JP2010127618A - Automatic sphere inspection method and device for the same with ultrasonic flaw detection system - Google Patents

Automatic sphere inspection method and device for the same with ultrasonic flaw detection system Download PDF

Info

Publication number
JP2010127618A
JP2010127618A JP2008298997A JP2008298997A JP2010127618A JP 2010127618 A JP2010127618 A JP 2010127618A JP 2008298997 A JP2008298997 A JP 2008298997A JP 2008298997 A JP2008298997 A JP 2008298997A JP 2010127618 A JP2010127618 A JP 2010127618A
Authority
JP
Japan
Prior art keywords
sphere
inspection
ultrasonic
inspected
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008298997A
Other languages
Japanese (ja)
Inventor
Takushi Nishide
拓史 西出
Masanori Nagashio
正紀 長塩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amatsuji Steel Ball Mfg Co Ltd
Original Assignee
Amatsuji Steel Ball Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amatsuji Steel Ball Mfg Co Ltd filed Critical Amatsuji Steel Ball Mfg Co Ltd
Priority to JP2008298997A priority Critical patent/JP2010127618A/en
Publication of JP2010127618A publication Critical patent/JP2010127618A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily and positively detect internal flaws on the surface of a sphere to be inspected and within a depth of 17% of the diameter of the sphere at the same time, and to improve reliability of a product and ease of operation. <P>SOLUTION: The surface of an inspection target sphere 31 and the inside of the sphere within a depth of 17% of the diameter of the sphere are simultaneously inspected at high speed by simultaneously performing the steps of: transmitting ultrasonic waves to the inspection target sphere 31 from an ultrasonic probe 37 for a surface wave method with its center line disposed at a position offset by 20-23% of the diameter of the sphere from the center line of the inspection target sphere by rotating the inspection target sphere 31 in a meridian manner in a liquid with a rotation device, and determining the presence of surface defects and internal defects within 0.4 mm from the sphere surface by waveform signals of returning ultrasonic waves reflected from the sphere surface and the inside near the surface; and transmitting ultrasonic waves to the inspection target sphere 31 from an ultrasonic probe 36 for an inclined wave method disposed at a position offset by 13-15% of the diameter of the sphere from the center line of the inspection target sphere 31, and determining the presence of internal defects within a depth of 17% of the diameter of the sphere from waveform signals of returning ultrasonic waves reflected from the inside of the sphere. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は軸受、ボールねじ、リニアガイド、等速ジョイント、ボール弁及び光学レンズ等に使用される鋼球並びにセラミックス球やガラス球等の加工時に発生する球表面欠陥、球内部に発生する材料欠陥(鋼では酸化物系介在物、セラミックス球では金属系介在物、ポアや焼結助剤の偏析など)など、欠陥の有無を超音波を利用して検出する超音波探傷方式球自動検査方法ならびに該方法を実施する装置に関するものである。   The present invention relates to a ball defect in a ball, a ball guide, a linear guide, a constant velocity joint, a ball valve, an optical lens and the like, a ball surface defect that occurs during processing of a ceramic ball, a glass ball, etc., and a material defect that occurs in the ball. (Ultrasonic flaw detection sphere automatic inspection method that detects the presence or absence of defects using ultrasonic waves, such as oxide inclusions for steel, metal inclusions for ceramic balls, and segregation of pores and sintering aids) It relates to an apparatus for carrying out the method.

鋼球の外観検査装置では、従来、図11に示すように検査対象球101に光源102のフィラメントから光を当て、球からの反射光を受光素子103で受けて受光量の変化を電気変換し、電圧もしくは電流の変化に変換して判定部104においてその電気信号の変化量によって欠陥の有無の判定を行なう光学検査方法が知られている。(例えば特許文献1参照)。内部欠陥検査に関しては渦電流探傷やX線を使った検査方法も知られている。   Conventionally, in a steel ball appearance inspection apparatus, as shown in FIG. 11, light from a filament of a light source 102 is applied to an inspection target ball 101, and reflected light from the ball is received by a light receiving element 103 to electrically convert a change in received light amount. An optical inspection method is known in which a determination unit 104 determines the presence / absence of a defect based on a change amount of an electric signal after being converted into a change in voltage or current. (For example, refer to Patent Document 1). For internal defect inspection, eddy current inspection and inspection methods using X-rays are also known.

しかし、上述のような光学検査方法の場合、一般的な軸受に使用される表面が鏡面状に仕上がっている鋼球では、表面に存在する材料製造時に発生した欠陥や球への加工時に発生した欠陥に関しては検出は可能であるが、例えば材料製造時に発生した酸化物系介在物などの欠陥の場合は球の表面に現われず、球の内部に存在することが多い。その場合、光学検査方法では球の内部を検査することは原理的に不可能である。これら球内部に存在する材料製造時に発生した酸化物系介在物等の欠陥は軸受等で球を使用する場合に軸受寿命への多大な影響が懸念される。そのため通常、渦電流探傷やX線を使った検査手法も考えられるが、渦電流探傷の場合、表面のみならず表面近傍の欠陥の検出も可能であるが、その検出条件として欠陥が表面に露出し開口していることが必要であり、表面に露出していない完全に内部に存在する微小欠陥の検出は困難である。またX線を使った検査手法では、一般に球を製造する場合はロット単位にて加工しており、そのロット個数は数万個から数十万個にもなり、検査タクトも無視できず、手動検査を行なえば多大な人件費及び処理時間を要するといった問題があった。一方、軸受用転動体の転動面表面及び表面近傍に存在する微小欠陥を迅速に検出できるものとして超音波を利用した方法ならびに装置も提案されている。(例えば特許文献2参照)
この方法または装置は超音波伝達媒体中に軸受用転動体及び超音波探触子を配置し、転動体にポンプ等の噴射手段によって回転自在に保持して前記探触子より超音波を送信し、反射してくる超音波エコーにより欠陥を検出する方法であり、転動体の表面及び表面から2mm以内の表面近傍に存在する微小欠陥を検出することが可能であると開示されている。
However, in the case of the optical inspection method as described above, in steel balls with a mirror-finished surface used for general bearings, defects occurred during the production of materials existing on the surface and occurred during processing into balls. Although defects can be detected, defects such as oxide inclusions generated during material production do not appear on the surface of the sphere and often exist inside the sphere. In that case, in principle, it is impossible to inspect the inside of the sphere by the optical inspection method. There is a concern that defects such as oxide inclusions generated during the production of the material existing inside the sphere have a great influence on the bearing life when the sphere is used in a bearing or the like. Therefore, eddy current flaw detection and inspection methods using X-rays are usually considered, but in the case of eddy current flaw detection, not only the surface but also defects near the surface can be detected, but the defect is exposed to the surface as a detection condition. However, it is necessary to be open, and it is difficult to detect minute defects that are not exposed on the surface and are completely present inside. Also, in the inspection method using X-rays, generally, when manufacturing a sphere, it is processed in units of lots, the number of lots is from tens of thousands to hundreds of thousands, inspection tact can not be ignored, manual If the inspection is performed, there is a problem that a great labor cost and a processing time are required. On the other hand, a method and an apparatus using ultrasonic waves have been proposed as being capable of rapidly detecting minute defects existing on the rolling surface of the rolling element for bearing and in the vicinity of the surface. (For example, see Patent Document 2)
In this method or apparatus, a rolling element for bearing and an ultrasonic probe are disposed in an ultrasonic transmission medium, and the ultrasonic wave is transmitted from the probe while being rotatably held by a rolling means such as a pump. In this method, defects are detected by reflected ultrasonic echoes, and it is disclosed that it is possible to detect the surface of a rolling element and minute defects existing in the vicinity of the surface within 2 mm from the surface.

