JP2006138865A - Evaluation method for cleanliness of alloy steel for highly clean structure - Google Patents

Evaluation method for cleanliness of alloy steel for highly clean structure Download PDF

Info

Publication number
JP2006138865A
JP2006138865A JP2005372111A JP2005372111A JP2006138865A JP 2006138865 A JP2006138865 A JP 2006138865A JP 2005372111 A JP2005372111 A JP 2005372111A JP 2005372111 A JP2005372111 A JP 2005372111A JP 2006138865 A JP2006138865 A JP 2006138865A
Authority
JP
Japan
Prior art keywords
flaw detection
cleanliness
inclusions
steel
reflected wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005372111A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Kato
加藤恵之
Umihiro Sato
佐藤海広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2005372111A priority Critical patent/JP2006138865A/en
Publication of JP2006138865A publication Critical patent/JP2006138865A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture

Abstract

<P>PROBLEM TO BE SOLVED: To provide an evaluation method for cleanliness of alloy steel for highly clean structure, having high reliability for high cleanliness. <P>SOLUTION: This evaluation method for cleanliness of alloy steel for highly clean structure comprises performing a rough ultrasonic flaw detection for detecting at least positions and numbers of nonmetallic inclusions in an inspection sample at a predetermined flaw detection scanning pitch is performed for a predetermined inspection volume, performing precise ultrasonic flaw detection for detecting grain sizes of the inclusions detected by the rough ultrasonic flaw detection with a flaw detection scanning pitch narrower than that in the rough ultrasonic flaw detection, and measuring the number of massy or granular oxide-based inclusions having a grain size of 25 μm or more. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高清浄構造用合金鋼の清浄度の評価方法に関し、詳しくは、清浄度の信頼性が高い鋼材の清浄度の評価方法に関する。   The present invention relates to a method for evaluating the cleanliness of a highly clean structural alloy steel, and more particularly to a method for evaluating the cleanliness of a steel material having a high cleanliness reliability.

最近の冶金技術の向上から、鋼の清浄度が大幅に改善され、鋼材中の20ミクロンを越える中型〜大型の非金属介在物(本明細書中では、中型介在物を含めて単に「大型介在物」という。)、主としてCaO-Al2O3-MgO系などは一段と少なくなり、かつ、大きさも小さくなっている(本明細書では「非金属介在物」のことを単に「介在物」という場合がある)。このような中で、偶発的に、あるいはきわめて低い確率で発生する中型〜大型介在物の検出は、非常に困難になっている。 Due to recent improvements in metallurgical technology, the cleanliness of steel has been greatly improved, and medium to large non-metallic inclusions in steel materials exceeding 20 microns (in this specification, including medium-type inclusions, simply “large-size inclusions”). ”, Mainly CaO—Al 2 O 3 —MgO system is much smaller and smaller in size (in this specification,“ non-metallic inclusions ”are simply referred to as“ inclusions ”). Sometimes). Under such circumstances, it is very difficult to detect medium to large inclusions that occur accidentally or with a very low probability.

しかし、酸化物系介在物(例えばAl2O3、MgO・Al2O3、CaO+MgO・Al2O3など)および窒化物系介在物などの非金属介在物は、例えば軸受鋼や機械構造用炭素鋼などの鋼材において疲労破壊の原因となりやすく、依然として問題となっている。 However, non-metallic inclusions such as oxide inclusions (eg Al 2 O 3 , MgO · Al 2 O 3 , CaO + MgO · Al 2 O 3 etc.) and nitride inclusions are used for bearing steel and machine structures, for example. Steel materials such as carbon steel are likely to cause fatigue failure and remain a problem.

ところで、現在、鋼材などの金属材料の清浄度を見る検査方法としては、被分析対象金属材料から試験片を採取して光学顕微鏡により試験片の表面を検査する等の方法が一般的である。鋼材を例に取ると、従来標準的な鋼中の介在物評価方法として採用されてきた「JIS G 0555 鋼の非金属介在物の顕微鏡試験方法」、「ASTM E45 Standard Practice for Determining the Inclusion Content of Steel」、「DIN50602」、「ISO4967」などの顕微鏡による方法は、検査試料の被検面積が、例えば100〜200mm2/個と小さいために、大型介在物の検出精度が低いという問題点があった。これまで大きな体積を検査することが要望されてきたが、適切な方法はなかった。 By the way, at present, as an inspection method for checking the cleanliness of a metal material such as a steel material, a method of collecting a test piece from a metal material to be analyzed and inspecting the surface of the test piece with an optical microscope is generally used. Taking steel as an example, `` JIS G 0555 Microscopic testing method for non-metallic inclusions in steel '', which has been adopted as a standard method for evaluating inclusions in steel, `` ASTM E45 Standard Practice for Determining the Inclusion Content of The method using a microscope such as “Steel”, “DIN50602”, and “ISO4967” has a problem that the detection accuracy of large inclusions is low because the inspection area of the inspection sample is as small as 100 to 200 mm 2 / piece, for example. It was. In the past, it has been desired to inspect large volumes, but there has been no suitable method.

また、他の方法として、金属材料から酸溶解により介在物を抽出しその介在物の粒径を顕微鏡で評価する方法やEB溶解法により金属材料を溶解し浮上した介在物を顕微鏡により観察する方法が提案されている(例えば、特許文献1及び特許文献2を参照のこと)。しかし、酸溶解法は介在物が酸に溶解したり、介在物まで溶解して介在物が小径化する場合がある。さらに、酸溶解に時間がかかるなど、処理の迅速性に劣り、製品の量産工程に対応することも困難であった。また、EB溶解法は、検査試料となる数g程度の小片を溶解し、浮上した介在物を顕微鏡により観察する方法であるが、介在物が融解、凝集したりする場合があり、これに対する対応策が見いだされていない。   In addition, as another method, a method of extracting inclusions from a metal material by acid dissolution and evaluating the particle size of the inclusions with a microscope, or a method of observing the inclusions that have been dissolved and floated by dissolving the metal material by an EB dissolution method Has been proposed (see, for example, Patent Document 1 and Patent Document 2). However, in the acid dissolution method, the inclusions may be dissolved in the acid or the inclusions may be dissolved to reduce the diameter. In addition, it takes time to dissolve the acid, resulting in inferior speed of treatment and it is difficult to cope with the mass production process of the product. In addition, the EB dissolution method is a method in which a small piece of about a few grams to be a test sample is dissolved, and the inclusions that have floated are observed with a microscope, but the inclusions may be melted and aggregated. No solution has been found.

故に、大体積について検査する必要がある鋼材については、より信頼性の高い清浄度評価が付されたものであることが望まれていた。
特開平9−125199号 特開平9−125200号
Therefore, it has been desired that a steel material that needs to be inspected for a large volume has been given a more reliable cleanliness evaluation.
JP-A-9-125199 JP-A-9-125200

本発明は、高清浄度であることの信頼性が高い高清浄構造用合金鋼の清浄度の評価方法を提供することを課題とする。   It is an object of the present invention to provide a method for evaluating the cleanliness of a highly clean structural alloy steel that is highly reliable with high cleanliness.

上記の課題を解決するために、本発明の高清浄構造用合金鋼の清浄度の評価方法では以下の手段を採用した。
(1)所定の探傷走査ピッチで検査試料中の非金属介在物の少なくとも位置および数を検出する粗超音波探傷を所定の検査体積について行い、粗超音波探傷よりも探傷走査ピッチを狭くして粗超音波探傷により検出された介在物の粒径を検出する精密超音波探傷を行い、粒径が25μm以上の塊状または粒状酸化物系介在物の個数を計測する高清浄構造用合金鋼の清浄度の評価方法。
(2)精密超音波探傷は、粗超音波探傷により位置が特定された介在物のみについて行われる前記(1)に記載の高清浄構造用合金鋼の清浄度の評価方法。
(3)所定の検査体積と、粗超音波探傷及び精密超音波探傷により得られた粒径が25μm以上の塊状または粒状酸化物系介在物の個数とから、所定の基準体積中に存在する粒径が25μm以上の塊状または粒状酸化物系介在物の個数に体積換算して、所定の基準体積に体積換算された、粒径が25μm以上の塊状または粒状酸化物系介在物の個数が、所定の個数以下であることが確認された鋼を高清浄度であることの信頼性が高い鋼として選抜する前記(1)または前記(2)に記載の高清浄構造用合金鋼の清浄度の評価方法。
(4)検査試料の大きさは、粗超音波探傷を行う際に、走査面積が10〜10000mm2、検査深さが0.5〜50mmに設定できる大きさである前記(1)から前記(3)のいずれかに記載の高清浄構造用合金鋼の清浄度の評価方法。
(5)粗超音波探傷により得られた反射波の信号から、反射波の信号を得た位置と、反射波の正半波強度及び負半波強度と、反射波の信号の波形とを記録し、これらの記録から下記の式(A)に示すMURAI値が0.6未満である反射波の信号のみを、粒径が25μm以上の塊状または粒状酸化物系介在物とし、当該介在物の個数を計測する前記(1)から前記(4)のいずれかに記載の高清浄構造用合金鋼の清浄度の評価方法。
In order to solve the above-mentioned problems, the following means were adopted in the method for evaluating the cleanliness of the steel alloy for high cleanliness structure according to the present invention.
(1) Rough ultrasonic flaw detection for detecting at least the position and number of non-metallic inclusions in the inspection sample at a predetermined flaw detection scanning pitch is performed for a predetermined inspection volume, and the flaw detection scanning pitch is made narrower than rough ultrasonic flaw detection. Cleaning of high-clean structural alloy steel that performs precision ultrasonic flaw detection to detect the particle size of inclusions detected by coarse ultrasonic flaw detection and measures the number of massive or granular oxide inclusions having a particle size of 25 μm or more Degree evaluation method.
(2) The method for evaluating the cleanliness of the high cleanliness structural alloy steel according to (1), wherein the precision ultrasonic flaw detection is performed only for inclusions whose positions are specified by rough ultrasonic flaw detection.
(3) Particles present in a predetermined reference volume from a predetermined inspection volume and the number of massive or granular oxide inclusions having a particle diameter of 25 μm or more obtained by rough ultrasonic inspection and precision ultrasonic inspection Volume-converted to the number of massive or granular oxide inclusions having a diameter of 25 μm or more, and volume-converted to a predetermined reference volume, the number of massive or granular oxide-based inclusions having a particle diameter of 25 μm or more is predetermined. The steel having been confirmed to be less than or equal to the number of steels is selected as steel having high cleanliness and having high reliability, and the cleanliness evaluation of the high cleanliness structural alloy steel according to (1) or (2) above Method.
(4) The size of the inspection sample is such that the scanning area can be set to 10 to 10,000 mm 2 and the inspection depth can be set to 0.5 to 50 mm when performing rough ultrasonic flaw detection. The method for evaluating the cleanliness of the highly clean structural alloy steel according to any one of the above.
(5) Record the position where the reflected wave signal was obtained from the reflected wave signal obtained by the rough ultrasonic flaw detection, the positive half wave intensity and negative half wave intensity of the reflected wave, and the waveform of the reflected wave signal. From these records, only the reflected wave signal having a MURAI value of less than 0.6 shown in the following formula (A) is used as a lump or granular oxide inclusion having a particle size of 25 μm or more, and The method for evaluating the cleanliness of the alloy steel for highly clean structure according to any one of (1) to (4), wherein the number is measured.

