JP2006220477A - Nondestructive inspection method of metal piping - Google Patents

Nondestructive inspection method of metal piping Download PDF

Info

Publication number
JP2006220477A
JP2006220477A JP2005032833A JP2005032833A JP2006220477A JP 2006220477 A JP2006220477 A JP 2006220477A JP 2005032833 A JP2005032833 A JP 2005032833A JP 2005032833 A JP2005032833 A JP 2005032833A JP 2006220477 A JP2006220477 A JP 2006220477A
Authority
JP
Japan
Prior art keywords
metal
piping
pipe
weld line
inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005032833A
Other languages
Japanese (ja)
Inventor
Katsuhiko Toda
勝彦 戸田
Taizo Furuyama
泰造 古山
Yoshimasa Takahashi
義政 高橋
Nobuaki Hirota
信明 広田
Makoto Shindo
誠 進藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Non Destructive Inspection Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Non Destructive Inspection Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd, Non Destructive Inspection Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2005032833A priority Critical patent/JP2006220477A/en
Publication of JP2006220477A publication Critical patent/JP2006220477A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nondestructive inspection method of metal piping constituted so as to inspect changes in morphology of the piping metal, which exists on the inside parts, surrounded by a weld line of the metal piping and cannot be inspected directly, because another structure has been welded to the outer surface of the metal piping and the piping metal exists at the inside part surrounded by weld line, in a nondestructive manner, and that has superior effects of being capable of inspecting the metal piping accurately and rapidly. <P>SOLUTION: In the method for inspecting the change in the form of the piping metal, which is provided at the inside part, surrounded by the weld line of the metal piping and cannot be inspected directly, because another structure is welded to the outer surface of the metal piping, and the piping metal is present at the inside part surrounded by the weld line, in a nondestructive manner, a probe of a ultrasonic guide wave method is placed on the outside of the part surrounded by the weld line in the vicinity of an inspection part. As the metal for the metal piping, iron can be cited. As a specific example of piping, piping for transporting a fluid in a chemical plant can be cited, and there is no restriction on the size or the shape of the piping. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、金属配管の非破壊検査方法に関するものである。更に詳しくは、本発明は、金属配管の外面に他の構造物が溶接されており、溶接線に囲まれた内側部分にあってその部分を直接検査できない配管金属の形態変化を非破壊的に検査する方法であって、正確かつ迅速に実施することができるという優れた効果を有する金属配管の非破壊検査方法に関するものである。   The present invention relates to a nondestructive inspection method for metal piping. More specifically, the present invention provides a non-destructive change in the shape of a pipe metal in which other structures are welded to the outer surface of the metal pipe and the inner part surrounded by the weld line cannot be directly inspected. The present invention relates to a non-destructive inspection method for metal piping, which has an excellent effect of being able to be performed accurately and quickly.

金属配管の形態変化を非破壊的に検査する方法としては、放射線検査法、超音波斜角法等が知られている(たとえば、特許文献1参照)。   As a method for nondestructively inspecting the shape change of a metal pipe, a radiation inspection method, an ultrasonic oblique angle method, and the like are known (for example, see Patent Document 1).

しかしながら、放射線検査法には金属配管板厚に制限があり、大口径の金属配管では検査が困難という問題点がある。   However, the radiation inspection method has a limitation in the metal pipe plate thickness, and there is a problem that inspection is difficult with a large-diameter metal pipe.

また、超音波斜角法には金属配管の板厚と超音波の入射角度により、探触子より超音波の届く範囲に制限があり、探触子より離れた部分では形態変化を検出することが困難という問題点がある。   In addition, the ultrasonic oblique angle method limits the range of ultrasonic waves that can be reached from the probe due to the thickness of the metal pipe and the incident angle of the ultrasonic waves, and detects changes in the shape at a distance from the probe. There is a problem that is difficult.

特開2003-14704号公報Japanese Patent Laid-Open No. 2003-14704

かかる状況において、本発明が解決しようとする課題は、金属配管の外面に他の構造物が溶接されており、溶接線に囲まれた内側部分にあってその部分を直接検査できない配管金属の形態変化を非破壊的に検査する方法であって、正確かつ迅速に実施することができるという優れた効果を有する金属配管の非破壊検査方法を提供する点にある。   In such a situation, the problem to be solved by the present invention is the form of the pipe metal in which another structure is welded to the outer surface of the metal pipe and the inner part surrounded by the weld line cannot directly inspect the part. It is a method for non-destructively inspecting a change, and is to provide a non-destructive inspection method for metal piping having an excellent effect that it can be carried out accurately and quickly.