また、一般的な超音波方式による検出装置として、球体ではないが、液中に被検査物を水没させた状態で超音波送信部より超音波を送信し、該送信部より送信された超音波の反射波を受光して検査を行なうことも知られている。(例えば特許文献3参照)
特開2002−277226号公報 特公平5−84865号公報 特開2007−47056号公報
Further, as a general ultrasonic detection device, although not a sphere, an ultrasonic wave is transmitted from an ultrasonic wave transmission unit in a state where an inspection object is submerged in a liquid, and an ultrasonic wave transmitted from the transmission unit It is also known to perform inspection by receiving reflected waves. (For example, see Patent Document 3)
JP 2002-277226 A Japanese Patent Publication No. 5-84865 JP 2007-47056 A

しかし、上記超音波を利用した球体の検査においても球の表面や球表面から2mm以内の表面近傍の欠陥の検出は可能であるとしても、2mmよりも内部の検査については殆ど言及されておらず、そのため球径によっては球内部に存在する材料製造時に発生した介在物などの欠陥の検出は充分とは言えず、軸受等で使用する場合に軸受寿命への多大な影響を免れなかった。また、セラミック球の製造工程において空孔や、金属異物が内部深くに存在した場合には製品としての寿命への影響を免れなかった。特にポンプ等の噴射手段によって検査対象球を回転させることは液の管理及び制御が難しく、確実に検査対象球が子午線状に回転しているかの保証はなかった。   However, even in the inspection of the sphere using the ultrasonic wave, even if it is possible to detect a defect on the surface of the sphere or the surface within 2 mm from the surface of the sphere, there is almost no mention of the inspection inside the sphere. Therefore, depending on the diameter of the sphere, it is not sufficient to detect defects such as inclusions produced during the manufacture of the material existing inside the sphere, and when used in a bearing or the like, a great influence on the bearing life is inevitable. Further, in the manufacturing process of the ceramic sphere, when there are holes or metal foreign objects deep inside, the influence on the product life is inevitable. In particular, it is difficult to manage and control the liquid by rotating the inspection target sphere with an injection means such as a pump, and there is no guarantee that the inspection target sphere is reliably rotating in a meridian shape.

本発明は上述の如き実状に鑑み、これに対処し、軸受等への影響を及ぼす球表面欠陥は勿論、検査対象球の球径の17%深さの内部の探傷も同時に行い、光学検査に比し球表面及び検査対象球の球径の17%深さの内部の欠陥を容易かつ確実に検出して製品の信頼性を高めると共に、球の洗浄装置ならびに検査結果により良品,不良品を振り分ける装置等の結合を容易として作業性の向上を図り、大量の球を高速に自動で検査し処理することを目的とするものである。   In view of the actual situation as described above, the present invention copes with this by performing a flaw detection inside a sphere surface of a sphere to be inspected at a depth of 17% as well as a ball surface defect affecting a bearing or the like for optical inspection. Compared to the surface of the sphere and internal defects 17% deeper than the diameter of the sphere to be inspected, it is easy and reliable to detect and improve the reliability of the product. The purpose is to improve the workability by facilitating the coupling of devices and the like, and to inspect and process a large number of balls automatically at high speed.

即ち、上記目的に適合する本発明の特徴は、液中で回転装置により検査対象球を子午線状に回転させて、該検査対象球の中心線から該検査対象球の球径の20〜23%オフセットした位置に中心線が配置された表面波法用超音波探触子から検査対象球に超音波を送信し、検査対象球の球表面及び表面近傍内部を伝播し反射源により超音波が反射されて戻る超音波を受信し、戻った超音波を電気変換し、波形信号を得て該信号のレベルにより該検査対象球の表面から0.4mm以内の表面欠陥と内部欠陥の有無を判定することと同時に該検査対象球の中心線から該検査対象球の球径の13〜15%オフセットした位置に配置された斜角波法用超音波探触子から検査対象球に超音波を送信し、検査対象球の内部を伝播し反射源により反射されて戻る超音波を受信し、戻った超音波を電気変換し、波形信号を得て該信号のレベルにより該検査対象球の球径の17%深さの内部までの欠陥の有無を判定することを行なうことにより球体の表面及び球体の最大剪断応力位置である球径の1.7%深さの10倍の17%深さまでを同時に高速に検査する超音波探傷方式自動検査方法にある。   That is, the feature of the present invention that meets the above-described purpose is that the inspection object sphere is rotated in a meridian by a rotating device in a liquid, and 20 to 23% of the diameter of the inspection object sphere from the center line of the inspection object sphere. Ultrasound is transmitted from the ultrasonic probe for surface wave method with the center line located at the offset position to the sphere to be inspected, propagated on the sphere surface of the sphere to be inspected and the inside of the surface vicinity, and reflected by the reflection source. The returned ultrasonic wave is received, the returned ultrasonic wave is electrically converted, a waveform signal is obtained, and the presence or absence of surface defects and internal defects within 0.4 mm from the surface of the sphere to be inspected is determined based on the level of the signal At the same time, an ultrasonic wave is transmitted to the inspection target sphere from the ultrasonic probe for the oblique wave method arranged at a position offset from the center line of the inspection target sphere by 13 to 15% of the diameter of the inspection target sphere. , Propagates inside the sphere to be inspected and is reflected back by the reflection source The ultrasonic wave is received, the returned ultrasonic wave is electrically converted, a waveform signal is obtained, and the presence or absence of a defect up to a depth of 17% of the sphere diameter of the inspection target sphere is determined based on the level of the signal. Thus, the ultrasonic inspection system automatic inspection method in which the surface of the sphere and the maximum shear stress position of the sphere are simultaneously inspected at a high speed up to 17%, which is 10 times the depth of 1.7% of the sphere diameter.