MURAI値=P/(P+N) ・・・・・(A)
P:正半波強度、N:負半波強度
(6)検査試料は、Al≧0.005wt%含有の高清浄度アルミキルド鋼から作製した検査試料である前記(1)から前記(5)のいずれかに記載の高清浄構造用合金鋼の清浄度の評価方法。
MURAI value = P / (P + N) (A)
P: Positive half-wave intensity, N: Negative half-wave intensity (6) The test sample is a test sample prepared from high cleanliness aluminum killed steel containing Al ≧ 0.005 wt%. The evaluation method of the cleanliness of the high clean structural alloy steel according to any one of the above.

本発明によれば、高清浄度であることの信頼性が高い高清浄構造用合金鋼の清浄度の評価方法とすることができる。また本発明によれば、苛酷な条件下でも寿命が長く、また残存寿命にばらつきが少ない高清浄構造用合金鋼を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, it can be set as the evaluation method of the cleanliness of the alloy steel for highly clean structure with high reliability with high cleanliness. Further, according to the present invention, it is possible to provide a high clean structural alloy steel that has a long life even under severe conditions and has little variation in the remaining life.

本発明の高清浄構造用合金鋼の清浄度の評価方法は、粗探傷と精密探傷の2通りの超音波探傷を行って、鋼材中に含まれる介在物を検出し、超音波探傷により得られたデータに基づいて、粒径(本明細書では塊状または粒状の介在物の粒径を単に「介在物径」という場合がある)が25μm以上の介在物の個数を計測して、被分析対象の金属材料の清浄度を評価するものである。その結果、検査対象の鋼の基準体積3000mm3あたりに10個以下であると確認された鋼を、高清浄度であることの信頼性が高い鋼として選抜するものである。粗探傷と精密探傷の2通りの超音波探傷により介在物についての清浄度が信頼性の高い鋼が提供される。本発明の高清浄構造用合金鋼の清浄度の評価方法は、粗探傷と精密探傷の2通りの超音波探傷により、粒径が25μm以上の介在物の個数が、検査対象の鋼の基準体積3000mm3あたりに10個以下であることが確認されたものを製品として選抜するものである。また、より好ましくは介在物の個数は検査対象の鋼の基準体積3000mm3あたりに5個以下である。 The method for evaluating the cleanliness of the high clean structural alloy steel of the present invention is obtained by performing ultrasonic inspection in two ways, rough inspection and precision inspection, detecting inclusions contained in the steel material, and obtaining by ultrasonic inspection. Based on the measured data, the number of inclusions having a particle size (in this specification, the particle size of a massive or granular inclusion may be simply referred to as “inclusion diameter”) is 25 μm or more, and the object to be analyzed This is to evaluate the cleanliness of the metal material. As a result, the steel that is confirmed to be 10 or less per 3000 mm 3 of the reference volume of the steel to be inspected is selected as a steel having high cleanliness and high reliability. Two types of ultrasonic inspection, rough inspection and precision inspection, provide a steel with high reliability of inclusions. According to the method of evaluating the cleanliness of the high clean structural alloy steel of the present invention, the number of inclusions having a particle size of 25 μm or more is determined by the two types of ultrasonic flaw detection of rough flaw detection and precision flaw detection. Those that are confirmed to be 10 or less per 3000 mm 3 are selected as products. More preferably, the number of inclusions is 5 or less per 3000 mm 3 of the reference volume of the steel to be inspected.

また、本発明の被分析対象の高清浄構造用合金鋼としては、上記のような介在物についての清浄度が明らかにされるとともに、酸素含有量が6ppm以下である高清浄構造用合金鋼が好ましい形態として挙げられる。また、このような高清浄構造用合金鋼としては、高清浄構造用合金鋼が機械構造用炭素鋼、焼入性を保証した構造用合金鋼、ニッケルクロム鋼、ニッケルクロムモリブデン鋼、クロム鋼、クロムモリブデン鋼、ニッケルモリブデン鋼、機械構造用マンガン鋼、マンガンクロム鋼材、高温用合金鋼ボルト鋼、特殊用途合金鋼ボルト用棒鋼、アルミニウムクロムモリブデン鋼鋼材および軸受鋼用鋼材などが挙げられる。このような鋼は、例えばJIS規格でいうならば、機械構造用炭素鋼鋼材(JIS G 4051)、焼入性を保証した構造用鋼鋼材(JIS G 4052)、ニッケルクロム鋼鋼材(JIS G 4102)、ニッケルクロムモリブデン鋼鋼材(JIS G 4103)、クロム鋼鋼材(JIS G 4104)、クロムモリブデン鋼鋼材(JIS G 4105)、機械構造用マンガン鋼鋼材・マンガンクロム鋼鋼材(JIS G 4106)、高温用合金鋼ボルト材(JIS G 4107)、特殊用途合金鋼ボルト用棒材(JIS G 4108)、アルミニウムクロムモリブデン鋼鋼材(JIS G 4202)、および軸受用鋼鋼材としては JIS G 4051、JIS G 4104 などに代表される炭素鋼、中炭素合金鋼、肌焼鋼などが挙げられる。   Further, as the highly clean structural alloy steel to be analyzed of the present invention, the cleanliness of the inclusions as described above is clarified, and the highly clean structural alloy steel having an oxygen content of 6 ppm or less is used. It is mentioned as a preferable form. In addition, as such high clean structural alloy steel, high clean structural alloy steel is carbon steel for machine structure, structural alloy steel with guaranteed hardenability, nickel chromium steel, nickel chromium molybdenum steel, chromium steel, Examples include chrome molybdenum steel, nickel molybdenum steel, manganese steel for machine structures, manganese chrome steel, high temperature alloy steel bolt steel, special purpose alloy steel steel bar steel, aluminum chrome molybdenum steel steel and bearing steel steel. Such steels are, for example, carbon steel for machine structural use (JIS G 4051), structural steel with guaranteed hardenability (JIS G 4052), nickel chrome steel (JIS G 4102). ), Nickel-chromium-molybdenum steel (JIS G 4103), chromium-steel steel (JIS G 4104), chromium-molybdenum steel (JIS G 4105), manganese steel for machine structures / manganese-chromium steel (JIS G 4106), high temperature Alloy steel bolt material (JIS G 4107), special purpose alloy steel bolt rod material (JIS G 4108), aluminum chrome molybdenum steel material (JIS G 4202), and bearing steel material JIS G 4051, JIS G 4104 And carbon steel, medium carbon alloy steel, case-hardened steel, and the like.

本発明によって得られる高清浄構造用合金鋼は、介在物に関する清浄度の精度が高く、苛酷な条件下でも寿命が長く、また残存寿命にばらつきが少ない高清浄構造用合金鋼である。   The high clean structural alloy steel obtained by the present invention is a high clean structural alloy steel with high cleanliness accuracy with respect to inclusions, long life even under severe conditions, and little variation in remaining life.

次に、介在物の粒径の検出について説明する。   Next, detection of the particle size of inclusions will be described.

粗探傷は、少なくとも介在物の位置および数を検出するために行われ、続いて粗探傷により検出された介在物についてのみ精密探傷が行われ、精密探傷によって主に介在物の大きさを検出(測定)する。   The rough flaw detection is performed to detect at least the position and number of inclusions, and then the fine flaw detection is performed only on the inclusions detected by the rough flaw detection, and the size of the inclusion is mainly detected by the fine flaw detection ( taking measurement.

粗探傷および精密探傷は、超音波探傷により被検体となる鋼材の検査試料中の介在物を検出するものである。超音波探傷では、探触子から超音波(以下「ビーム」ということがある)が発せられ、対象物に当たり、その反射波を検出して、その反射波強度および反射波形情報(グラフとして出力された波形、正半波強度、負半波強度)に基づいて所望の情報を得る。探触子による走査は、検査試料の所定の間隔をおいた複数箇所で超音波の発射、反射波の受信を行う(この間隔のことを「探傷走査ピッチ」または単に「走査ピッチ」という)。   Coarse flaw detection and precision flaw detection are to detect inclusions in an inspection sample of a steel material to be examined by ultrasonic flaw detection. In ultrasonic flaw detection, an ultrasonic wave (hereinafter sometimes referred to as a “beam”) is emitted from a probe, hits an object, detects the reflected wave, and reflects the reflected wave intensity and reflected waveform information (output as a graph). Desired information is obtained based on the waveform, the positive half-wave intensity, and the negative half-wave intensity). In scanning by the probe, ultrasonic waves are emitted and reflected waves are received at a plurality of positions with a predetermined interval of the inspection sample (this interval is referred to as “flaw detection scanning pitch” or simply “scanning pitch”).