すなわち、本発明は、金属配管の外面に他の構造物が溶接されており、溶接線に囲まれた内側部分にあってその部分を直接検査できない配管金属の形態変化を非破壊的に検査する方法であって、該検査部部分近傍で溶接線で囲まれた部分の外側に超音波ガイドウエーブ法の探触子を置いて検査する金属配管の非破壊検査方法に係るものである。   That is, the present invention nondestructively inspects the shape change of the pipe metal in which another structure is welded to the outer surface of the metal pipe and the inner part surrounded by the weld line cannot directly inspect the part. The method relates to a non-destructive inspection method for metal pipes in which an ultrasonic guide wave probe is placed outside a portion surrounded by a weld line in the vicinity of the inspection portion.

本発明により、金属配管の外面に他の構造物が溶接されており、溶接線に囲まれた内側部分にあってその部分を直接検査できない配管金属の形態変化を非破壊的に検査する方法であって、正確かつ迅速に実施することができるという優れた効果を有する金属配管の非破壊検査方法を提供することができる。   According to the present invention, in the method of nondestructively inspecting the shape change of the pipe metal in which another structure is welded to the outer surface of the metal pipe and the inner part surrounded by the weld line cannot directly inspect the part. Thus, it is possible to provide a non-destructive inspection method for metal pipes having an excellent effect of being able to be performed accurately and quickly.

本発明は、金属配管の外面に他の構造物が溶接されており、溶接線に囲まれた内側部分にあってその部分を直接検査できない配管金属の形態変化を非破壊的に検査する方法であある。   The present invention is a method for non-destructively inspecting a change in shape of a pipe metal, in which another structure is welded to the outer surface of the metal pipe, and the inner part surrounded by the weld line cannot directly inspect the part. There is.

金属配管の金属としては、鉄をあげることができる。配管の具体例としては、化学プラント内で流体を輸送するための配管をあげることができる。配管の大きさや形状に制限はない。   Iron can be used as the metal of the metal pipe. As a specific example of piping, piping for transporting a fluid in a chemical plant can be given. There are no restrictions on the size or shape of the piping.

金属配管の外面に溶接された他の構造物としては、配管を支持するための構造物を例示することができる。   As another structure welded to the outer surface of metal piping, the structure for supporting piping can be illustrated.

配管金属の形態変化としては、腐食に起因する配管の肉厚減少によるものを例示することができる。   Examples of the shape change of the pipe metal include those caused by a reduction in the thickness of the pipe due to corrosion.

配管に他の構造物が溶接により接合され、該溶接線に囲まれた内側部分は直接検査することができない。本発明によると、かかる部分を非破壊的に迅速かつ正確に検査することができる。   Another structure is joined to the pipe by welding, and the inner part surrounded by the weld line cannot be directly inspected. According to the present invention, such a portion can be inspected quickly and accurately in a non-destructive manner.

本発明は、検査部部分近傍で溶接線で囲まれた部分の外側に超音波ガイドウエーブ法の探触子を置いて検査する。   In the present invention, an ultrasonic guide wave probe is placed on the outside of the portion surrounded by the weld line in the vicinity of the inspection portion to inspect.

超音波ガイドウエーブ法による検査方法は公知であり、たとえば「最近の超音波非破壊検査技術」(保守検査特別研究委員会ミニシンポジューム)、「ガイド波を利用した大型構造物の非破壊評価」(第10回超音波による非破壊評価シンポジューム講演論文集)に記載されている。従来、超音波ガイドウエーブ法は鋼板の板厚等の検査に用いられており、本発明のように特殊な部分の検査に適用することは知られていない。   Inspection methods using the ultrasonic guided wave method are well known. For example, “Recent ultrasonic non-destructive inspection technology” (Minimum Symposium of Maintenance Inspection Special Research Committee), “Non-destructive evaluation of large structures using guide waves” ( The 10th non-destructive evaluation symposium on ultrasonics). Conventionally, the ultrasonic guide wave method has been used for inspection of the plate thickness of a steel sheet, and it is not known to be applied to inspection of a special part as in the present invention.