請求項2は上記検査に先立ち検査対象球を洗浄し、清浄度を向上させることを特徴とする。請求項3は上記検査を終了した球の処理であり、検査終了後、排出されてきた球を自動的に良品と不良品に振り分けると共に、新規な検査対象球を検査部に投入することを特徴とする。   According to a second aspect of the present invention, the inspection target sphere is washed prior to the inspection to improve the cleanliness. A third aspect of the present invention is a process for a sphere that has been subjected to the above inspection, and after the inspection has been completed, the discharged sphere is automatically distributed into a non-defective product and a defective product, and a new inspection target sphere is thrown into the inspection section. And

請求項4は上記検査方法を実施する検査装置であり、液中に浸漬されたドライブローラー,サポートローラー及び偏心ハスバギヤを取り付けたコントロールローラーよりなり、コントロールローラーの回転により検査対象球にひねりを与え子午線状に回転させて保持する装置と、該装置により液中で支持された該検査対象球の中心線から該検査対象球の球径の20〜23%オフセットした位置に中心線が配置された表面波法用超音波探触子と該検査対象球の中心線から該検査対象球の球径の13〜15%オフセットした位置に中心線が配置された斜角波法用超音波探触子から同時に送信した夫々の超音波が検査対象球の表面及び表面近傍及び内部で反射されて戻ってきた超音波の夫々を同時に受信し、電気変換して夫々の信号を同時に処理する信号処理部と、前記超音波探触子を浸漬した液を浄化する液中浄化装置からなることを特徴とする。   Claim 4 is an inspection apparatus for carrying out the above-described inspection method, comprising a drive roller, a support roller and a control roller with an eccentric helical gear that are immersed in the liquid, and a twist on the ball to be inspected by rotation of the control roller to give a meridian And a device having a center line disposed at a position offset by 20 to 23% of the sphere diameter of the inspection object sphere from the center line of the inspection object sphere supported in the liquid by the apparatus From the ultrasonic probe for the wave method and the ultrasonic probe for the oblique wave method in which the center line is arranged at a position offset by 13 to 15% of the sphere diameter of the inspection object sphere from the center line of the inspection object sphere Each ultrasonic wave transmitted at the same time is received simultaneously with each ultrasonic wave reflected and returned from the surface of the sphere to be inspected, in the vicinity of the surface, and inside, and electrically converted to process each signal simultaneously. A signal processing unit, characterized in that said formed of liquid in apparatus for removing the immersed liquid the ultrasonic probe.

本発明の超音波探傷方式球自動検査方法を利用することにより、球の表面及び球内部の球の最大剪断応力深さである球径の1.7%深さの10倍の17%深さまでの有害な微小欠陥を安定して検出することが可能となり、特に検査対象球を回転装置により順次、子午線状に球全表面を走査することと相俟って球全表面はもとより球体の最大剪断応力位置である球径の1.7%深さの10倍である球径の17%深さまでの自動検査がより確実に行なわれ、製品の寿命、信頼性を従前の方式に比し向上すると共に、手動検査に比し人件費,処理時間を大幅に縮減し、作業性をも向上することができる。   By using the ultrasonic flaw detection type sphere automatic inspection method of the present invention, the surface of the sphere and the maximum shear stress depth of the sphere inside the sphere up to 17% depth, which is 10 times the depth of the sphere diameter of 1.7%. It is possible to stably detect harmful micro-defects, and in particular, the maximum shearing of the sphere as well as the entire surface of the sphere, coupled with the fact that the entire surface of the sphere is scanned in a meridian form sequentially with the rotating device. Automatic inspection up to 17% depth of the sphere diameter, which is 10 times the 1.7% depth of the sphere diameter, which is the stress position, is more reliably performed, improving the life and reliability of the product compared to the conventional method. At the same time, labor costs and processing time can be greatly reduced compared to manual inspection, and workability can be improved.

また、不良球をX線調査やCTマイクロスキャン等で更に内部調査を実施し、不良内容を把握することでサプライヤーに改善の要求を行なうことが可能となり、素球の品質向上にも繋がる。   In addition, internal inspections of defective spheres can be further conducted by X-ray inspection, CT microscanning, etc., and the contents of the defects can be grasped to make a request for improvement to the supplier, leading to improvement of the quality of the basic sphere.

以下、引き続き本発明の具体的実施形態について説明する。図1は本発明を実施するための検査装置の1態様を示す全体概要図であり、図2は本発明の要部をなす検査装置の要部を示す概要図である。   Hereinafter, specific embodiments of the present invention will be described. FIG. 1 is an overall schematic diagram showing one mode of an inspection apparatus for carrying out the present invention, and FIG. 2 is a schematic diagram showing a main part of the inspection apparatus constituting the main part of the present invention.

本発明検査を実施する検査装置は、図1に示す如く検査対象球を供給する供給装置1、供給した検査対象球を検査前に洗浄する自動ブラシ洗浄装置からなる洗浄装置2、液中に浸漬された回転機構を具えた検査部3を順次配設し、検査部3の液を浄化するための液中浄化装置4及び検査終了後の球を受けるための受け箱5、供給装置1、洗浄装置2に洗浄液を送液するポンプユニット6を組み合わせることによって全体が構成されているが、後述する検査部3での検査方式を除いては、この配置構成は先に本出願人の出願に係る特開2002−277226号公報に詳述されているので詳細な説明は省略し、以下においては本発明の特徴とする検査部の構成についてのみ図2に基づいて説明することとする。   As shown in FIG. 1, an inspection apparatus for carrying out the inspection of the present invention includes a supply apparatus 1 for supplying an inspection object sphere, a cleaning apparatus 2 including an automatic brush cleaning apparatus for cleaning the supplied inspection object sphere before the inspection, and immersion in a liquid. The inspection unit 3 having the rotation mechanism is sequentially arranged, the submerged purification device 4 for purifying the liquid of the inspection unit 3, the receiving box 5 for receiving the ball after the inspection, the supply device 1, the washing Although the whole is configured by combining the apparatus 2 with a pump unit 6 for feeding the cleaning liquid, this arrangement is related to the application of the present applicant, except for the inspection method in the inspection unit 3 described later. Since it is described in detail in Japanese Patent Application Laid-Open No. 2002-277226, detailed description will be omitted, and only the configuration of the inspection unit that is a feature of the present invention will be described below with reference to FIG.