本発明の高清浄構造用合金鋼の清浄度の評価方法については、探傷走査ピッチを精密探傷に比較して広くとる粗探傷と、粗探傷よりも探傷走査ピッチを狭くする精密探傷とが行われる。   As for the method for evaluating the cleanliness of the high clean structural alloy steel of the present invention, rough flaw detection with a wider flaw detection scanning pitch than precision flaw detection and precision flaw detection with a flaw detection scanning pitch narrower than rough flaw detection are performed. .

粗探傷では、所定の探傷走査ピッチで検査試料中の介在物の少なくとも位置および数が検出される。粗探傷における探傷走査ピッチは、検査試料の大きさ、予想される非金属介在物の大きさなどから任意に設定することができるが、少なくとも精密探傷の場合よりも大きく設定し、好ましくは焦点位置における探触子からのビーム束の直径の1/2以下とする。ビーム束の直径の1/2以下とすれば、粗探傷であっても、反射波強度が約70%以上の領域で介在物の検出を行うことができる。例えば、反射波強度が70%ということは、本来その介在物から得られる最大反射波強度100%に対し、ビームのずれにより70%の強度の反射波しか得られないことを意味する。粗探傷における好ましい探傷走査ピッチは、より具体的には30〜150μmであり、特に好ましくは30〜50μmに設定する。   In rough flaw detection, at least the position and number of inclusions in the inspection sample are detected at a predetermined flaw detection scanning pitch. The flaw detection scanning pitch in rough flaw detection can be arbitrarily set based on the size of the inspection sample, the expected size of non-metallic inclusions, etc., but is set at least larger than in the case of precision flaw detection, preferably the focal position. And ½ of the diameter of the beam bundle from the probe. If the beam bundle is ½ or less of the diameter of the beam bundle, inclusions can be detected in a region where the reflected wave intensity is about 70% or more even in the case of rough flaw detection. For example, a reflected wave intensity of 70% means that only a reflected wave having an intensity of 70% can be obtained due to a beam shift with respect to a maximum reflected wave intensity of 100% originally obtained from the inclusion. The preferable flaw detection scanning pitch in the rough flaw detection is more specifically 30 to 150 μm, and particularly preferably 30 to 50 μm.

このように粗探傷を行って、検査試料の検査体積中に含まれる介在物の位置、数が検出される。粗探傷を行うことにより、迅速に大体積の検査試料について検出対象である介在物の位置、数を特定することができる。なお、粗探傷の段階で、検査試料中の介在物径のおおまかな値を測定しておいてもよい。   Thus, the rough flaw detection is performed, and the position and number of inclusions included in the inspection volume of the inspection sample are detected. By performing rough flaw detection, it is possible to quickly specify the position and number of inclusions to be detected for a large-volume inspection sample. Note that an approximate value of the inclusion diameter in the inspection sample may be measured at the stage of the rough flaw detection.

粗探傷を行った後、検出された介在物の大きさを精度よく検出するために精密探傷が行われる。精密探傷は、探傷走査ピッチを粗探傷の場合よりも狭く設定して行い、好ましくは探傷走査ピッチを超音波ビームの半径方向(水平方向)の減衰の影響を最小になるように設定する。減衰の影響が最小になるような探傷走査ピッチは、検出した1つの介在物の真上(反射波強度が最大となる位置を「真上」とし、この位置を原点とする)に探触子を移動し(真上の位置が原点、反射波強度100%)、この探触子を前後左右に動かして求めことができる。検査対象となる高清浄構造用合金鋼や探触子の種類にもよるが、具体的には、精密探傷における探傷走査ピッチとして好ましくは、5〜10μmである。   After performing the rough flaw detection, a precision flaw detection is performed in order to accurately detect the size of the detected inclusion. The precision flaw detection is performed by setting the flaw detection scanning pitch to be narrower than that of the rough flaw detection, and preferably the flaw detection scanning pitch is set so as to minimize the influence of attenuation in the radial direction (horizontal direction) of the ultrasonic beam. The flaw detection scanning pitch that minimizes the influence of attenuation is just above the detected one inclusion (the position where the reflected wave intensity is maximum is “directly above”, and this position is the origin). (The position directly above is the origin, the reflected wave intensity is 100%), and this probe can be moved back and forth and left and right. Although it depends on the type of high-clean structural alloy steel or probe to be inspected, specifically, the flaw detection scanning pitch in precision flaw detection is preferably 5 to 10 μm.

超音波ビームをあてて得られる介在物からの反射波強度は、その介在物から受信し得る最大の反射波強度であることが精度の向上の点で望ましい。しかし、探傷走査ピッチが大きすぎると、介在物に超音波ビームが当たっても、本来その介在物から得られるべき最大の反射波強度よりも小さな値しか得られない場合がある。探触子から発せられる超音波ビームはビームの束であるので幅をもっているが、ビームの中心部と外周部とでは強度に差がある。また、ビーム束が介在物の中心に当たった場合と、周辺部に当たった場合とでは反射波強度に差が生じる。本来得られるべき最大の反射波強度は、超音波ビーム束の中心が介在物の真上(介在物の中心)に当たったときに得られると考えられ、この最大値を的確に検出することが超音波探傷により精度よく介在物の大きさを検出することにつながる。すなわち、あらかじめ粗探傷により検出された介在物について探傷ピッチを狭めた精密探傷を行うことにより、精度よく介在物の大きさの検出を行うことができる。   The reflected wave intensity from the inclusion obtained by applying the ultrasonic beam is desirably the maximum reflected wave intensity that can be received from the inclusion from the viewpoint of improving accuracy. However, if the flaw detection scanning pitch is too large, even if the ultrasonic beam hits the inclusion, only a value smaller than the maximum reflected wave intensity that should be originally obtained from the inclusion may be obtained. The ultrasonic beam emitted from the probe has a width because it is a bundle of beams, but there is a difference in intensity between the central portion and the outer peripheral portion of the beam. In addition, there is a difference in reflected wave intensity between when the beam bundle hits the center of the inclusion and when it hits the peripheral part. The maximum reflected wave intensity that should be originally obtained is considered to be obtained when the center of the ultrasonic beam bundle hits directly above the inclusion (center of the inclusion), and this maximum value can be detected accurately. Ultrasonic flaw detection leads to accurate detection of inclusion size. That is, by performing precision flaw detection with a narrow flaw detection pitch for inclusions detected in advance by rough flaw detection, the size of inclusions can be detected with high accuracy.

図3および図6は、半径方向(水平方向)の位置の違いにより、反射波強度がどのように異なるかを示したものである。図6について見ると、介在物からの最大反射波強度(反射波強度100%)の位置「0.0」から探触子の中心が15μmずれると反射波強度が6%減衰してしまうことがわかる。   FIG. 3 and FIG. 6 show how the reflected wave intensity varies depending on the position in the radial direction (horizontal direction). Referring to FIG. 6, when the center of the probe is deviated by 15 μm from the position “0.0” of the maximum reflected wave intensity from the inclusion (reflected wave intensity 100%), the reflected wave intensity may be attenuated by 6%. Recognize.

介在物からの反射波強度は、その介在物からの受信し得る最大の反射波強度が得られることが望ましいことは上記でも説明したとおりである。超音波ビームの焦点深度が介在物の深度からずれている場合にも、反射波強度がその介在物径から本来得られるべき最大値より低下してしまう。したがって、精密探傷で得られた反射波強度は、深度補正(減衰補正)を行うことが好ましい。図4に、軸方向の減衰補正曲線(深度補正曲線)の例を示す。深度補正は次の深度補正式(1)に従って行うことができる。   As described above, it is desirable that the reflected wave intensity from the inclusion is desirably the maximum reflected wave intensity that can be received from the inclusion. Even when the focal depth of the ultrasonic beam is deviated from the depth of the inclusion, the reflected wave intensity is lowered from the maximum value that should be originally obtained from the diameter of the inclusion. Therefore, it is preferable to perform depth correction (attenuation correction) on the reflected wave intensity obtained by precision flaw detection. FIG. 4 shows an example of an axial attenuation correction curve (depth correction curve). Depth correction can be performed according to the following depth correction formula (1).

<深度補正式>
A=B/f=B/(1+ad+bd2) ・・・・・(1)
ただし、A:補正反射波強度(%)
B:反射波強度(実測値)
f:補正係数
a,b:係数
d:欠陥深度と焦点深度とのずれ
(|d|<e、e=定数)
以上の深度補正は距離振幅補償(Distance Amplitude Correction)に準じて行うことができる。
<Depth correction formula>
A = B / f = B / (1 + ad + bd 2 ) (1)
Where A: corrected reflected wave intensity (%)
B: Reflected wave intensity (actual measured value)
f: Correction coefficient a, b: Coefficient d: Deviation between defect depth and depth of focus
(| D | <e, e = constant)
The above depth correction can be performed according to distance amplitude compensation.

上記「欠陥」とは、介在物、空洞など介在物以外に反射波を生じさせる原因となるもののことをいう。   The above-mentioned “defect” refers to a thing causing a reflected wave other than inclusions such as inclusions and cavities.

