Ltd Cleanliness evaluation method of steel by immersion ultrasonic inspection method
JP2006064569A (en) * 2004-08-27 2006-03-09 Sanyo Special Steel Co Ltd Bearing steel high in reliability

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113029569A (en) * 2021-03-11 2021-06-25 北京交通大学 Train bearing autonomous fault identification method based on cyclic strength index

Also Published As

Publication number Publication date
JP4559254B2 (en) 2010-10-06

Similar Documents

Publication Publication Date Title
Hinds et al. Impact of surface condition on sulphide stress corrosion cracking of 316L stainless steel
JP2006317192A (en) Reliability evaluating method of steel
JPWO2003060507A1 (en) Steel for bearing and its large inclusion evaluation method, and rolling bearing
US20090150095A1 (en) Ultrasonic Method For Detecting Banding In Metals
Khan et al. Assessment of material properties of AISI 316L stainless steel using non-destructive testing
JP2006349698A (en) Evaluation method for cleanliness of high cleanliness steel
JP2006138865A (en) Evaluation method for cleanliness of alloy steel for highly clean structure
JP4559254B2 (en) Method for evaluating white spot defects in steel
CN112760461B (en) Heat treatment method for steel high-frequency ultrasonic detection sample
JP2004045095A (en) Method of evaluating cleanliness of steel by submerged ultrasonic flaw detection method
JP3712254B2 (en) Estimation method of defect diameter in metal materials
Sakaguchi et al. Multiscale analysis of MnS inclusion distributions in high strength steel
JP4084979B2 (en) Detection method of inclusions in steel by water immersion ultrasonic flaw detection
JP3505415B2 (en) Evaluation method of cleanliness of metallic materials by ultrasonic testing
CN102445401A (en) Method for quickly testing alternating thermal stress resistance of metal
JP2001240937A (en) High cleanliness steel
JP4002842B2 (en) Evaluation method of steel cleanliness by water immersion ultrasonic testing
JP2010236886A (en) Method of measuring distribution of crystal grain size of metal material
JP4015935B2 (en) Inclusion detection evaluation method in steel by water immersion ultrasonic flaw detection
JP2002004005A (en) High purity alloy steel for structural purpose
JP4559160B2 (en) Inspection method of high reliability bearing steel
JP4362194B2 (en) Inclusion detection method in metal materials
JP2008128863A (en) Method for estimating diameter of inclusion in steel
JPH03108658A (en) Method of detecting nonmetallic inclusion in high carbon steel
JP2022138514A (en) Method for determining criterion for evaluating inclusion in steel material by ultrasonic flaw detection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100722

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20130730

LAPS Cancellation because of no payment of annual fees