JP2009258033A - Automatic sphere inspection method and device with ultrasonic flaw detection system - Google Patents

Automatic sphere inspection method and device with ultrasonic flaw detection system Download PDF

Info

Publication number
JP2009258033A
JP2009258033A JP2008109768A JP2008109768A JP2009258033A JP 2009258033 A JP2009258033 A JP 2009258033A JP 2008109768 A JP2008109768 A JP 2008109768A JP 2008109768 A JP2008109768 A JP 2008109768A JP 2009258033 A JP2009258033 A JP 2009258033A
Authority
JP
Japan
Prior art keywords
sphere
inspection
ultrasonic
liquid
ultrasonic waves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008109768A
Other languages
Japanese (ja)
Inventor
Takushi Nishide
拓史 西出
Masanori Nagashio
正紀 長塩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amatsuji Steel Ball Mfg Co Ltd
Original Assignee
Amatsuji Steel Ball Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amatsuji Steel Ball Mfg Co Ltd filed Critical Amatsuji Steel Ball Mfg Co Ltd
Priority to JP2008109768A priority Critical patent/JP2009258033A/en
Publication of JP2009258033A publication Critical patent/JP2009258033A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To improve inspection precision and reliability of products by stably detecting a sphere surface defect and a sphere internal defect that influence the lifetime of bearings. <P>SOLUTION: In an inspection for a sphere surface defect and a sphere internal defect, a sphere 31 to be inspected is rotated meridian linear in a liquid by a rotary device; ultrasonic waves are transmitted from an ultrasonic probe 36 arranged at a predetermined location opposed to the sphere 31 to be inspected; the ultrasonic waves respectively returned are electrically converted after receiving ultrasonic waves propagate on the sphere surface along the surface of the sphere 31 to be inspected are reflected and returned and ultrasonic waves propagate to a sphere interior on the sphere surface are reflected and returned; and thus waveform signals are obtained and the presence of the sphere surface and the sphere internal defect is determined by the signal level. In advance of the inspection, it is preferred to clean the sphere to be inspected. After the inspection, the sphere is classified to a quality product or a defective product based on the inspection result. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は軸受け,ボールねじ、リニアガイド、等速ジョイント、ボール弁及び光学レンズ等に使用される鋼球並びにセラミックス球やガラス球等の加工時に発生する球表面欠陥、球内部に発生する材料欠陥(鋼では酸化物系介在物、セラミックス球では金属系介在物、ボアや焼結助剤の偏析など)など欠陥の有無を超音波を利用して検出する超音波探傷方式球自動検査方法ならびに該方法を実施する装置に関するものである。   The present invention relates to ball surface defects generated during processing of steel balls, ceramic balls and glass balls used for bearings, ball screws, linear guides, constant velocity joints, ball valves and optical lenses, and material defects generated inside the balls. (Ultrasonic flaw detection sphere automatic inspection method using ultrasonic waves to detect defects such as oxide inclusions in steel, metal inclusions in ceramic balls, segregation of bores and sintering aids) It relates to an apparatus for carrying out the method.

鋼球の外観検査装置では、従来、図5に示すように検査対象球11に光源12のフィラメントから光を当て、球からの反射光を受光素子13で受けて受光量の変化を電気変換し、電圧もしくは電流の変化に変換して判定部14においてその電気信号の変化量によって欠陥の有無の判定を行う光学検査方法が知られている(例えば特許文献1参照)。内部欠陥検査に関しては渦流探傷やX線を使った検査方法も知られている。   Conventionally, as shown in FIG. 5, a steel ball appearance inspection device applies light from a filament of a light source 12 to an inspection target ball 11 and receives light reflected from the ball by a light receiving element 13 to electrically convert a change in received light amount. An optical inspection method is known in which a determination unit 14 determines the presence / absence of a defect based on a change amount of an electric signal after being converted into a change in voltage or current (see, for example, Patent Document 1). For internal defect inspection, eddy current inspection and inspection methods using X-rays are also known.