介在物の大きさは、例えばその介在物の粒径(その介在物の最大径、本明細書では「介在物径」ということがある)として表すことができる。具体的には、例えば、あらかじめ介在物の最大径と反射波強度との検量線を作成しておいて、超音波探傷により得られた反射波強度から介在物の最大径を算出することができる。検量線は、例えば、超音波探傷を行って介在物からの反射波強度を求めておき、この超音波探傷を行った検査試料の探傷領域部を切り出し、これを酸溶解して介在物を取り出しSEM観察により介在物径を求めることにより作成することができる。   The size of the inclusion can be expressed, for example, as the particle size of the inclusion (the maximum diameter of the inclusion, which may be referred to as “inclusion diameter” in this specification). Specifically, for example, a calibration curve between the maximum diameter of the inclusion and the reflected wave intensity is created in advance, and the maximum diameter of the inclusion can be calculated from the reflected wave intensity obtained by ultrasonic flaw detection. . The calibration curve is obtained, for example, by performing ultrasonic flaw detection to obtain the reflected wave intensity from the inclusion, cutting out the flaw detection area portion of the inspection sample subjected to this ultrasonic flaw detection, and dissolving the acid to take out the inclusion. It can create by calculating | requiring the diameter of an inclusion by SEM observation.

検量線は、一般式として以下の式(2)で表される。検量線の具体例を図5に示す。図5に示される直線は式(2-1)として表される。   The calibration curve is represented by the following formula (2) as a general formula. A specific example of the calibration curve is shown in FIG. The straight line shown in FIG. 5 is expressed as equation (2-1).

<検量線の一般式>
Y=PX+Q ・・・・・(2)
ただし、Y:介在物径
X:補正後反射波強度
<図5に示される検量線式>
Y=0.34X+11.85 ・・・・・(2-1)
ただし、Y:介在物径(μm)
X:補正後反射波強度(%)
<General formula of calibration curve>
Y = PX + Q (2)
However, Y: inclusion diameter X: reflected wave intensity after correction <calibration curve type shown in FIG. 5>
Y = 0.34X + 11.85 (2-1)
Y: Inclusion diameter (μm)
X: Intensity of reflected wave after correction (%)

本発明の高清浄構造用合金鋼の清浄度の評価方法については、上記のように粗探傷において少なくとも検査試料中の介在物の位置、数を検出されるが、より好ましい実施形態として、さらに詳細な反射波形情報を粗探傷により検出し、得られた反射波の受信信号のうちから異常波形(異常信号)を生じている対象は介在物からの反射波ではないものとして精密探傷を行う対象から除外しておく形態が挙げられる。反射波形情報とは、反射波を受信して得られる情報のことであり、具体的には反射波強度、反射波形情報(グラフとして出力された波形、正半波強度、負半波強度など)などの情報である。正半波強度とは、基準線より上にでている反射波形の強度であり、負半波強度とは、基準線より下にでている反射波形の強度である。   Regarding the method for evaluating the cleanliness of the high clean structural alloy steel of the present invention, at least the position and number of inclusions in the inspection sample are detected in the rough flaw detection as described above. From the target for precise flaw detection, the target that generates abnormal waveform (abnormal signal) from the received signal of the reflected wave detected by rough flaw detection is not the reflected wave from the inclusion. The form to exclude is mentioned. Reflected waveform information is information obtained by receiving reflected waves. Specifically, reflected wave intensity, reflected waveform information (waveform output as a graph, positive half wave intensity, negative half wave intensity, etc.) It is information such as. The positive half wave intensity is the intensity of the reflected waveform that is above the reference line, and the negative half wave intensity is the intensity of the reflected waveform that is below the reference line.

検査試料中には、空洞が生じている場合があり、このような空洞からも反射波が生じる。また、外部から飛び込み乱反射波を反射波信号として探触子が受信してしまう場合もある。このような検出目的としている介在物以外のものから生じる反射波信号を除外することにより、粗探傷の後に続くの精密探傷で余計な対象物について検出を行わずにすむので、検出操作をより迅速に行うことができる。   A cavity may be generated in the inspection sample, and a reflected wave is also generated from such a cavity. In some cases, the probe receives an irregularly reflected wave as a reflected wave signal from the outside. By excluding the reflected wave signal that is generated from things other than the inclusions that are intended for detection, it is possible to eliminate detection of extraneous objects by precision flaw detection following the rough flaw detection. Can be done.

上記のような異常信号は、反射波の波形により空洞などによる異常信号か、検出目的の介在物からの信号かを区別することができる。波形そのものをグラフ化して検出しその形状をみて識別することができ、また、波形を知る指標となる正半波強度または負半波強度を検出して、数値として判別することもできる。   The abnormal signal as described above can be distinguished from an abnormal signal due to a cavity or the like, or a signal from an inclusion for detection purposes, based on the waveform of the reflected wave. The waveform itself can be detected by graphing and can be identified by looking at its shape, and positive half wave intensity or negative half wave intensity serving as an index for knowing the waveform can be detected and discriminated as a numerical value.

高清浄構造用合金鋼はその高清浄構造用合金鋼の熱処理などの状態、あるいはその鋼の特性などにより反射波強度に無視できない影響が生じる場合がある。例えば鋼は熱処理の状態により影響がでやすい。そこで、超音波探傷装置が受信する反射波を反射波強度として変換する際の感度をあらかじめ校正しておくことが好ましい。   The high clean structural alloy steel may have a non-negligible effect on the reflected wave intensity depending on the state of heat treatment of the high clean structural alloy steel or the characteristics of the steel. For example, steel is easily affected by the state of heat treatment. Therefore, it is preferable to calibrate the sensitivity when converting the reflected wave received by the ultrasonic flaw detector as the reflected wave intensity in advance.

すなわち、基準感度校正用標準試験片(「標準試験片S」と略称する)に対して超音波探傷を行い、探触子を備える超音波探傷装置の基準感度を決定する一次感度校正と、一次感度校正の後、感度校正量を求めるための標準試験片Aからの反射波強度と、前記標準試験片Aと同形状の試験片Bからの反射波強度とから感度校正量を求めて、感度校正を行う二次感度校正と、を含む感度校正を前記粗探傷を行う前にあらかじめ行うことが好ましい。   That is, a primary sensitivity calibration that performs ultrasonic flaw detection on a standard test piece for reference sensitivity calibration (abbreviated as “standard test piece S”) and determines a reference sensitivity of an ultrasonic flaw detector equipped with a probe; After the sensitivity calibration, the sensitivity calibration amount is obtained from the reflected wave intensity from the standard test piece A for obtaining the sensitivity calibration amount and the reflected wave intensity from the test piece B having the same shape as the standard test piece A. It is preferable to perform in advance a sensitivity calibration including a secondary sensitivity calibration for performing calibration before performing the rough flaw detection.

この標準試験片Sに対して超音波探傷を行い、超音波探傷装置の基準感度を設定する。標準試験片Sとしては、例えば、FBH(Flat Bottom Hole,1/16inch(0.4mm))を有する試験片が挙げられ、具体的にはASTM E127に規定される標準試験片B−020などが例示される。一次補正は、標準試験片Sからの反射波強度を装置に記憶させて行うことができる。   The standard test piece S is subjected to ultrasonic flaw detection, and the reference sensitivity of the ultrasonic flaw detection apparatus is set. Examples of the standard test piece S include a test piece having FBH (Flat Bottom Hole, 1/16 inch (0.4 mm)), and specifically, a standard test piece B-020 defined in ASTM E127 is exemplified. Is done. The primary correction can be performed by storing the reflected wave intensity from the standard test piece S in the apparatus.

一次感度校正に続いて二次感度校正を行う。二次感度校正では、標準試験片Aと被検対象金属材料から標準試験片Aと同形状の試験片(試験片B)を用意し、試験片Bの反射波強度を標準試験片Aに基づいて感度校正量Yを求めて校正する。   The secondary sensitivity calibration is performed following the primary sensitivity calibration. In the secondary sensitivity calibration, a test piece (test piece B) having the same shape as the standard test piece A is prepared from the standard test piece A and the metal material to be examined, and the reflected wave intensity of the test piece B is based on the standard test piece A. The sensitivity calibration amount Y is obtained and calibrated.

標準試験片Aは、焦点深度位置に人工欠陥または板底面がある試験片であり、図8にその例を示す。標準試験片Aに用いられる材料としては、感度が高いことから焼入焼戻処理を施した鋼が好適である。   The standard test piece A is a test piece having an artificial defect or a plate bottom surface at the focal depth position, and FIG. 8 shows an example thereof. As the material used for the standard test piece A, steel subjected to quenching and tempering treatment is preferable because of its high sensitivity.

感度校正は、焦点深度にある人工欠陥または板底面を使用して(図8)、標準試験片Aでの測定感度と等価な、試験片Bでの測定感度を決定する。感度校正量は標準試験片Aでの反射波強度と試験片Bでの反射波強度との差として求められる。あるいは、次の感度校正式(3)により感度校正量Yを決定する。   Sensitivity calibration uses an artificial defect or plate bottom at the depth of focus (FIG. 8) to determine the measurement sensitivity at test piece B, which is equivalent to the measurement sensitivity at standard test piece A. The sensitivity calibration amount is obtained as a difference between the reflected wave intensity at the standard specimen A and the reflected wave intensity at the specimen B. Alternatively, the sensitivity calibration amount Y is determined by the following sensitivity calibration formula (3).