図2は本発明の要部をなす検査部の構成の1例であり、図において31は検査対象球を示し、該球31は液中に浸漬配置されたドライブローラー32とサポートローラー33とコントロールローラー34によって所定の位置に保持されている。コントロールローラー34には偏心ハスバギヤ35が取り付けられており、ドライブローラー32を回転させることで、検査対象球31は回転し、それによりコントロールローラー32とサポートローラー33とコントロールローラー34によって取り付けられている偏心ハスバギヤ35により検査対象球31は回転し、それによりコントロールローラー34も回転するが、このとき上記コントロールローラー34に取り付けられている偏心ハスバギヤ35により検査対象球31にはひねりが与えられ、検査対象球31は子午線状に回転する仕組みになっている。   FIG. 2 shows an example of the configuration of the inspection unit constituting the main part of the present invention. In the figure, reference numeral 31 indicates a sphere to be inspected, and the sphere 31 includes a drive roller 32, a support roller 33 and a control which are immersed in the liquid. The roller 34 is held at a predetermined position. An eccentric helical gear 35 is attached to the control roller 34. By rotating the drive roller 32, the inspection target ball 31 rotates, and thereby the eccentricity attached by the control roller 32, the support roller 33, and the control roller 34. The inspection target sphere 31 is rotated by the helical gear 35, and the control roller 34 is also rotated. At this time, the inspection target sphere 31 is twisted by the eccentric helical gear 35 attached to the control roller 34. 31 has a mechanism that rotates in a meridian manner.

図中、36,37は本発明超音波方式検査において重要な要素をなす表面波法用と斜角波法用の各超音波探触子であり、表面波法用超音波探触子36は前記一連の回転装置により子午線状に回転している検査対象球31の中心線から検査対象球31の球径の20〜23%オフセットした液中の位置に中心線が配置されていて、子午線状に回転している検査対象球31の球表面に超音波を送信するようになっている。表面波法用超音波探触子36から送信された上記超音波は検査対象球31に直進し検査対象球31の表面にて正反射して表面波法用超音波探触子36に戻る超音波、検査対象球31の表面に沿って球表面を伝播する超音波、検査対象球31の表面で球表面近傍に伝播する超音波に分けられる。   In the figure, reference numerals 36 and 37 denote ultrasonic probes for the surface wave method and the oblique wave method, which are important elements in the ultrasonic method inspection of the present invention. The center line is arranged at a position in the liquid that is offset by 20 to 23% of the sphere diameter of the inspection object sphere 31 from the center line of the inspection object sphere 31 rotating in a meridian by the series of rotation devices, and the meridian Ultrasonic waves are transmitted to the sphere surface of the inspection target sphere 31 that is rotating at the same time. The ultrasonic wave transmitted from the ultrasonic probe for surface wave method 36 goes straight to the inspection object sphere 31 and is regularly reflected on the surface of the inspection object sphere 31 to return to the ultrasonic probe for surface wave method 36. Sound waves, ultrasonic waves that propagate along the surface of the sphere 31 along the surface of the inspection object sphere 31, and ultrasonic waves that propagate near the sphere surface on the surface of the inspection object sphere 31.

そして球表面に球加工製作時に付いた欠陥がある場合、または球表面近傍に材料製作時についた欠陥がある場合は、検査対象球31の表面に沿って球表面を伝播する超音波または球表面近傍に伝播する超音波にて欠陥部分で超音波が反射され、同じ経路を辿って、超音波探触子に戻ることになる。ここで、検査対象球31内部に材料製作時に付いた材料キズがある場合は表面波法用超音波探触子36から送信された超音波が内部まで伝播しないため、探傷不能となるが、その場合は後述のもう1つの探触子である斜角波法用超音波探触子37で探傷可能となる。   If there is a defect on the sphere surface at the time of manufacturing the sphere, or if there is a defect on the surface of the sphere at the time of manufacturing the material, the ultrasonic wave or the sphere surface that propagates along the surface of the sphere 31 to be inspected. The ultrasonic wave propagates in the vicinity, the ultrasonic wave is reflected at the defective portion, and returns to the ultrasonic probe following the same path. Here, if there is a material flaw attached at the time of material production inside the inspection object sphere 31, since the ultrasonic wave transmitted from the ultrasonic probe 36 for surface wave method does not propagate to the inside, flaw detection becomes impossible. In this case, the flaw detection can be performed with the oblique wave method ultrasonic probe 37 which is another probe described later.

一方、斜角波法用超音波探触子37は前記一連の回転装置により子午線状に回転している検査対象球31の中心線から検査対象球31の球径の13〜15%オフセットした液中の所定の位置に中心線が配置されていて子午線状に回転している検査対象球31の球表面に超音波を送信するようになっている。   On the other hand, the oblique wave method ultrasonic probe 37 is a liquid offset by 13 to 15% of the diameter of the inspection object sphere 31 from the center line of the inspection object sphere 31 rotating in a meridian shape by the series of rotating devices. An ultrasonic wave is transmitted to the sphere surface of the sphere 31 to be inspected, which has a center line arranged at a predetermined position and is rotating in a meridian shape.

斜角波法用超音波探触子37から送信された上記超音波は検査対象球31に直進し検査対象球31の表面にて正反射して斜角波法用超音波探触子37に戻る超音波、検査対象球31の表面で球内部に入射、伝播する超音波に分けられる。球内部に材料製作時についた欠陥がある場合は、検査対象球31の球内部を伝播する超音波にて欠陥部分で超音波が反射され、同じ経路を辿って、超音波探触子に戻ることになる。ここで検査対象球31の表面近傍内部に、例えば材料製作時についた欠陥がある場合は検査対象球31の表面で反射するエコーの影響で検査不能となる場合がある。その場合は、前述の表面波法用超音波探触子36で探傷可能となる。そして、戻ったそれらの超音波は変換器40で電気変換されて波形となって信号が得られ、その信号のレベルを判定することで表面欠陥、内部欠陥の有無を判定することができる。   The ultrasonic wave transmitted from the oblique wave method ultrasonic probe 37 goes straight to the inspection object sphere 31 and is regularly reflected on the surface of the inspection object sphere 31 to the oblique wave method ultrasonic probe 37. The returning ultrasonic waves are classified into ultrasonic waves that enter and propagate inside the sphere on the surface of the inspection target sphere 31. If there is a defect in the sphere at the time of manufacturing the material, the ultrasonic wave is reflected at the defective portion by the ultrasonic wave propagating inside the sphere 31 to be inspected, and returns to the ultrasonic probe through the same path. It will be. Here, for example, if there is a defect in the vicinity of the surface of the inspection target sphere 31 when the material is manufactured, the inspection may be impossible due to the influence of echoes reflected on the surface of the inspection target sphere 31. In that case, flaw detection becomes possible with the above-described surface acoustic wave method ultrasonic probe 36. Then, the returned ultrasonic waves are electrically converted by the converter 40 to obtain a signal as a waveform. By determining the level of the signal, the presence or absence of surface defects and internal defects can be determined.