しかし、上述のような光学検査方法の場合、一般的な軸受に使用される表面が鏡面状に仕上がっている鋼球では、表面に存在する材料製造時に発生した酸化物系介在物などの欠陥や球への加工時に発生した欠陥に関しては検出可能であるが、例えば材料製造時に発生した欠陥の場合は球の表面に現われず、球の内部に存在するため、光学検査方法ではこのような球の内部を検査することは原理的に不可能である。これら球内部に存在する材料製造時に発生した酸化物系介在物などの欠陥は軸受等で球を使用する場合に軸受寿命への多大な影響が懸念される。そのため通常、 渦流探傷やX線を使った検査手法も考えられるが、渦流探傷の場合、表面のみならず表面近傍の欠陥の検出も可能であるが、その検出条件として欠陥が表面に露出し開口していることが必要であり、表面に露出していない完全に内部に存在する微小欠陥の検出は困難である。またX線を使った検査手法では、一般に球を製造する場合はロット単位にて加工しており、そのロット個数は数万個から数十万個にもなり、検査タクトも無視できず、手動検査を行なえば多大な人件費及び処理時間を要するといった問題があった。一方、軸受用転動体の転動面表面及び表面近傍に存在する微小欠陥を迅速に検出できるものとして超音波を利用した方法ならびに装置も提案されている。(例えば特許文献2参照)
この方法または装置は超音波伝達媒体中に軸受用転動体及び超音波探触子を配置し、転動体にポンプ等の噴射手段によって回転自在に保持して前記探触子より超音波を送信し、反射してくる超音波エコーにより欠陥を検出する方法であり、転動体の表面および表面近傍に存在する微小欠陥を検出することが可能であると開示されている。
However, in the case of the optical inspection method as described above, in a steel ball having a mirror-like surface used for a general bearing, defects such as oxide inclusions generated at the time of manufacturing the material existing on the surface Defects that occur during processing into a sphere can be detected, but for example, defects that occur during material production do not appear on the surface of the sphere and are present inside the sphere. It is impossible in principle to inspect the inside. There is a concern that defects such as oxide inclusions generated during the production of materials existing inside the sphere have a great influence on the bearing life when the sphere is used in a bearing or the like. For this reason, eddy current flaw detection and inspection methods using X-rays are generally considered, but in the case of eddy current flaw detection, it is possible to detect not only the surface but also defects near the surface. Therefore, it is difficult to detect minute defects that are not exposed on the surface and are completely present inside. In addition, in the inspection method using X-rays, in general, when manufacturing a sphere, it is processed in lot units, the number of lots is from tens of thousands to hundreds of thousands, inspection tact can not be ignored, manual If the inspection is performed, there is a problem that a great labor cost and a processing time are required. On the other hand, a method and an apparatus using ultrasonic waves have been proposed as being capable of quickly detecting minute defects existing on the rolling surface of the rolling element for bearing and in the vicinity of the surface. (For example, see Patent Document 2)
In this method or apparatus, a rolling element for bearing and an ultrasonic probe are disposed in an ultrasonic transmission medium, and the ultrasonic wave is transmitted from the probe while being rotatably held by a rolling means such as a pump. In this method, defects are detected by reflected ultrasonic echoes, and it is disclosed that minute defects existing on the surface of a rolling element and in the vicinity of the surface can be detected.

また、一般的な超音波方式による検出装置として、球体ではないが、液中に被検査物を水没させた状態で超音波送信部より超音波を送信し、該送信部より送信された超音波の反射波を受信して検査を行うことも知られている。(例えば特許文献3参照)
特開2002−277226号公報 特公平5−84865号公報 特開2007−47056号公報
In addition, as a general ultrasonic detection device, although not a sphere, an ultrasonic wave is transmitted from an ultrasonic wave transmission unit in a state where an inspection object is submerged in a liquid, and an ultrasonic wave transmitted from the transmission unit It is also known to perform inspection by receiving the reflected wave. (For example, see Patent Document 3)
JP 2002-277226 A Japanese Patent Publication No. 5-84865 JP 2007-47056 A

しかし、上記超音波を利用した球体の検査においても球の表面や球表面近傍の欠陥の検出は可能であるとしても、それよりも内部の検査については殆ど言及されておらず、そのため球径によっては球内部に存在する材料製造時に発生した介在物などの欠陥の検出は充分とは言えず、軸受等で使用する場合に軸受寿命への多大な影響を免れなかった。特にポンプ等の噴射手段によって検査対象球を回転させることは液の管理及び制御が難しく、確実に検査対象球が子午線状に回転しているかの保証はなかった。   However, even in the inspection of the sphere using the ultrasonic wave, it is possible to detect defects on the surface of the sphere or in the vicinity of the surface of the sphere. However, the detection of defects such as inclusions produced during the production of the material existing inside the sphere was not sufficient, and when used in a bearing or the like, the influence on the bearing life was inevitable. In particular, it is difficult to manage and control the liquid by rotating the inspection target sphere with an injection means such as a pump, and there is no guarantee that the inspection target sphere is reliably rotating in a meridian shape.