<感度校正式>
Y=20×log(Y1/Y2) ・・・・・(3)
ただし、
Y:感度校正量
1:試験片Bにおける、人工欠陥からの反射波強度、または底面波強度
2:標準試験片Aにおける、人工欠陥からの反射波強度、または底面波強度
1として人工欠陥からの反射波強度を用いる場合にはY2も同一感度での人工欠陥からの反射波強度を用い、Y1として底面波強度を用いる場合にはY2も同一感度での底面波強度を用いる。
<Sensitivity calibration type>
Y = 20 × log (Y 1 / Y 2 ) (3)
However,
Y: Calibration weight Y 1: in the test piece B, the reflected wave intensity from the artificial defect or bottom wave intensity Y 2,: Artificial in a standard test piece A, the reflected wave intensity from the artificial defect or as a bottom surface wave intensity Y 1, When using the reflected wave intensity from the defect, Y 2 also uses the reflected wave intensity from the artificial defect with the same sensitivity, and when using the bottom wave intensity as Y 1 , Y 2 also uses the bottom wave intensity with the same sensitivity. Use.

標準試験片Aに対する反射波強度を100%とした設定した場合の、熱処理等の異なる4種の試験片Bに対する反射波強度の低下を示したのが図9である。図9は試験片としてSUJ2を用い、4種の異なる処理方法を施した試験片ごとに走査を行った結果を示したものである。「QT」は焼入焼戻処理したもの、「N」は焼きならし処理したもの、「A」焼きなまし処理したもの、「LA」は鍛伸処理したままのものである。図9中に示されるB1エコーとは、探触子から発射された超音波が欠陥または板底面にあたって生じる最初のエコーのことである。図9に示されるように、鍛伸しただけの試験片ではおよそ55〜65%程度にまで低下することが認められる。したがって、これらの反射波強度を、標準試験片Aと等価となるように、すなわち100%として検出されるように校正することが望ましい。この場合、感度校正量は、標準試験片Aでの反射波強度と試験片Bでの反射波強度との差をデシベル(dB)に換算した量として求めることができる。図9から明らかなように、熱処理の違いにより、標準試験片Aとの反射波強度の差は異なる傾向にあるので、上記の一次・二次感度校正は、熱処理などの処理の違う材料ごとに行われることが好ましい。   FIG. 9 shows a decrease in reflected wave intensity for four different test pieces B such as heat treatment when the reflected wave intensity for the standard test piece A is set to 100%. FIG. 9 shows the results of scanning each test piece subjected to four different treatment methods using SUJ2 as the test piece. “QT” is quenched and tempered, “N” is normalized, “A” is annealed, and “LA” is forged. The B1 echo shown in FIG. 9 is the first echo generated by the ultrasonic wave emitted from the probe hitting the defect or the bottom of the plate. As shown in FIG. 9, it is recognized that the test piece just forged is lowered to about 55 to 65%. Therefore, it is desirable to calibrate so that these reflected wave intensities are equivalent to the standard specimen A, that is, detected as 100%. In this case, the sensitivity calibration amount can be obtained as an amount obtained by converting the difference between the reflected wave intensity at the standard test piece A and the reflected wave intensity at the test piece B into decibels (dB). As can be seen from FIG. 9, the difference in reflected wave intensity from the standard specimen A tends to be different due to the difference in heat treatment. Therefore, the primary and secondary sensitivity calibrations described above are performed for each material with different treatment such as heat treatment. Preferably, it is done.

上記した一次感度校正および二次感度校正を行うことにより、被検対象金属材料の材料特性による測定精度の低下を抑制することができる。   By performing the primary sensitivity calibration and the secondary sensitivity calibration described above, it is possible to suppress a decrease in measurement accuracy due to the material characteristics of the metal material to be examined.

検査試料は、被検体である高清浄構造用合金鋼から例えば試験片を切り出して作製したものなどを用いることができる。検査試料の数、大きさは、超音波探傷による走査を行うべき被検金属材料の体積、超音波探傷装置などから適宜定めることができる。好ましい形態としては次のようなものが例示される。超音波探傷を行う上では検査試料の大きさは、走査面積が10〜10000mm2程度、検査深さが0.5〜50mm程度とすることができる程度の大きさに設定することが好ましい。統計的処理をする観点からは、検査試料となる鋼材の複数箇所が検査部位となるようにすることが好ましいが、検査試料の数は特に限定されず、所定の検査体積について超音波探傷を行えばよい。超音波探傷により実測する検査試料の検査体積は少なくとも3000mm3とすることが好ましい。 As the inspection sample, for example, a specimen prepared by cutting out a test piece from a highly clean structural alloy steel which is an object can be used. The number and size of the inspection samples can be appropriately determined from the volume of the metal material to be scanned to be scanned by ultrasonic flaw detection, the ultrasonic flaw detection apparatus, and the like. The following are illustrated as a preferable form. In performing ultrasonic flaw detection, the size of the inspection sample is preferably set to such a size that the scanning area can be about 10 to 10,000 mm 2 and the inspection depth can be about 0.5 to 50 mm. From the viewpoint of statistical processing, it is preferable that a plurality of locations of the steel material to be inspected become inspection sites, but the number of inspection samples is not particularly limited, and ultrasonic flaw detection is performed for a predetermined inspection volume. Just do it. The inspection volume of the inspection sample actually measured by ultrasonic flaw detection is preferably at least 3000 mm 3 .

本発明の高清浄構造用合金鋼の清浄度の評価方法では、被検対象となる鋼の基準体積3000mm3当たりの所定の介在物の個数が特定される。粗探傷にかけられる検査試料の体積である検査体積を3000mm3とすることにより被検対象となる鋼の基準体積3000mm3当たりの介在物の個数を求めることができるが、検査体積をより大きく設定して体積換算することにより基準体積3000mm3当たりの介在物の数を求めてもよい。 In the method for evaluating the cleanliness of the high clean structural alloy steel of the present invention, the number of predetermined inclusions per a reference volume of 3000 mm 3 of the steel to be tested is specified. By setting the inspection volume, which is the volume of the inspection sample subjected to rough flaw detection, to 3000 mm 3 , the number of inclusions per 3000 mm 3 of the reference volume of the steel to be tested can be obtained, but the inspection volume is set larger. Then, the number of inclusions per reference volume of 3000 mm 3 may be obtained by volume conversion.

また、鋼は、一般的に鋳造のままではミクロの空洞が無数にあり、超音波探傷により走査すると無数の乱反射、ノイズが発生し検査が困難となる場合がある。そこで、検査試料をあらかじめ圧延しておくことにより空洞部分が圧着され、乱反射などによる弊害を抑制することができる。   In addition, steel generally has countless micro cavities as cast, and scanning by ultrasonic flaws may generate countless irregular reflections and noise, which may make inspection difficult. Thus, by rolling the inspection sample in advance, the cavity portion is pressure-bonded, and adverse effects such as irregular reflection can be suppressed.

また、高清浄構造用合金鋼から切り出した試験片を検査試料として用いる場合、超音波探傷による走査を行う領域として、圧延方向L面であって、D/4位置を中心線とした周辺領域が好適である。本明細書では「D/4位置」とは、検査試料の中心軸または外周から直径の1/4距離にあたる位置である。   In addition, when using a test piece cut out from a high clean structural alloy steel as an inspection sample, as a region to be scanned by ultrasonic flaw detection, there is a peripheral region that is a rolling direction L plane and that has a D / 4 position as a center line. Is preferred. In this specification, the “D / 4 position” is a position corresponding to a ¼ distance of the diameter from the central axis or outer periphery of the test sample.

本発明の高清浄構造用合金鋼の清浄度の評価方法では超音波探傷が適用されるが、超音波探傷を行う装置、探触子は様々な種類が既に市販されており、本発明ではこれらのものを用いることができる。好ましい探触子としては、焦点型高周波探触子などが挙げられる。フラット型探触子の検出能は1/2波長といわれているが、焦点型探触子では1/4波長であり、焦点型探触子は本発明の清浄度評価方法が好適に用いられる10〜200μm程度の介在物の検出により好適である。探触子周波数は20〜125MHz程度が好ましい。   Ultrasonic flaw detection is applied in the method for evaluating the cleanliness of the high clean structural alloy steel of the present invention, but various types of ultrasonic flaw detection devices and probes are already on the market. Can be used. As a preferred probe, a focus type high frequency probe and the like can be cited. The detection capability of the flat type probe is said to be ½ wavelength, but the focal type probe has a ¼ wavelength, and the cleanliness evaluation method of the present invention is suitably used for the focal type probe. It is suitable for detection of inclusions of about 10 to 200 μm. The probe frequency is preferably about 20 to 125 MHz.

図2には焦点型探触子による超音波探傷の概略を例示する。図2に示される超音波探傷装置ではマイクロプロセッサを備えたPCが備えられており、マイクロプロセッサには図1に示すフローチャートに沿った演算処理を行うプログラムが組み込まれる。このようなPCを超音波探傷装置に設けられることにより、大量のデータ処理を迅速に行うことができる。   FIG. 2 illustrates an outline of ultrasonic flaw detection using a focus-type probe. The ultrasonic flaw detector shown in FIG. 2 includes a PC having a microprocessor, and a program for performing arithmetic processing according to the flowchart shown in FIG. 1 is incorporated in the microprocessor. By providing such a PC in an ultrasonic flaw detector, a large amount of data processing can be performed quickly.