なお、検査完了後、球を保持しているサポートローラー33が稼働し、球が上記検査部から排出されるが、排出された部分には良品,不良品を振り分ける判別ゲート38が設置されており、検査結果によりこの判別ゲート38が作動し、自動的に良品,不良品に振り分けられる。一方、球が排出されると同時に整流フィンガー39が上下動により待機している次の球41が1個だけ検査部へ投入され、この繰り返しにより連続的に検査が可能になっている。   In addition, after the inspection is completed, the support roller 33 holding the ball is operated, and the ball is discharged from the inspection unit. A discrimination gate 38 for distributing the non-defective product and the defective product is installed in the discharged portion. Depending on the inspection result, the discrimination gate 38 is activated and automatically sorted into a non-defective product and a defective product. On the other hand, at the same time as the balls are discharged, only one next ball 41 waiting for the straightening finger 39 to move up and down is put into the inspection section, and the inspection can be continuously performed by repeating this operation.

ここで、上記使用する表面波法用超音波探触子36としては、検査対象球の球径・材質にもよるが、球径10〜20mm前後、例えば17.5mm前後の鋼球を検査するには、周波数10〜30MHz、エレメント径3〜6mm程度が検査能力的に好ましい。セラミックス球を検査する際には、周波数20〜50MHz、エレメント径3〜6mm程度が検査能力的に好ましい。また、斜角波法用超音波探触子37としては、検査対象球の球径・材質にもよるが、球径10〜20mm前後、例えば14.5mm前後の鋼球を検査するには、周波数10〜30MHz、エレメント径3〜6mm程度が検査能力的に好ましい。また超音波探触子を取り付けている治具は上下左右前後に容易に調整可能な構造となっており、超音波を球の任意の箇所に送信することができるようになっている。   Here, as the ultrasonic probe 36 for the surface wave method to be used, a steel ball having a sphere diameter of about 10 to 20 mm, for example, about 17.5 mm is inspected depending on the sphere diameter and material of the sphere to be inspected. Therefore, a frequency of about 10 to 30 MHz and an element diameter of about 3 to 6 mm are preferable in terms of inspection capability. When inspecting ceramic spheres, a frequency of 20 to 50 MHz and an element diameter of about 3 to 6 mm are preferable in terms of inspection capability. In addition, as the oblique wave method ultrasonic probe 37, depending on the sphere diameter and material of the sphere to be inspected, in order to inspect a steel sphere having a sphere diameter of about 10 to 20 mm, for example, about 14.5 mm, A frequency of about 10 to 30 MHz and an element diameter of about 3 to 6 mm are preferable in terms of inspection capability. Moreover, the jig to which the ultrasonic probe is attached has a structure that can be easily adjusted in the vertical and horizontal directions, and can transmit ultrasonic waves to any location of the sphere.

なお、回転装置及び超音波探触子を浸漬している液は、液中浄化装置によって浄化され、液中に塵やゴミなどの微小物及び気泡が除去されており、それら塵やゴミなどの微小物及び気泡による擬似欠陥信号による歩留まりの悪化を防ぎ、検査精度の向上を図っている。また、ここで使用される液としては、油だけでなく水も使用可能であるが、機械の発錆を考慮し本発明では油を使用している。次に上記検査の実施例について説明する。   The liquid in which the rotating device and the ultrasonic probe are immersed is purified by the liquid purification device, and fine objects such as dust and dirt and bubbles are removed in the liquid. Yield deterioration due to pseudo defect signals due to minute objects and bubbles is prevented, and inspection accuracy is improved. Further, as the liquid used here, not only oil but also water can be used, but oil is used in the present invention in consideration of rusting of the machine. Next, examples of the inspection will be described.

上記装置を使用し、球径17.5mmの球をドライブローラー,サポートローラー,コントロールローラーの回転により子午線状に回転させて斜角波法用超音波探触子により球表面に超音波を送信した。この送信した超音波が、球内部に伝播して戻ってきた超音波を受信し、変換器で波形信号によって確認したところ、正常な部分については図3(イ)に示すような波形が認められたが、欠陥と判定された球を斜角波法用超音波探傷にて確認したところ、図3(ロ)に示すような欠陥と思われる信号が確認された。そこで欠陥と思われる信号が確認された球を顕微鏡で球表面を確認したところ、球表面には欠陥が確認されなかった。そこで、球表面から数μmずつ削りながらその都度、顕微鏡にて確認した結果、深さ500μm程度付近に図7のような300μmの酸化物系介在物の欠陥が確認された。   Using the above device, a sphere with a sphere diameter of 17.5 mm was rotated in a meridian by rotation of a drive roller, a support roller, and a control roller, and an ultrasonic wave was transmitted to the sphere surface by an ultrasonic probe for the oblique wave method. . When the transmitted ultrasonic waves are propagated back to the inside of the sphere, the ultrasonic waves are received and confirmed by the waveform signal by the converter, and the waveform as shown in FIG. However, when a sphere determined to be defective was confirmed by ultrasonic flaw detection for the oblique wave method, a signal that seems to be a defect as shown in FIG. 3B was confirmed. Therefore, when the sphere on which the signal that seems to be a defect was confirmed was confirmed with a microscope, the defect was not confirmed on the sphere surface. Therefore, as a result of checking with a microscope each time cutting the surface of the sphere by several μm, a defect of 300 μm oxide inclusions as shown in FIG. 7 was confirmed in the vicinity of a depth of about 500 μm.