本発明は上述の如き実状に鑑み、これに対処し、軸受等への影響を及ぼす球表面欠陥は勿論、玉軸受に動定格荷重相当の外部荷重が負荷された時に生ずる球内部の最大せん断応力発生位置(球径の約1.5〜1.75%)の約2倍の深さとなる球表面から球径の3.5%までの球内部欠陥の検査をいかなる球径においても確実に検出する超音波方式を見出すことにより光学検査に比し球表面及び内部の欠陥を容易かつ確実に検出して製品の信頼性を高めると共に、球の洗浄装置ならびに検査結果により良品,不良品を振り分ける装置等の結合を容易として作業性の向上をはかることを目的とするものである。   In view of the actual situation as described above, the present invention copes with this, and the maximum shear stress in the sphere generated when an external load equivalent to the dynamic load rating is applied to the ball bearing as well as the ball surface defect affecting the bearing and the like. Reliable detection at any sphere diameter for inspection of defects inside the sphere from the sphere surface to 3.5% of the sphere diameter, which is about twice as deep as the generation position (approximately 1.5 to 1.75% of the sphere diameter). As a result of finding an ultrasonic method, the defects on the sphere surface and inside can be detected more easily and reliably than in optical inspection to increase the reliability of the product, and a device that sorts non-defective and defective products according to the sphere cleaning device and inspection results. The purpose is to improve the workability by facilitating the coupling.

即ち、上記目的に適合する本発明の特徴は、液中で回転装置により検査対象球を子午線状に回転させて、該検査対象球に対向して所定の位置に配置された超音波探触子から検査対象球に超音波を送信し、検査対象球の表面に沿って球表面を伝播する超音波が反射されて戻る超音波と、球表面で球内部に伝播する超音波が反射されて戻る超音波を受信して夫々の戻った超音波を電気変換し、波形信号を得て該信号のレベルにより球体全表面及び内部の欠陥の有無を判定することを特徴とする超音波探傷方式球自動検査方法にある。請求項2は上記検査に先立ち検査対象球を洗浄し、清浄度を向上させることを特徴とする。   That is, the feature of the present invention that meets the above-described object is that an ultrasonic probe is arranged in a predetermined position opposite to the inspection object sphere by rotating the inspection object sphere in a meridian by a rotating device in the liquid. Transmits ultrasonic waves to the inspection target sphere, and ultrasonic waves propagating along the surface of the sphere along the surface of the inspection target sphere are reflected and returned, and ultrasonic waves propagating inside the sphere are reflected back. Ultrasonic flaw detection sphere automatic, characterized by receiving ultrasonic waves, electrically converting each returned ultrasonic wave, obtaining a waveform signal, and determining the presence or absence of defects on the entire surface of the sphere and the inside based on the level of the signal In the inspection method. According to a second aspect of the present invention, the inspection target sphere is washed prior to the inspection to improve the cleanliness.

請求項3は上記検査を終了した球の処理であり、検査終了後、排出されてきた球を自動的に良品と不良品に振り分けると共に、新たな検査対象球を検査部に投入することを特徴とする。   A third aspect of the present invention is a process for a sphere that has been subjected to the above-described inspection, and after the inspection has been completed, the discharged sphere is automatically assigned to a non-defective product and a defective product, and a new inspection target sphere is placed in the inspection unit. And

請求項4は上記検査方法を実施する検査装置であり、液中に浸漬されたドライブローラー,サポートローラー及び偏心ハスバギヤを取り付けたコントロールローラーよりなり、コントロールローラーの回転により検査対象球にひねりを与え、子午線状に回転させて保持する装置と、該装置により液中で保持された検査対象球に対向して液中の所定の位置に配置された超音波探触子と、超音波探触子から発信した超音波が検査対象球の表面及び内面で反射されて戻ってきた超音波を受信し電気変換して信号を処理する信号処理部と、前記超音波探触子を浸漬した液を浄化する液中浄化装置とからなる構成を特徴とする。   Claim 4 is an inspection apparatus for carrying out the above inspection method, comprising a drive roller, a support roller immersed in a liquid, a control roller having an eccentric helical gear attached thereto, and giving a twist to the ball to be inspected by the rotation of the control roller, An apparatus for rotating and holding in a meridian shape, an ultrasonic probe arranged at a predetermined position in the liquid facing the inspection object ball held in the liquid by the apparatus, and an ultrasonic probe The transmitted ultrasonic waves are reflected by the surface and inner surface of the inspection target sphere, and the ultrasonic waves that are returned are received and electrically converted to process the signals, and the liquid in which the ultrasonic probe is immersed is purified. It is characterized by a configuration comprising an in-liquid purification device.