本発明の高清浄構造用合金鋼の清浄度の評価方法は、上記のようにして介在物の粒径が25μm以上の介在物の個数を計測して、被分析対象の金属材料の清浄度を評価するものである。そして検査対象の鋼の基準体積3000mm3あたりに10個以下(より好ましくは5個以下)であることを確認した鋼を、高清浄度であることの信頼性が高い鋼として選抜するものである。また、さらに総合的な清浄度評価により性質を特定してもよい。例えば総合的な清浄度の評価は、前記粗探傷および精密探傷の結果得られた介在物についてのデータに基づいて行うことができる。粗探傷、精密探傷により得られるデータとは、介在物の数、位置、大きさなどであり、さらにこれらのデータに基づいて粒度分布をヒストグラムとして表すこともできる。また、得られた実測データから例えば極値統計法などの統計的手法を用いて、被検対象の高清浄構造用合金鋼全体中の最大介在物径を推定したデータを確認してもよい。 In the method for evaluating the cleanliness of the high clean structural alloy steel of the present invention, the cleanliness of the metal material to be analyzed is determined by measuring the number of inclusions having a particle size of inclusions of 25 μm or more as described above. It is something to evaluate. And the steel which confirmed that it is 10 or less (more preferably 5 or less) per 3000 mm < 3 > of reference | standard volume of the steel of a test object is selected as steel with high reliability that it is high cleanliness. . Further, the property may be specified by a comprehensive cleanliness evaluation. For example, the overall cleanliness can be evaluated based on the inclusion data obtained as a result of the rough inspection and the precision inspection. Data obtained by rough flaw detection and precision flaw detection is the number, position, size, and the like of inclusions, and the particle size distribution can also be expressed as a histogram based on these data. Moreover, you may confirm the data which estimated the maximum inclusion diameter in the whole highly clean structural alloy steel of test object, for example using statistical methods, such as an extreme value statistical method, from the obtained actual measurement data.

これらの清浄度の評価は、例えば、あらかじめ所定性状を備えている高清浄構造用合金鋼についてデータを得ておいて、このデータと別の検査試料のデータを比較したり、また望まれる性状データと検査試料のデータとを比較することにより行うことができる。   These cleanliness evaluations can be made by, for example, obtaining data on a highly clean structural alloy steel having a predetermined property in advance and comparing this data with data from another inspection sample, or desired property data. And the data of the test sample can be compared.

本発明の被分析対象の高清浄構造用合金鋼としては、好ましいものとして、気泡を抑えたり、介在物のもととなる酸素の含有量を下げるため脱酸することを意図してアルミを添加したアルミキルド鋼などの鋼種、合金が挙げられ、さらに具体的にはAl≧0.005wt%含有の高清浄度アルミキルド鋼なども挙げることができる。   As a high-clean structural alloy steel to be analyzed according to the present invention, aluminum is preferably added for the purpose of deoxidizing in order to suppress bubbles or reduce the content of oxygen that causes inclusions. Steel grades and alloys such as aluminum killed steel, and more specifically, high cleanliness aluminum killed steel containing Al ≧ 0.005 wt% can also be mentioned.

以下、本発明の清浄度評価方法について実施例を示しより詳細に説明する。ただし、本発明の清浄度評価方法は以下の実施例に限定されるものではない。   Hereinafter, the cleanliness evaluation method of the present invention will be described in more detail with reference to examples. However, the cleanliness evaluation method of the present invention is not limited to the following examples.

<検査試料の作製>
連続鋳造法により製造したSCM420の丸棒状鋼片を作製した。この丸棒状鋼片を丸65に鍛伸し、L断面試験片を切り出した。各試験片をフライス加工して厚さ10mmに加工し、さらに平面研磨して検査試料とした。
<Preparation of inspection sample>
SCM420 round bar steel slabs manufactured by continuous casting method were prepared. This round bar-shaped steel piece was forged into a round 65, and an L-section test piece was cut out. Each test piece was milled to have a thickness of 10 mm, and was further polished to obtain a test sample.

<超音波探傷の基本条件設定>
超音波探傷には、焦点型高周波探触子(50MHz)を備えた超音波探傷装置を用いた。焦点位置は1.25mm、ゲートは1.0〜1.5mmに設定した。
<Setting basic conditions for ultrasonic flaw detection>
For ultrasonic flaw detection, an ultrasonic flaw detector equipped with a focus type high-frequency probe (50 MHz) was used. The focal position was set to 1.25 mm, and the gate was set to 1.0 to 1.5 mm.

表1に探傷条件とその検出能を示す。   Table 1 shows the flaw detection conditions and their detection capabilities.

Figure 2006138865
Figure 2006138865

<一次感度校正>
ASTM E127に規定されるB−020標準試験片の、φ0.4mm、深さ0.76mmの平底穴(φ0.4FBH)について超音波探傷を行い位置を特定し、そのφ0.4FBHに超音波ビームの焦点を合わせたときに得られる最大反射波強度を100%となるように超音波探傷装置を設定した。このように設定することにより反射波強度のリニアー性を最大にすることができると考えられる。
<Primary sensitivity calibration>
Ultrasonic flaw detection is performed on a flat bottom hole (φ0.4FBH) with a diameter of 0.4mm and a depth of 0.76mm of the B-020 standard test piece specified in ASTM E127, and the ultrasonic beam is applied to the φ0.4FBH. The ultrasonic flaw detector was set so that the maximum reflected wave intensity obtained when focusing was set to 100%. It is considered that the linearity of the reflected wave intensity can be maximized by setting in this way.

<二次感度校正>
標準試験片Aと被検対象金属材料から標準試験片と同形状の試験片(試験片B)を用意し、焦点を欠陥(試験片の底面)に合わせた状態で、試験片Bの欠陥(試験片の底面)の反射波強度を標準試験片Aの欠陥(試験片の底面)の反射波強度に一致させる感度校正量Yを求め、超音波探傷装置に設定した。感度校正量Yは、焦点深度にある板底面を使用して、標準試験片Aでの反射波の測定感度と、試験片Bでの測定感度とが同じになるようにする校正量として求められる。具体的には、高炭素クロム軸受鋼の焼入焼戻材(ベース)とSCM420の焼入材(被検対象金属材料)とから厚さ1.5mmの板を作製底面に焦点を合わせて、SCM420の焼入材での底面波強度が高炭素クロム軸受鋼の焼入焼戻材での底面強度と等しくなるように測定感度を校正した。
<Secondary sensitivity calibration>
A test piece (test piece B) having the same shape as the standard test piece is prepared from the standard test piece A and the metal material to be examined, and the defect of the test piece B (with the focus on the bottom surface of the test piece) ( A sensitivity calibration amount Y for matching the reflected wave intensity of the bottom surface of the test piece with the reflected wave intensity of the defect of the standard test piece A (bottom surface of the test piece) was obtained and set in the ultrasonic flaw detector. The sensitivity calibration amount Y is obtained as a calibration amount that uses the bottom of the plate at the depth of focus so that the reflected wave measurement sensitivity of the standard specimen A and the measurement sensitivity of the specimen B are the same. . Specifically, focusing on the bottom of the production of a 1.5 mm thick plate from the quenching and tempering material (base) of high carbon chromium bearing steel and the quenching material (metal material to be tested) of SCM420, The measurement sensitivity was calibrated so that the bottom wave strength in the quenching material of SCM420 was equal to the bottom strength in the quenching and tempering material of high carbon chromium bearing steel.

<検量線の作成>
連続鋳造法により製造し高炭素クロム軸受鋼の丸棒状鋼片から、上記<検査試料の作製>で説明した方法と同様にして、フライス加工で厚さ10mmの試験片としたものを、焼入焼戻し、平面研磨して試験片を作製した。
<Creation of calibration curve>
A 10-mm thick test piece was hardened by round milling from a round bar-shaped steel piece of high carbon chromium bearing steel manufactured by a continuous casting method in the same manner as described in <Preparation of Inspection Sample> above. A test piece was prepared by tempering and surface polishing.

各試験片について粗探傷、精密探傷を行い、介在物からの反射波強度を求めた。さらに、酸溶解法により介在物径を求めた。すなわち、この超音波探傷を行った試験片の探傷領域部を切り出し、これらを酸溶解して介在物を取り出しSEM観察により介在物径を求めた。   Each test piece was subjected to rough flaw detection and precision flaw detection, and the reflected wave intensity from the inclusions was determined. Further, the inclusion diameter was determined by an acid dissolution method. That is, the flaw detection area portion of the test piece subjected to this ultrasonic flaw detection was cut out, these were acid-dissolved, the inclusions were taken out, and the inclusion diameter was determined by SEM observation.

超音波探傷による反射波強度と、酸溶解法によるよる介在物径をそれぞれ小さいものから大きいものの順にならべて、超音波探傷による強度と、酸溶解法により測定された介在物径とを対応させて、検量線を作成した。検量線を図5に示す。図5に示される直線は式(2-1)として表される。
Y=0.34X+11.85 ・・・・・(2-1)
ただし、Y:介在物径(μm)
X:補正後反射波強度(%)
相関係数r=0.96
<検査試料の超音波探傷>
上記「検査試料の作製」で説明した方法と同様にして、SCM420焼入材の試験片を30個作製した。
The reflected wave intensity by ultrasonic flaw detection and the inclusion diameter by acid dissolution method are arranged in order from small to large, and the strength by ultrasonic flaw detection is correlated with the inclusion diameter measured by acid dissolution method. A calibration curve was created. A calibration curve is shown in FIG. The straight line shown in FIG. 5 is expressed as equation (2-1).
Y = 0.34X + 11.85 (2-1)
Y: Inclusion diameter (μm)
X: Intensity of reflected wave after correction (%)
Correlation coefficient r = 0.96
<Ultrasonic flaw detection of inspection sample>
Thirty test pieces of SCM420 hardened material were produced in the same manner as described in the above “Production of inspection sample”.

検査試料である1個の各試験片について、探傷面積15mm×100mm×2個(一組)、探傷走査ピッチ0.03mmで粗探傷を行った。粗探傷により得られた反射波の信号から、反射波の強度として正半波強度(P)、負半波強度(N)および波形を記録し、介在物の位置と数を特定した。粗探傷により得られたデータを表2に示す。   Each test piece as an inspection sample was subjected to a rough flaw detection with a flaw detection area of 15 mm × 100 mm × 2 pieces (one set) and a flaw detection scanning pitch of 0.03 mm. From the reflected wave signal obtained by the rough flaw detection, the intensity of the positive half wave (P), the intensity of the negative half wave (N) and the waveform were recorded as the intensity of the reflected wave, and the position and number of inclusions were specified. Table 2 shows the data obtained by the rough flaw detection.