また、表面波法用超音波探触子により検査対象球に超音波を送信し、検査対象球の球表面及び表面近傍内部を伝播し反射源により超音波が反射されて戻る超音波を受信し戻った超音波を電気変換で波形信号によって確認したところ、正常な部分については図4(イ)に示すような波形が認められたが、欠陥と判定された球を表面波法用超音波探傷にて確認したところ、図4(ロ)に示すような欠陥と思われる信号が確認された。そこで欠陥と思われる信号が確認された球を顕微鏡で球表面を確認したところ、球表面には欠陥が確認されなかった。そこで、球表面から数μmずつ削りながらその都度、顕微鏡にて確認した結果、深さ400μm程度付近に図8のような160μmの酸化物系介在物の欠陥が確認された。   In addition, ultrasonic waves are transmitted to the sphere to be inspected by the ultrasonic probe for the surface wave method, and ultrasonic waves that are propagated through the sphere surface of the sphere to be inspected and the vicinity of the surface and reflected by the reflection source are received. When the returned ultrasonic wave was confirmed by a waveform signal by electrical conversion, a waveform as shown in FIG. 4 (a) was found for a normal part, but a sphere determined to be defective was detected by ultrasonic flaw detection for the surface wave method. As a result, a signal that seems to be a defect as shown in FIG. Therefore, when the sphere on which the signal that seems to be a defect was confirmed was confirmed with a microscope, the defect was not confirmed on the sphere surface. Therefore, as a result of checking with a microscope each time cutting the surface of the sphere by several μm, a defect of 160 μm oxide inclusions as shown in FIG. 8 was confirmed in the vicinity of a depth of about 400 μm.

また、斜角波法用超音波探触子により球表面に超音波を送信した超音波が、球内部に伝播して戻ってきた超音波を受信し、変換器で波形信号によって確認したところ、図5(イ)に示すような欠陥と思われる信号が確認された。そこで欠陥と思われる信号が確認された球を表面波法用超音波探触子により検査対象球に超音波を送信し、検査対象球の球表面及び表面近傍内部を伝播し反射源により超音波が反射されて戻る超音波を受信し、戻った超音波を電気変換で波形信号によって確認したところ、図5(ロ)に示すような信号が確認され、欠陥と判定されなかった。そこで球表面から数μmずつ削りながらその都度、顕微鏡にて確認した結果、該検査対象球径の17%深さである、深さ2.975mm程度付近に図9のような150μmの金属異物の欠陥が確認された。   In addition, when the ultrasonic wave transmitted to the sphere surface by the ultrasonic probe for the oblique wave method is received and returned to the inside of the sphere, and confirmed by the waveform signal with the transducer, A signal that seems to be a defect as shown in FIG. Therefore, a sphere with a signal that seems to be defective is transmitted to the sphere to be inspected by the ultrasonic probe for surface wave method, propagated on the sphere surface of the sphere to be inspected and inside the vicinity of the surface, and ultrasonic waves are transmitted by the reflection source The ultrasonic waves that were reflected and received were received, and the returned ultrasonic waves were confirmed by a waveform signal by electrical conversion. As a result, a signal as shown in FIG. 5B was confirmed and was not determined to be a defect. Therefore, as a result of confirming with a microscope each time cutting the surface of the sphere by several μm, a 150 μm metallic foreign substance as shown in FIG. 9 was found in the vicinity of a depth of about 2.975 mm, which is 17% of the diameter of the sphere to be inspected. Defects were confirmed.

また、表面波法用超音波探触子により検査対象球に超音波を送信し、検査対象球の球表面及び表面近傍内部を伝播し反射源により超音波が反射されて戻る超音波を受信し、戻った超音波を電気変換で波形信号によって確認したところ、図6(イ)に示すような欠陥と思われる信号が確認された。そこで欠陥と思われる信号が確認された球を斜角波法用超音波探触子により検査対象球に超音波を送信し、検査対象球の球内部を伝播し反射源により超音波が反射されて戻る超音波を受信し、戻った超音波を電気変換で波形信号によって確認したところ、図6(ロ)に示すような信号が確認され、欠陥と判定されなかった。そこで、図6(イ)に示すような欠陥と思われる信号が確認された球を顕微鏡で球表面を確認したところ、図10のような球表面に加工工程でついたと思われる大きさ150μmの欠陥が確認された。   In addition, ultrasonic waves are transmitted to the sphere to be inspected by the ultrasonic probe for the surface wave method, and ultrasonic waves that are propagated through the sphere surface of the sphere to be inspected and the vicinity of the surface and reflected by the reflection source are received. When the returned ultrasonic wave was confirmed by a waveform signal by electrical conversion, a signal that seems to be a defect as shown in FIG. 6 (a) was confirmed. Therefore, an ultrasonic wave is transmitted to the sphere to be inspected by the ultrasonic probe for the oblique wave method, and the ultrasonic wave is propagated through the sphere of the sphere to be inspected and reflected by the reflection source. When the ultrasonic waves returned were received and the returned ultrasonic waves were confirmed by a waveform signal by electrical conversion, a signal as shown in FIG. 6B was confirmed and was not determined to be a defect. Therefore, when the surface of the sphere in which a signal that seems to be a defect as shown in FIG. 6 (a) was confirmed was confirmed with a microscope, the surface of the sphere as shown in FIG. Defects were confirmed.

また、図3(イ)の如く欠陥と思われる信号がみられなかった球についても同様に球表面の確認及び球表面から数μmずつ削りながらその都度、顕微鏡にて検査対象球の球径の17%深さまで確認したが欠陥は確認されなかった。従って、以上より本発明の超音波探傷検査により球表面及び球体の最大剪断応力位置である球径の1.7%深さの10倍の17%深さまでの自動検査が同時に可能であることが確認された。   In addition, for the sphere in which no signal that seems to be defective is seen as shown in FIG. 3 (a), the surface of the sphere to be inspected is examined with a microscope each time while checking the surface of the sphere and cutting the surface of the sphere by several μm. Although it was confirmed to a depth of 17%, no defect was confirmed. Therefore, as described above, the ultrasonic inspection of the present invention can simultaneously perform automatic inspection up to 17% depth, which is 10 times the depth of the sphere diameter which is the maximum shear stress position of the sphere surface and the sphere. confirmed.