本発明の超音波探傷方式の球自動検査法を利用することにより、球の表面及び球内部の最大せん断応力発生位置の約2倍の深さとなる球表面から球径の3.5%までの内部の、とりわけ30μm以上の欠陥を安定して検出することが可能となり、特に検査対象球を回転装置により順次、子午線状に球全表面を走査することと相俟って球全表面はもとよりその内部の自動検査がより確実に行なわれ、製品の信頼性を従前の方式に比し向上すると共に、手動検査に比し人件費,処理時間を大幅に縮減し、作業性をも向上することができる。   By utilizing the ultrasonic flaw detection automatic sphere inspection method of the present invention, the surface of the sphere and the sphere surface having a depth approximately twice the maximum shear stress generation position inside the sphere can be reduced to 3.5% of the sphere diameter. It is possible to stably detect internal defects, particularly 30 μm or more, and in particular, the entire surface of the sphere as well as the entire surface of the sphere, in combination with scanning the entire surface of the sphere in a meridian, sequentially by the rotating device. The internal automatic inspection is performed more reliably, and the reliability of the product is improved compared to the conventional method, and the labor cost and processing time are greatly reduced compared with the manual inspection, and the workability is also improved. it can.

以下、引き続き本発明の具体的実施形態について説明する。図1は本発明を実施するための検査装置の1態様を示す全体概要図であり、図2は本発明の要部をなす検査装置の要部を示す概要図である。   Hereinafter, specific embodiments of the present invention will be described. FIG. 1 is an overall schematic diagram showing one mode of an inspection apparatus for carrying out the present invention, and FIG. 2 is a schematic diagram showing a main part of the inspection apparatus constituting the main part of the present invention.

本発明検査を実施する検査装置は、図1に示す如く検査対象球を供給する供給装置1、供給した検査対象球を検査前に洗浄する自動ブラシ洗浄装置からなる洗浄装置2、液中に浸漬された回転機構を具えた検査部3を順次配設し、検査部3の液を浄化するための液中浄化装置4及び検査終了後の球を受けるための受け箱5を組み合わせることによって全体が構成されているが、後述する検査部3での検査方式を除いては、この配置構成は先に本出願人の出願に係る特開2002−277226号公報に詳述されているので詳細な説明は省略し、本発明の特徴とする検査部の構成について以下、図2に基づいて説明することとする。   As shown in FIG. 1, an inspection apparatus for carrying out the inspection of the present invention includes a supply apparatus 1 for supplying an inspection object sphere, a cleaning apparatus 2 including an automatic brush cleaning apparatus for cleaning the supplied inspection object sphere before the inspection, and immersion in a liquid. The inspection unit 3 having the rotation mechanism is sequentially arranged, and the whole is assembled by combining the submerged purification device 4 for purifying the liquid of the inspection unit 3 and the receiving box 5 for receiving the ball after the inspection is completed. Except for the inspection method in the inspection unit 3 to be described later, this arrangement configuration has been described in detail in Japanese Patent Application Laid-Open No. 2002-277226 related to the applicant's application. Is omitted, and the configuration of the inspection unit, which is a feature of the present invention, will be described below with reference to FIG.

図2は本発明の要部をなす検査部の構成の1例であり、図において31は検査対象球を示し、該球31は液中に浸漬配置されたドライブローラー32とサポートローラー33とコントロールローラー34によって所定の位置に保持されている。コントロールローラー34には偏心ハスバギヤ35が取り付けられており、ドライブローラー32を回転させることで、検査対象球31は回転し、それによりコントロールローラー34も回転するが、このとき上記コントロールローラー34に取り付けられている偏心ハスバギヤ35により検査対象球31にはひねりが与えられ、検査対象球31は子午線状に回転する仕組みになっている。   FIG. 2 shows an example of the configuration of the inspection unit constituting the main part of the present invention. In the figure, reference numeral 31 indicates a sphere to be inspected, and the sphere 31 includes a drive roller 32, a support roller 33 and a control which are immersed in the liquid. The roller 34 is held at a predetermined position. An eccentric helical gear 35 is attached to the control roller 34. By rotating the drive roller 32, the inspection target ball 31 rotates and thereby the control roller 34 also rotates. At this time, the control roller 34 is attached to the control roller 34. A twist is given to the inspection object sphere 31 by the eccentric helical gear 35, and the inspection object sphere 31 rotates in a meridian shape.