Figure 2006138865
Figure 2006138865

MURAI値から表面エコーや空洞などに起因すると判断される異常値を示したものを識別した(欠陥No12)。
MURAI値=P/(P+N) ・・・・・(4)
空洞からの反射波についてのMURAI値は0.6〜0.7との報告があり、また表面エコーからの飛び込みでは0.7以上となる場合があるため、MURAI値が0.6以上を異常値と判断した。
From the MURAI values, those that showed abnormal values that were judged to be caused by surface echoes or cavities were identified (defect No. 12).
MURAI value = P / (P + N) (4)
There is a report that the MURAI value for the reflected wave from the cavity is 0.6 to 0.7, and since it may be 0.7 or more when jumping from the surface echo, the MURAI value is abnormally 0.6 or more. Judged as value.

粗探傷により位置が特定された各試験片の各介在物についてのみ精密探傷を行った。精密探傷は探傷面積1×1mm、探傷走査ピッチを0.005mmとして行った。 Precision inspection was performed only for each inclusion in each test piece whose position was specified by rough inspection. The precision flaw detection was performed with a flaw detection area of 1 × 1 mm and a flaw detection scanning pitch of 0.005 mm.

下記深度補正式(1-1)により、精密探傷で得られた反射波強度を補正した。
f≒1−6×d2(探触子:50MHz時) ・・・・・(1-1)
ただし、f:補正係数
d:欠陥深度と焦点深度のずれ(mm)(|d|≦0.3)
あらかじめ求めておいた反射波強度と介在物径との関係を示す検量線(図5)により、補正後反射波強度から介在物径を算出した。精密探傷の結果を表3に示す。
The reflected wave intensity obtained by precision flaw detection was corrected by the following depth correction formula (1-1).
f≈1-6 × d 2 (Probe: at 50 MHz) (1-1)
Where f: correction coefficient d: deviation between defect depth and depth of focus (mm) (| d | ≦ 0.3)
The inclusion diameter was calculated from the corrected reflected wave intensity using a calibration curve (FIG. 5) showing the relationship between the reflected wave intensity and the inclusion diameter determined in advance. Table 3 shows the results of precision flaw detection.

Figure 2006138865
Figure 2006138865

なお、粗探傷の結果により欠陥No12は異常値を示していることが識別できたが、本実施例では確認のため欠陥No12についても精密探傷を行った。その結果、精密探傷を行った場合にも異常値を示すことが確認された。したがって、粗探傷で異常値を示したものは、精密探傷の対象から除外することができることが明らかになった。   Although it was possible to identify that the defect No. 12 showed an abnormal value from the result of the rough flaw detection, in this example, the flaw detection was also performed for the defect No. 12 for confirmation. As a result, it was confirmed that an abnormal value was exhibited even when precision flaw detection was performed. Therefore, it has been clarified that those having an abnormal value in rough flaw detection can be excluded from the objects of precision flaw detection.

<鋼の清浄度評価>
本実施例における上記の超音波探傷の条件設定のもとで、被検対象の鋼としてヒートロットの異なる14種のSCM420鋼材を用い、超音波探傷を行った。被検対象となる各鋼は連続鋳造法により製造したSCM420鋼材であり、この鋼の丸棒状鋼片から、上記<検査試料の作製>で説明した方法と同様にして、それぞれ試験片として作製した。介在物の検出(超音波探傷)については、各被検鋼ごとに、15×100×0.5×2mm=1500mm3の試験片1個について走査を行った上で、基準体積3000mm3あたりに体積換算したときの介在物個数を求めた。
<Evaluation of cleanliness of steel>
Under the above-described ultrasonic flaw detection condition setting in this example, 14 types of SCM420 steel materials having different heat lots were used as the steel to be examined, and ultrasonic flaw detection was performed. Each steel to be tested is SCM420 steel material produced by continuous casting method, and each steel piece was produced as a test piece in the same manner as described in <Preparation of inspection sample> from the round bar-shaped steel piece of this steel. . For detection of inclusions (ultrasonic flaw detection), after scanning one test piece of 15 × 100 × 0.5 × 2 mm = 1500 mm 3 for each test steel, the reference volume per 3000 mm 3 The number of inclusions in terms of volume was determined.

回転曲げ試験はJISZ2273、JISZ2274に準じて行った。以上の結果を表4に示す。   The rotating bending test was performed according to JISZ2273 and JISZ2274. The results are shown in Table 4.

Figure 2006138865
Figure 2006138865

表4中「粒状酸化物系介在物個数」の欄中の括弧内の数値が基準体積3000mm3に体積換算したときの平均介在物数である。 The numerical value in parentheses in the column “Number of granular oxide inclusions” in Table 4 is the average number of inclusions when the volume is converted to a standard volume of 3000 mm 3 .

以上の結果から、粒径25μm以上の介在物の個数が、検査対象の鋼の基準体積3000mm3あたりに10個以下であり、かつ酸素含有量が6ppm以下である被検体鋼(表4中、高清浄構造用合金鋼1〜10)を高清浄度のSCM420の製品とした。表4から明らかなように、粒径25μm以上の介在物の個数が検査対象の鋼の基準体積3000mm3あたりに10個以下であり、かつ酸素含有量が6ppm以下である鋼は、疲労寿命試験、回転曲げ試験による疲労限の測定の結果が良好である。 From the above results, the number of inclusions having a particle size of 25 μm or more is 10 or less per 3000 mm 3 of the reference volume of the steel to be inspected and the oxygen content is 6 ppm or less (in Table 4, Highly clean structural alloy steels 1 to 10) were used as SCM420 products with high cleanliness. As is clear from Table 4, the number of inclusions having a particle size of 25 μm or more is 10 or less per 3000 mm 3 of the reference volume of the steel to be inspected, and the steel having an oxygen content of 6 ppm or less is a fatigue life test. The result of the fatigue limit measurement by the rotating bending test is good.

<実験例>
超音波探傷による探傷走査ピッチを変化させて、反射波強度(%)のばらつきを調べた。反射波強度(%)とは、検出目的の介在物からの最大反射波に対して、実測の反射波強度がどの程度減衰してしまっているかを示すものである。
<Experimental example>
The variation in reflected wave intensity (%) was examined by changing the flaw detection scanning pitch by ultrasonic flaw detection. The reflected wave intensity (%) indicates how much the actually reflected wave intensity is attenuated with respect to the maximum reflected wave from the inclusion intended for detection.

1つの介在物波形を含む小範囲を種々の走査ピッチで探傷し、反射波強度を記録した。最小ピッチ(0.005mm)での最大反射波強度を100%とした。同様の調査を複数の介在物に対して行った。   A small range including one inclusion waveform was detected at various scanning pitches, and the reflected wave intensity was recorded. The maximum reflected wave intensity at the minimum pitch (0.005 mm) was 100%. Similar investigations were performed on multiple inclusions.

結果を図10に示す。図10に示されるとおり、走査ピッチが大きくなるほど反射波強度(%)のばらつきが大きくなることがわかる。すなわち、走査ピッチを大きくすると、検出目的の介在物から本来得られる最大反射波強度を受信できない場合が多くなり、精度が低下することがわかる。   The results are shown in FIG. As shown in FIG. 10, it can be seen that the variation in reflected wave intensity (%) increases as the scanning pitch increases. That is, it can be seen that when the scanning pitch is increased, the maximum reflected wave intensity originally obtained from the inclusion intended for detection cannot be received in many cases, and the accuracy decreases.

粗探傷、精密探傷の操作手順を示すフローチャートを示す図である。It is a figure which shows the flowchart which shows the operation procedure of rough flaw detection and precision flaw detection. 焦点型探触子による超音波探傷の概略を模式的に示す図である。It is a figure which shows typically the outline of the ultrasonic flaw detection by a focus type probe. ビーム径の説明を示す図である。It is a figure which shows description of a beam diameter. 深度補正曲線を示す図である。It is a figure which shows a depth correction curve. 反射波強度と介在物径の検量線を示す図である。It is a figure which shows the calibration curve of reflected wave intensity and inclusion diameter. 半径方向の減衰と探傷走査ピッチの関係を示す図である。It is a figure which shows the relationship between radial attenuation | damping and a flaw detection scanning pitch. 深度補正曲線作成用試験片の例を示す図である。It is a figure which shows the example of the test piece for depth correction curve creation. 感度校正用試験片の例を示す図である。(A)は欠陥波用試験片、(B)は底面波用試験片である。It is a figure which shows the example of the test piece for sensitivity calibration. (A) is a defect wave test piece, and (B) is a bottom wave test piece. 同一熱処理条件下における2種の試験片による欠陥波、底面波の強度の比較を示す図である。It is a figure which shows the comparison of the intensity | strength of the defect wave and bottom face wave by two types of test pieces on the same heat processing conditions. 探傷走査ピッチによる反射波強度の変化を示す図である。It is a figure which shows the change of the reflected wave intensity by a flaw detection scanning pitch.