本発明を実施する検査装置の1態様を示す全体概要図である。1 is an overall schematic diagram showing one aspect of an inspection apparatus for carrying out the present invention. 本発明検査装置における要部をなす検査部を示す概要図である。It is a schematic diagram which shows the test | inspection part which makes the principal part in this invention test | inspection apparatus. 斜角波法用超音波探触子により球表面に送信し、球内部に伝播して戻ってきた超音波を受信した際の波形信号であり、(イ)は正常な場合、(ロ)は欠陥のある場合を示す。Waveform signal when the ultrasonic wave transmitted to the surface of the sphere by the ultrasonic probe for the oblique wave method and propagated back inside the sphere is received. (B) is normal, (b) is The case where there is a defect is shown. 表面波法用超音波探触子により球に送信し、球表面及び表面近傍内部を伝播し戻ってきた超音波を受信した際の波形信号であり、(イ)は欠陥がない場合、(ロ)は欠陥のある場合を示す。This is a waveform signal when the ultrasonic wave transmitted to the sphere by the ultrasonic probe for the surface wave method and propagated back on the surface of the sphere and the inside of the surface is received. ) Indicates a case where there is a defect. 斜角波法用超音波探触子により球表面に送信し、球内部に伝播して戻ってきた超音波を受信した際の波形信号であり、(イ)は欠陥のある場合、(ロ)は(イ)の欠陥を表面波法用超音波探触子により送信し、球表面及び表面近傍内部を伝播し戻ってきた超音波を受信した波形信号で欠陥がない場合を示す。Waveform signal when ultrasonic waves transmitted to the surface of the sphere by the ultrasonic probe for oblique wave method and propagated back inside the sphere are received. (B) If there is a defect, (b) (B) shows a case where there is no defect in the waveform signal transmitted by the surface wave method ultrasonic probe and receiving the ultrasonic wave propagating back on the surface of the sphere and in the vicinity of the surface. 表面波法用超音波探触子により球に超音波を送信し、球表面及び表面近傍内部を伝播し戻ってきた波形信号であり、(イ)は欠陥がある場合、(ロ)は(イ)の欠陥を斜角波法用超音波探触子により送信し球内部を伝播して戻って来たときの波形信号で欠陥と判定されない場合である。Ultrasonic wave is transmitted to the sphere by the ultrasonic probe for the surface wave method, and is a waveform signal that propagates back on the surface of the sphere and the vicinity of the surface, and (b) indicates that there is a defect. ) Is transmitted by the oblique wave method ultrasonic probe, propagates through the inside of the sphere and returns to the waveform signal and is not determined as a defect. 前記図3の欠陥部の顕微鏡写真である。It is a microscope picture of the defect part of the said FIG. 前記図4の欠陥部の顕微鏡写真である。It is a microscope picture of the defect part of the said FIG. 前記図5の欠陥部の顕微鏡写真である。It is a microscope picture of the defective part of the said FIG. 前記図6の欠陥部の顕微鏡写真である。It is a microscope picture of the defect part of the said FIG. 従来の光学検査方法を実施する装置の概要図である。It is a schematic diagram of the apparatus which enforces the conventional optical inspection method.

符号の説明Explanation of symbols

31:検査対象球
32:ドライブローラー
33:サポートローラー
34: コントロールローラー
35:偏心ハスバギヤ
36:斜角波法用超音波探触子
37:表面波法用超音波探触子
38:判別ゲート
39:整流フィンガー
40:変換器
41:待機球
31: Sphere to be inspected 32: Drive roller 33: Support roller 34: Control roller 35: Eccentric helical gear 36: Ultrasonic probe for oblique wave method 37: Ultrasonic probe for surface wave method 38: Discrimination gate 39: Commutation finger 40: Converter 41: Standby ball

Claims (4)

液中で回転装置により検査対象球を子午線状に回転させて、該検査対象球の中心線から該検査対象球の球径の20〜23%オフセットした(外れた)位置に中心線が配置された表面波法用超音波探触子から検査対象球に超音波を送信し、検査対象球の球表面及び表面近傍内部を伝播し反射源により超音波が反射されて戻る超音波を受信し、戻った超音波を電気変換し、波形信号を得て該信号のレベルにより該検査対象球の表面から0.4mm以内の表面欠陥と内部欠陥の有無を判定することと同時に該検査対象球の中心線から該検査対象球の球径の13〜15%オフセットした位置に配置された斜角波法用超音波探触子から検査対象球に超音波を送信し、検査対象球の内部を伝播し反射源により反射されて戻る超音波を受信し、戻った超音波を電気変換し、波形信号を得て該信号のレベルにより該検査対象球の球径の17%深さの内部の欠陥の有無を判定することを同時に行なうことにより球体の表面及び球体の最大剪断応力位置である球径の1.7%深さの10倍の17%深さまでを同時に高速に検査することを特徴とする超音波探傷方式球自動検査方法。   The inspection object sphere is rotated in a meridian by a rotating device in the liquid, and the center line is arranged at a position offset (displaced) by 20 to 23% of the diameter of the inspection object sphere from the center line of the inspection object sphere. The ultrasonic wave is transmitted from the ultrasonic probe for the surface wave method to the sphere to be inspected, and the ultrasonic wave that is propagated through the sphere surface of the sphere to be inspected and the inside of the vicinity of the surface and reflected by the reflection source is returned, The returned ultrasonic wave is electrically converted, a waveform signal is obtained, and the level of the signal determines the presence or absence of surface defects and internal defects within 0.4 mm from the surface of the inspection target sphere, and at the same time the center of the inspection target sphere An ultrasonic wave is transmitted from the ultrasonic probe for oblique wave method arranged at a position offset from the line by 13 to 15% of the sphere diameter of the sphere to be inspected to the sphere to be inspected, and propagates inside the sphere to be inspected. Received and returned ultrasound reflected by the reflection source By performing electrical conversion, obtaining a waveform signal, and simultaneously determining whether or not there is a defect having a depth of 17% of the sphere diameter of the sphere to be inspected based on the level of the signal, the surface of the sphere and the maximum shear stress of the sphere An ultrasonic flaw detection type sphere automatic inspection method characterized by simultaneously inspecting at a high speed up to 17% depth, which is 10 times the 1.7% depth of the sphere diameter as a position. 検査に先立ち検査対象球を洗浄し、表面状態の清浄度を向上させる請求項1記載の超音波探傷方式球自動検査方法。   2. The ultrasonic flaw detection type sphere automatic inspection method according to claim 1, wherein the inspection target sphere is cleaned prior to the inspection to improve the cleanliness of the surface state. 検査完了後、自動で排出されて来た球を自動で良品と不良品に振り分け、所定の保管位置に保管すると共に、新規な検査対象球を検査部に自動で挿入する請求項1または2記載の超音波探傷方式球自動検査方法。   3. A ball according to claim 1 or 2, wherein after the inspection is completed, the automatically discharged balls are automatically sorted into non-defective products and defective products, stored in a predetermined storage position, and new inspection target balls are automatically inserted into the inspection section. Ultrasonic flaw detection ball automatic inspection method. 液中に浸漬されたドライブローラー,サポートローラー及び偏心ハスバギヤを取り付けたコントロールローラーよりなり、コントロールローラーの回転により検査対象球にひねるを与え子午線状に回転させて保持する装置と、該装置により液中で支持された該検査対象球の中心線から該検査対象球の球径の20〜23%オフセットした(外れた)位置に中心線が配置された表面波法用超音波探触子と該検査対象球の中心から該検査対象球の球径の13〜15%オフセットした位置に中心線が配置された斜角波法用超音波探触子から同時に送信した夫々の超音波が検査対象球の表面近傍及び内部で反射されて戻って来た超音波の夫々を同時に受信し電気変換して夫々の信号を同時に処理する信号処理部と、前記超音波探触子を浸漬した液を浄化する液中浄化装置からなることを特徴とする超音波探傷方式球自動検査装置。   A device comprising a drive roller, a support roller, and an eccentric helical gear that is immersed in the liquid, a device that twists the sphere to be inspected by rotation of the control roller and rotates it in a meridian shape, And an ultrasonic probe for surface wave method in which the center line is arranged at a position offset (displaced) by 20 to 23% of the sphere diameter of the sphere to be inspected supported from the center line of the sphere to be inspected Each ultrasonic wave transmitted simultaneously from the oblique wave method ultrasonic probe in which the center line is arranged at a position offset from the center of the target sphere by 13 to 15% of the diameter of the inspection target sphere is converted into the inspection target sphere. A signal processing unit that simultaneously receives and electrically converts each of the ultrasonic waves reflected and returned near and inside the surface, and purifies the liquid in which the ultrasonic probe is immersed To consist purifier submerged ultrasonic flaw detection method sphere automatic inspection apparatus according to claim that.
JP2008298997A 2008-11-25 2008-11-25 Automatic sphere inspection method and device for the same with ultrasonic flaw detection system Pending JP2010127618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008298997A JP2010127618A (en) 2008-11-25 2008-11-25 Automatic sphere inspection method and device for the same with ultrasonic flaw detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008298997A JP2010127618A (en) 2008-11-25 2008-11-25 Automatic sphere inspection method and device for the same with ultrasonic flaw detection system