図中、36は本発明超音波方式検査において重要な要素をなす超音波探触子であり、前記一連の回転装置により子午線状に回転している検査対象球31に対向して液中で所定の位置に配置されていて子午線状に回転している検査対象球31の球表面に超音波を送信するようになっている。   In the figure, reference numeral 36 denotes an ultrasonic probe which is an important element in the ultrasonic system inspection of the present invention. The ultrasonic probe is opposed to the inspection target sphere 31 rotating in a meridian by the series of rotating devices and is predetermined in the liquid. The ultrasonic waves are transmitted to the sphere surface of the sphere 31 to be inspected which is arranged at the position and is rotating in a meridian manner.

超音波探触子36から送信された上記超音波は対向する検査対象球31に直進し検査対象球31の表面にて正反射して超音波探触子36に戻る超音波、検査対象球31の表面に沿って球表面を伝播する超音波、検査対象球31の表面で球内部に伝播する超音波に分けられる。そして球表面に球加工製作時に付いた欠陥がある場合は、検査対象球31の表面に沿って球表面を伝播する超音波にて欠陥部分で超音波が反射され、同じ経路を辿って、超音波探触子に戻ることになる。   The ultrasonic wave transmitted from the ultrasonic probe 36 travels straight to the opposing inspection object sphere 31, is regularly reflected on the surface of the inspection object sphere 31, and returns to the ultrasonic probe 36. Ultrasonic waves propagating along the surface of the sphere, and ultrasonic waves propagating inside the sphere on the surface of the sphere 31 to be inspected. If there is a defect on the sphere surface at the time of manufacturing the sphere, the ultrasonic wave is reflected on the defect portion by the ultrasonic wave propagating along the surface of the sphere 31 to be inspected, and follows the same path. Return to the acoustic probe.

また、球内部に材料製作時についた材料欠陥がある場合は、検査対象球31の表面で球内部に伝播する超音波にて欠陥部分で超音波が反射され、同じ経路を辿って超音波探触子に戻る。そして戻ったそれらの超音波は変換器40で電気変換されて波形となって信号が得られ、その信号のレベルを判定することで表面欠陥、内部欠陥の有無を判定することができる。   In addition, when there is a material defect in the sphere during material production, the ultrasonic wave is reflected on the surface of the inspection target sphere 31 by the ultrasonic wave propagating inside the sphere and follows the same path to detect the ultrasonic wave. Return to the tentacles. The returned ultrasonic waves are electrically converted by the converter 40 to obtain a signal as a waveform. By determining the level of the signal, the presence or absence of surface defects and internal defects can be determined.

なお、検査完了後、球を保持しているサポートローラー33が稼働し、球が上記検査部から排出されるが、排出された部分には良品、不良品を振り分ける判別ゲート37が設置されており、検査結果によりこの判別ゲート37が作動し、自動的に良品,不良品に振り分けられる。一方、球が排出されると同時に整流フィンガー38が上下動することにより待機している次の球39が1個だけ検査部へ投入され、この繰り返しにより連続的に検査が可能になっている。   In addition, after the inspection is completed, the support roller 33 holding the sphere is operated and the sphere is discharged from the inspection section, and a discrimination gate 37 for distributing the non-defective product and the defective product is installed in the discharged portion. The discrimination gate 37 is activated according to the inspection result, and is automatically assigned to a non-defective product or a defective product. On the other hand, when the sphere is discharged, the rectifying finger 38 moves up and down, so that only one next sphere 39 waiting is put into the inspection section, and the inspection can be continuously performed by repeating this operation.

超音波探傷法として、検査対象球の球径が5.5mm以下の場合は、表面波法により超音波を表面近傍に伝播させ欠陥の探傷を行う方法を用いることで球の最大せん断応力発生位置の約2倍の深さとなる球表面から球径の3.5%(約0.2mm)までの内部の欠陥の検出が可能である。また検査対象球の球径が5.5mmより大きい場合は、前記の表面波法だけでは球の最大せん断応力発生位置の約2倍の深さとなる球表面から球径の3.5%までの内部欠陥の探傷が困難であるため、斜角探傷及び垂直探傷を組み合わせて探傷することで球の最大せん断応力位置の約2倍の深さとなる球表面から球径の3.5%までの内部の欠陥の検出が可能である。   As the ultrasonic flaw detection method, when the diameter of the sphere to be inspected is 5.5 mm or less, the maximum shear stress generation position of the sphere can be obtained by using the surface wave method to propagate the ultrasonic wave near the surface to detect defects. It is possible to detect internal defects from the surface of the sphere having a depth about twice that of the sphere to 3.5% (about 0.2 mm) of the sphere diameter. In addition, when the sphere diameter of the sphere to be inspected is larger than 5.5 mm, the surface wave method alone allows the depth from the sphere surface to be about twice the maximum shear stress generation position of the sphere to 3.5% of the sphere diameter. Since it is difficult to detect internal defects, internal inspection from the surface of the sphere, which has a depth of about twice the maximum shear stress position of the sphere, to the inside of the sphere diameter of 3.5% by combining oblique angle inspection and vertical inspection. It is possible to detect defects.