Claims (6)

所定の探傷走査ピッチで検査試料中の非金属介在物の少なくとも位置および数を検出する粗超音波探傷を所定の検査体積について行い、
前記粗超音波探傷よりも探傷走査ピッチを狭くして前記粗超音波探傷により検出された介在物の粒径を検出する精密超音波探傷を行い、
粒径が25μm以上の塊状または粒状酸化物系介在物の個数を計測することを特徴とする高清浄構造用合金鋼の清浄度の評価方法。
Performing a rough ultrasonic flaw detection for a predetermined inspection volume to detect at least the position and number of non-metallic inclusions in the inspection sample at a predetermined flaw detection scanning pitch,
Perform a precise ultrasonic flaw detection to detect the particle size of inclusions detected by the rough ultrasonic flaw by narrowing the flaw detection scanning pitch than the rough ultrasonic flaw detection,
A method for evaluating the cleanliness of a high clean structural alloy steel, wherein the number of massive or granular oxide inclusions having a particle size of 25 μm or more is measured.
前記精密超音波探傷は、前記粗超音波探傷により位置が特定された介在物についてのみ行われることを特徴とする請求項1に記載の高清浄構造用合金鋼の清浄度の評価方法。   2. The method for evaluating the cleanliness of a high clean structural alloy steel according to claim 1, wherein the precision ultrasonic flaw detection is performed only for inclusions whose positions are specified by the rough ultrasonic flaw detection. 前記所定の検査体積と、前記粗超音波探傷及び前記精密超音波探傷により得られた粒径が25μm以上の塊状または粒状酸化物系介在物の個数と、から、
所定の基準体積中に存在する粒径が25μm以上の塊状または粒状酸化物系介在物の個数に体積換算して、
前記所定の基準体積に体積換算された粒径が25μm以上の塊状または粒状酸化物系介在物の個数が、所定の個数以下であることが確認された鋼を高清浄度であることの信頼性が高い鋼として選抜することを特徴とする請求項1または2に記載の高清浄構造用合金鋼の清浄度の評価方法。
From the predetermined inspection volume and the number of massive or granular oxide inclusions having a particle size of 25 μm or more obtained by the coarse ultrasonic inspection and the precision ultrasonic inspection,
In terms of the number of massive or granular oxide inclusions having a particle size of 25 μm or more present in a predetermined reference volume,
Reliability of steel having high cleanliness that the number of massive or granular oxide inclusions having a particle size converted to the predetermined reference volume of 25 μm or more is equal to or less than the predetermined number 3. The method for evaluating the cleanliness of a highly clean structural alloy steel according to claim 1 or 2, wherein the steel is selected as a steel having a high value.
前記検査試料の大きさは、前記粗超音波探傷を行う際に、走査面積が10〜10000mm2、検査深さが0.5〜50mmに設定できる大きさであることを特徴とする請求項1から3のいずれかに記載の高清浄構造用合金鋼の清浄度の評価方法。 The size of the inspection sample is a size that allows a scanning area to be set to 10 to 10000 mm 2 and an inspection depth to be set to 0.5 to 50 mm when performing the rough ultrasonic flaw detection. To 3. The method for evaluating the cleanliness of the highly clean structural alloy steel according to any one of items 1 to 3. 粗超音波探傷により得られた反射波の信号から、該反射波の信号を得た位置と、反射波
の強度として正半波強度、負半波強度および波形を記録し、
該記録から下記の式(A)に示すMURAI値が0.6未満である反射波の信号のみを、粒径が25μm以上の塊状または粒状酸化物系介在物とし、
該塊状または粒状酸化物系介在物の個数を計測することを特徴とする請求項1から4のいずれかに記載の高清浄構造用合金鋼の清浄度の評価方法。
MURAI値=P/(P+N) ・・・・・(A)
P:正半波強度、N:負半波強度
From the reflected wave signal obtained by the rough ultrasonic flaw detection, the position where the reflected wave signal was obtained and the intensity of the positive half wave, the negative half wave intensity and the waveform as the intensity of the reflected wave are recorded,
From the record, only the reflected wave signal having a MURAI value of less than 0.6 represented by the following formula (A) is used as a massive or granular oxide inclusion having a particle size of 25 μm or more,
5. The method for evaluating the cleanliness of a highly clean structural alloy steel according to claim 1, wherein the number of the massive or granular oxide inclusions is measured.
MURAI value = P / (P + N) (A)
P: positive half wave intensity, N: negative half wave intensity
前記検査試料は、Al≧0.005wt%含有の高清浄度アルミキルド鋼から作製した検査試料であることを特徴とする請求項1から5のいずれかに記載の高清浄構造用合金鋼の清浄度の評価方法。


6. The cleanliness of the high cleanliness structural alloy steel according to any one of claims 1 to 5, wherein the test sample is a test sample made from a high cleanliness aluminum killed steel containing Al ≧ 0.005 wt%. Evaluation method.


JP2005372111A 2005-12-26 2005-12-26 Evaluation method for cleanliness of alloy steel for highly clean structure Pending JP2006138865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005372111A JP2006138865A (en) 2005-12-26 2005-12-26 Evaluation method for cleanliness of alloy steel for highly clean structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005372111A JP2006138865A (en) 2005-12-26 2005-12-26 Evaluation method for cleanliness of alloy steel for highly clean structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000189306A Division JP2002004005A (en) 2000-06-23 2000-06-23 High purity alloy steel for structural purpose

Publications (1)

Publication Number Publication Date
JP2006138865A true JP2006138865A (en) 2006-06-01

Family

ID=36619767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005372111A Pending JP2006138865A (en) 2005-12-26 2005-12-26 Evaluation method for cleanliness of alloy steel for highly clean structure

Country Status (1)

Country Link
JP (1) JP2006138865A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011111099A (en) * 2009-11-30 2011-06-09 Nsk Ltd Method for manufacturing steering shaft
WO2011115101A1 (en) 2010-03-16 2011-09-22 Ntn株式会社 Method of assessing rolling contact metallic material shear stress fatigue values, and method and device using same that estimate fatigue limit surface pressure
CN101776644B (en) * 2009-12-31 2012-07-25 北京航空航天大学 Double-spectrum analysis-based fatigue damage state characterization and quantitative evaluation system for in-service 16 manganese steel bearing member
RU2507508C2 (en) * 2008-10-27 2014-02-20 Снекма Calculation of inclusions in alloys by analysis of images
CN106574661A (en) * 2014-08-18 2017-04-19 Ntn株式会社 Rolling component, material for same, and method for manufacturing rolling component
KR20190000260A (en) * 2017-06-22 2019-01-02 주식회사 포스코 Ultrasonic testing method for special steel
WO2019117552A1 (en) * 2017-12-11 2019-06-20 주식회사 포스코 Steel manufacturing method and steel

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2507508C2 (en) * 2008-10-27 2014-02-20 Снекма Calculation of inclusions in alloys by analysis of images
JP2011111099A (en) * 2009-11-30 2011-06-09 Nsk Ltd Method for manufacturing steering shaft
CN101776644B (en) * 2009-12-31 2012-07-25 北京航空航天大学 Double-spectrum analysis-based fatigue damage state characterization and quantitative evaluation system for in-service 16 manganese steel bearing member
WO2011115101A1 (en) 2010-03-16 2011-09-22 Ntn株式会社 Method of assessing rolling contact metallic material shear stress fatigue values, and method and device using same that estimate fatigue limit surface pressure
US9234826B2 (en) 2010-03-16 2016-01-12 Ntn Corporation Assessment of shear fatigue property of rolling contact metal material and estimation of fatigue limit maximum contact pressure using same assessment
CN106574661A (en) * 2014-08-18 2017-04-19 Ntn株式会社 Rolling component, material for same, and method for manufacturing rolling component
CN106574661B (en) * 2014-08-18 2019-08-16 Ntn株式会社 The manufacturing method of rolling member and its material and rolling member
KR20190000260A (en) * 2017-06-22 2019-01-02 주식회사 포스코 Ultrasonic testing method for special steel
KR101951393B1 (en) * 2017-06-22 2019-02-22 주식회사 포스코 Ultrasonic testing method for special steel
WO2019117552A1 (en) * 2017-12-11 2019-06-20 주식회사 포스코 Steel manufacturing method and steel

Similar Documents

Publication Publication Date Title
JP2006138865A (en) Evaluation method for cleanliness of alloy steel for highly clean structure
JP2006349698A (en) Evaluation method for cleanliness of high cleanliness steel
JPWO2003060507A1 (en) Steel for bearing and its large inclusion evaluation method, and rolling bearing
CN111751448B (en) Surface leakage wave ultrasonic synthetic aperture focusing imaging method
CN106324095B (en) Longitudinal wave straight probe full-acoustic-path non-blind-zone flaw detection method
CN102435673A (en) Ultrasonic detection method for powder plate
US20090150095A1 (en) Ultrasonic Method For Detecting Banding In Metals
JP2005156305A (en) Evaluation method of internal defect
JP5276497B2 (en) Pipe weld life evaluation method
JP2001240937A (en) High cleanliness steel
JP3712254B2 (en) Estimation method of defect diameter in metal materials
JP4291552B2 (en) Evaluation method of steel cleanliness by water immersion ultrasonic testing
Stultz et al. Fundamentals of resonant acoustic method NDT
JP4362194B2 (en) Inclusion detection method in metal materials
JP2002004005A (en) High purity alloy steel for structural purpose
US6318178B1 (en) Cleanliness evaluation method for metallic materials based on ultrasonic flaw detection and metallic material affixed with evaluation of cleanliness
JP2010236886A (en) Method of measuring distribution of crystal grain size of metal material
JP3505415B2 (en) Evaluation method of cleanliness of metallic materials by ultrasonic testing
CN115389623A (en) Continuous casting billet ultrasonic flaw detection process
JP4015935B2 (en) Inclusion detection evaluation method in steel by water immersion ultrasonic flaw detection
JP4084979B2 (en) Detection method of inclusions in steel by water immersion ultrasonic flaw detection
JP4002842B2 (en) Evaluation method of steel cleanliness by water immersion ultrasonic testing
JP7196581B2 (en) Structure inspection method of material to be inspected
JP2012181112A (en) Cleanliness evaluation method of metallic material
JP3563313B2 (en) Method for evaluating the cleanliness of metallic materials by ultrasonic flaw detection

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080325