Publications (1)

Publication Number Publication Date
JP2010127618A true JP2010127618A (en) 2010-06-10

Family

ID=42328145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008298997A Pending JP2010127618A (en) 2008-11-25 2008-11-25 Automatic sphere inspection method and device for the same with ultrasonic flaw detection system

Country Status (1)

Country Link
JP (1) JP2010127618A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103920656A (en) * 2014-04-21 2014-07-16 浙江大学 Novel steel ball spreading and sorting device for visual inspection
CN104165930A (en) * 2014-08-17 2014-11-26 江苏恒州特种玻璃纤维材料有限公司 On-line detection process for internal defects of high silica screen cloth
CN105301014A (en) * 2015-12-15 2016-02-03 金晓彬 Sphere surface development device and sphere surface defect detection equipment by using same
CN111896628A (en) * 2020-06-30 2020-11-06 洛阳轴承研究所有限公司 Silicon nitride ceramic ball ultrasonic nondestructive testing method
CN112902865A (en) * 2021-01-15 2021-06-04 中国石油天然气集团有限公司 Automatic detection system and automatic detection method for surface defects of bent pipe body

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103920656A (en) * 2014-04-21 2014-07-16 浙江大学 Novel steel ball spreading and sorting device for visual inspection
CN103920656B (en) * 2014-04-21 2016-04-27 浙江大学 A kind of Novel steel ball for vision-based detection launches and sorting unit
CN104165930A (en) * 2014-08-17 2014-11-26 江苏恒州特种玻璃纤维材料有限公司 On-line detection process for internal defects of high silica screen cloth
CN105301014A (en) * 2015-12-15 2016-02-03 金晓彬 Sphere surface development device and sphere surface defect detection equipment by using same
CN105301014B (en) * 2015-12-15 2018-09-04 金晓彬 The spherical surface defect detection device of spherome surface expanding unit and the application device
CN111896628A (en) * 2020-06-30 2020-11-06 洛阳轴承研究所有限公司 Silicon nitride ceramic ball ultrasonic nondestructive testing method
CN112902865A (en) * 2021-01-15 2021-06-04 中国石油天然气集团有限公司 Automatic detection system and automatic detection method for surface defects of bent pipe body

Similar Documents

Publication Publication Date Title
EP1801577A1 (en) Ultrasonic inspection method and defect detection method for rolling bearing
JP4596331B2 (en) Ultrasonic flaw detection method for pipe threaded joints
JP2010127618A (en) Automatic sphere inspection method and device for the same with ultrasonic flaw detection system
CN106770650B (en) The non-destructive method of small diameter tube Thin-Section Steel Castings nozzle
JP2010127621A (en) Automatic sphere inspection method and device for the same with ultrasonic flaw detection system
KR200411972Y1 (en) Ultrasonic inspection equipment for tube expanding zone of heat exchanger
JP2005283379A (en) Ultrasonic flaw detection method and device
JP2009258033A (en) Automatic sphere inspection method and device with ultrasonic flaw detection system
JP2004212366A (en) Creep damage detecting method
JPH09304358A (en) Defect detecting method for lead sheath pipe for electric wire
JP4546152B2 (en) Inspection method and diagnostic device for porcelain insulator
JP2000352563A (en) Ultrasonic flaw detector for cladding tube
JP3052550B2 (en) Bevel probe for ultrasonic flaw detection
JP4015935B2 (en) Inclusion detection evaluation method in steel by water immersion ultrasonic flaw detection
CN103134853A (en) Nondestructive detection method for crankshaft
JP2011145146A (en) Roller outside crack diagnostic device and diagnostic method
JPH04276547A (en) Ultrasonic testing method for surface layer part of cylindrical body
JP2006234807A (en) Defect detecting method
JP2726359B2 (en) Ultrasonic flaw detector for cylindrical surface
JP2015094588A (en) Ultrasonic flaw inspection method of measurement target object material
JP2002122573A (en) Method and apparatus for inspection of defect of round material
JP7318617B2 (en) Ultrasonic flaw detection method for tubular test object
JP2934352B2 (en) Ultrasonic inspection method and apparatus for friction welding material
JP2006010342A (en) Ultrasonic flaw detecting method and ultrasonic flaw detector
Lévesque et al. Synthetic aperture focusing technique for the ultrasonic evaluation of friction stir welds