ここで、上記使用する超音波探触子36としては、検査対象球の球径・材質にもよるが、例えば球径10mm前後の鋼球を検査するには、周波数5〜20MHz、エレメント径6mm程度が検査能力的に好ましい。セラミックス球を検査する際には、鋼球を検査する時よりも高周波数(30〜100MHz)な超音波探触子を使用することが検査能力的に好ましい。また超音波探触子を取り付けている治具は上下左右前後に容易に調整可能な構造となっており、超音波を球の任意の箇所に送信することができるようになっている。   Here, the ultrasonic probe 36 to be used depends on the sphere diameter and material of the sphere to be inspected. For example, in order to inspect a steel sphere having a sphere diameter of about 10 mm, the frequency is 5 to 20 MHz and the element diameter is 6 mm. The degree is preferable in terms of inspection capability. When inspecting ceramic spheres, it is preferable in terms of inspection capability to use an ultrasonic probe having a higher frequency (30 to 100 MHz) than when inspecting steel balls. Moreover, the jig to which the ultrasonic probe is attached has a structure that can be easily adjusted in the vertical and horizontal directions, and can transmit ultrasonic waves to any location of the sphere.

なお、回転装置及び超音波探触子を浸漬している液は、液中浄化装置によって浄化され、液中の塵やゴミなどの微小物及び気泡が除去されており、それら塵やゴミなどの微小物及び気泡による擬似欠陥信号による歩留まりの悪化を防ぎ検査精度の向上を図っている。また、ここで使用される液としては、油だけでなく水も使用可能であるが、機械の発錆を考慮し本発明では油を使用している。次に上記検査の実施例について説明する。   Note that the liquid in which the rotating device and the ultrasonic probe are immersed is purified by the in-liquid purification device to remove fines and bubbles such as dust and dirt in the liquid. The inspection accuracy is improved by preventing the deterioration of the yield due to the pseudo defect signal due to the minute objects and bubbles. Further, as the liquid used here, not only oil but also water can be used, but oil is used in the present invention in consideration of rusting of the machine. Next, examples of the inspection will be described.

上記装置を使用し、球径10mmの球をドライブローラー,サポートローラー,コントロールローラーの回転により子午線状に回転させて超音波探触子より球表面に超音波を送信した。この送信した超音波が球表面,球内部に伝播して戻ってきた超音波を受信し、変換器で波形信号によって確認したところ、正常な部分については図3(イ)に示すような波形が認められたが、NGと判定された球を超音波探傷にて確認したところ、図3(ロ)に示すような欠陥と思われる信号が確認された。そこで欠陥と思われる信号が確認された球を顕微鏡で球表面を確認したところ、球表面に加工時に発生した欠陥が確認された。なお、欠陥と思われた信号が確認された球でも球表面には欠陥が確認されなかった球に関して、球表面から数μmずつ削りながらその都度、顕微鏡にて確認した結果、深さ300μm程度付近に図4のような数十μmの酸化物系介在物の欠陥が確認された。また、図3(イ)の如く欠陥と思われる信号が見られなかった球についても同様に球表面の確認及び球表面から数μmづつ削りながらその都度、顕微鏡について確認したが欠陥は確認されなかった。従って本発明の超音波探傷検査により球全表面及び球内部の自動検査が可能であることが確認された。   Using the above apparatus, a sphere having a sphere diameter of 10 mm was rotated in a meridian manner by rotation of a drive roller, a support roller, and a control roller, and ultrasonic waves were transmitted from the ultrasonic probe to the sphere surface. When the transmitted ultrasonic wave is propagated to the surface of the sphere and returned to the inside of the sphere, the ultrasonic wave is received and confirmed by the waveform signal, and the waveform as shown in FIG. Although it was recognized, a sphere determined to be NG was confirmed by ultrasonic flaw detection. As a result, a signal considered to be a defect as shown in FIG. Therefore, when the surface of the sphere in which a signal that seems to be a defect was confirmed was confirmed with a microscope, defects that occurred during processing on the surface of the sphere were confirmed. In addition, even if the sphere was confirmed to have a defect, the sphere whose defect was not confirmed on the surface of the sphere was confirmed by a microscope each time it was cut from the sphere surface by several μm. In FIG. 4, defects of several tens of μm of oxide inclusions were confirmed. In addition, as for the sphere in which a signal that seems to be a defect was not seen as shown in FIG. 3 (a), the defect was not confirmed although the surface of the sphere was similarly confirmed and the microscope was confirmed each time the sphere surface was cut by several μm. It was. Therefore, it was confirmed that the entire surface of the sphere and the inside of the sphere can be automatically inspected by the ultrasonic flaw inspection of the present invention.

本発明検査装置の全体を概略的に示す図である。It is a figure showing roughly the present invention inspection device whole. 本発明検査装置の要部をなす検査部を概略的に示す図である。It is a figure which shows roughly the test | inspection part which makes the principal part of this invention test | inspection apparatus. 本発明による超音波を利用したときの信号波形を示し、(イ)は欠陥のない場合、(ロ)は欠陥がある場合である。The signal waveform at the time of utilizing the ultrasonic wave by this invention is shown, (A) is a case without a defect, (B) is a case with a defect. 本発明により検出された代表的な欠陥の顕微鏡写真である。It is a microscope picture of a typical defect detected by the present invention. 従来の検査装置の概要を示す図である。It is a figure which shows the outline | summary of the conventional inspection apparatus.

符号の説明Explanation of symbols

1:供給装置
2:洗浄装置
3:液中浄化装置
5:受け箱
31:検査対象球
32:ドライブローラー
33:サポートローラー
34:コントロールローラー
35:偏心ハスバギヤ
36:超音波探触子
37:判別ゲート
38:整流フィンガー
39:待機球
40:変換器
1: Supply device 2: Cleaning device 3: Submerged purification device 5: Receiving box 31: Ball to be inspected 32: Drive roller 33: Support roller 34: Control roller 35: Eccentric helical gear 36: Ultrasonic probe 37: Discrimination gate 38: Commutation finger 39: Standby ball 40: Converter

Claims (4)

液中で回転装置により検査対象球を子午線状に回転させて、該検査対象球に対向して所定の位置に配置された超音波探触子から検査対象球に超音波を送信し、検査対象球の表面に沿って球表面を伝播する超音波が反射されて戻る超音波と、球表面から球内部に伝播する超音波が反射されて戻る超音波を受信して夫々の戻った超音波を電気変換し、波形信号を得て該信号のレベルにより球体表面及び球内部の欠陥の有無を判定することを特徴とする超音波探傷方式球自動検査方法。   The inspection target sphere is rotated in a meridian by a rotating device in the liquid, and ultrasonic waves are transmitted to the inspection target sphere from the ultrasonic probe arranged at a predetermined position facing the inspection target sphere. The ultrasonic waves propagating along the surface of the sphere are reflected and returned, and the ultrasonic waves propagating from the sphere surface to the inside of the sphere are reflected and returned. An ultrasonic flaw detection type sphere automatic inspection method characterized by obtaining a waveform signal by electrical conversion and determining the presence or absence of a defect on the sphere surface and inside the sphere based on the level of the signal. 検査に先立ち検査対象球を洗浄し、清浄度を向上させる請求項1記載の超音波探傷方式球自動検査方法。   2. The ultrasonic flaw detection type sphere automatic inspection method according to claim 1, wherein the inspection target sphere is cleaned prior to the inspection to improve cleanliness. 検査終了後、排出されて来た球を自動的に良品と不良品に振り分けると共に、新たな検査対象球を検査部に投入する請求項1または2記載の超音波探傷方式球自動検査方法。   3. The ultrasonic flaw detection type ball automatic inspection method according to claim 1 or 2, wherein after the inspection is completed, the discharged balls are automatically distributed to a non-defective product and a defective product, and a new inspection target ball is thrown into the inspection unit. 液中に浸漬されたドライブローラー,サポートローラー及び偏心ハスバギヤを取り付けたコントロールローラーよりなり、コントロールローラーの回転により検査対象球にひねりを与え子午線状に回転させて保持する装置と、該装置により液中で支持された検査対象球に対向して液中の所定の位置に配置された超音波探触子と、超音波探触子から発信した超音波が検査対象球の表面及び内面で反射されて戻って来た超音波を受信し電気変換して信号を処理する信号処理部と、前記超音波探触子を浸漬した液を浄化する液中浄化装置からなることを特徴とする超音波方式球自動検査装置。   A device comprising a drive roller, a support roller immersed in the liquid, and a control roller having an eccentric helical gear attached thereto, a device that twists the sphere to be inspected by rotation of the control roller and holds it in a meridian shape, The ultrasonic probe arranged at a predetermined position in the liquid opposite to the inspection target sphere supported by, and the ultrasonic wave transmitted from the ultrasonic probe are reflected by the surface and the inner surface of the inspection target sphere. An ultrasonic system sphere comprising: a signal processing unit that receives and electrically converts a returned ultrasonic wave to process a signal; and an in-liquid purification device that purifies the liquid in which the ultrasonic probe is immersed. Automatic inspection device.
JP2008109768A 2008-04-21 2008-04-21 Automatic sphere inspection method and device with ultrasonic flaw detection system Pending JP2009258033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008109768A JP2009258033A (en) 2008-04-21 2008-04-21 Automatic sphere inspection method and device with ultrasonic flaw detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008109768A JP2009258033A (en) 2008-04-21 2008-04-21 Automatic sphere inspection method and device with ultrasonic flaw detection system

Publications (1)

Publication Number Publication Date
JP2009258033A true JP2009258033A (en) 2009-11-05

Family

ID=41385627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008109768A Pending JP2009258033A (en) 2008-04-21 2008-04-21 Automatic sphere inspection method and device with ultrasonic flaw detection system

Country Status (1)

Country Link
JP (1) JP2009258033A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110672726A (en) * 2019-11-14 2020-01-10 哈尔滨理工大学 Bearing rolling element defect detection equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03162666A (en) * 1989-11-21 1991-07-12 Ngk Insulators Ltd Ultrasonic flaw inspecting method for ball for structure member
JP2002277226A (en) * 2001-03-21 2002-09-25 Amatsuji Steel Ball Mfg Co Ltd Surface inspecting device for sphere

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03162666A (en) * 1989-11-21 1991-07-12 Ngk Insulators Ltd Ultrasonic flaw inspecting method for ball for structure member
JP2002277226A (en) * 2001-03-21 2002-09-25 Amatsuji Steel Ball Mfg Co Ltd Surface inspecting device for sphere

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110672726A (en) * 2019-11-14 2020-01-10 哈尔滨理工大学 Bearing rolling element defect detection equipment

Similar Documents

Publication Publication Date Title
CN101023344B (en) Ultrasonic defect detector and defect detection method for rolling bearing
US8166821B2 (en) Non-destructive test evaluation of welded claddings on rods of hydraulic cylinders used for saltwater, brackish and freshwater applications
JP4596331B2 (en) Ultrasonic flaw detection method for pipe threaded joints
JP2010127618A (en) Automatic sphere inspection method and device for the same with ultrasonic flaw detection system
JP2010127621A (en) Automatic sphere inspection method and device for the same with ultrasonic flaw detection system
CN105628787A (en) Nondestructive detection method for wind power yawing and pitch-variable bearing
JP5325394B2 (en) Ultrasonic flaw detection method, ultrasonic flaw detection apparatus and ultrasonic flaw detection system for shaft member
JP2008032681A (en) Inspection method of rolling device component, and inspection device for rolling device component
JP2009258033A (en) Automatic sphere inspection method and device with ultrasonic flaw detection system
Marty et al. Latest development in the UT inspection of train wheels and axles
JP2007248420A (en) Method, apparatus, and system for ultrasonic flaw detection of shaft member
US6769957B2 (en) Creeping wave technique for mill roll inspection
EP0981047A3 (en) Method and apparatus for ultrasonic inspection of steel pipes
JP5428883B2 (en) Roller outer surface crack diagnostic apparatus and diagnostic method
JP3052550B2 (en) Bevel probe for ultrasonic flaw detection
JP2008170408A (en) Method and device for inspecting nonmetallic inclusion in component of rolling apparatus
JP2006234807A (en) Defect detecting method
JP2015094588A (en) Ultrasonic flaw inspection method of measurement target object material
JPH04276547A (en) Ultrasonic testing method for surface layer part of cylindrical body
JP2016102665A (en) Ultrasonic flaw detection device
JP2008089337A (en) Defect inspection method and defect inspection device for metal component
JP2008032682A (en) Method and apparatus for inspecting rolling device component
JP2726359B2 (en) Ultrasonic flaw detector for cylindrical surface
JP2002122573A (en) Method and apparatus for inspection of defect of round material
JP2006220477A (en) Nondestructive inspection method of metal piping

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120911