次に本発明を実施例により説明する。
実施例1
図1に示す金属配管011の外面に溶接101された配管を支持するための構造物012について該溶接線に囲まれた内側部分の腐食に起因する肉厚減少103について検査を行った際のガイドウエイブ法による超音波の伝播102及び溶接101と腐食に起因する肉厚減少103の肉厚変化部分における反射波の様子を図で示したものである。
配管を支持するための構造物012が溶接101された金属配管011について検査を目的とする該溶接線近くで腐食に起因する肉厚減少103があると予想される方向に向けて超音波ガイドウエイブ法の探触子001を置き検査を実施する。
検査結果として検査装置に表示されたオシロスコープ画面110では時間軸(探触子からの距離)で溶接101の部分を示す反射波111及び腐食に起因する肉厚減少103の部分を示す反射波112が表示される。
この腐食による肉厚減少を示す反射波112の時間軸方向の広がりと振幅の触れ幅によりこの金属配管011の外面に溶接101された配管を支持するための構造物012について該溶接線に囲まれた内側部分の腐食に起因する肉厚減少103の位置及び広がりと深さを判定する。
Next, the present invention will be described with reference to examples.
Example 1
FIG. 1 shows a structure 012 for supporting a pipe welded 101 to the outer surface of a metal pipe 011. A guide for inspecting a thickness reduction 103 caused by corrosion of an inner portion surrounded by the weld line. The state of the reflected wave in the thickness change part of the ultrasonic wave propagation 102 by the wave method and the weld 101 and the thickness reduction 103 caused by corrosion is shown in the figure.
An ultrasonic guide wave toward the direction where it is expected that there is a thickness reduction 103 due to corrosion near the weld line for the purpose of inspection of the metal pipe 011 to which the structure 012 for supporting the pipe is welded 101. Place the legal probe 001 and inspect.
On the oscilloscope screen 110 displayed on the inspection device as the inspection result, the reflected wave 111 indicating the weld 101 portion on the time axis (distance from the probe) and the reflected wave 112 indicating the thickness reduction portion 103 due to corrosion are displayed. Is displayed.
The structure 012 for supporting the pipe welded 101 to the outer surface of the metal pipe 011 is surrounded by the weld line by the spread in the time axis direction of the reflected wave 112 indicating the thickness reduction due to the corrosion and the touch width of the amplitude. Determine the location and extent and depth of the thickness reduction 103 due to corrosion of the inner part.

実施例2
図2に縦方向の金属配管011に溶接101された配管を支持するための構造物012について該溶接線に囲まれた内側部分の腐食に起因する肉厚減少103について検査を行った際のガイドウエイブ法による検査の実際の方法を示す。
探触子001を検査対象となる配管を支持するための構造物012近くの金属配管011にあてて検査を開始する。
検査開始後、探触子001は配管を支持するための構造物012の中心線に対し平行に走査し走査開始点からの移動した位置情報をエンコーダー002で記録すると同時に、実施例1と同様にオシロスコープ画面110を連続的に記録する。
図3に連続的に記録したデータを画像処理により変換したデータを示す。
図2の要領で記録したデータは、図3の様に横軸に探触子001の位置を示し、縦軸に探触子001で採取した反射波104の探触子001からの距離を示す。
更に反射波104の大きさを示す振幅は画像処理により振幅0を白又は任意の色で示し、振幅の最大を黒とする段階的な色の変化で表示する。
これにより図3で示された記録では溶接線を示す反射波や腐食による肉厚減少を示す反射波103を黒又は濃い色の密集した画像で表現し、腐食により肉厚減少した部分の位置と範囲及び腐食の深さを画像データで読み取ることができる。
Example 2
FIG. 2 shows a guide for inspecting the thickness reduction 103 caused by the corrosion of the inner part surrounded by the weld line of the structure 012 for supporting the pipe welded 101 to the vertical metal pipe 011. The actual method of inspection by the wave method is shown.
The inspection is started by applying the probe 001 to the metal pipe 011 near the structure 012 for supporting the pipe to be inspected.
After the start of the inspection, the probe 001 scans in parallel with the center line of the structure 012 for supporting the pipe, records the position information moved from the scanning start point by the encoder 002, and at the same time as in the first embodiment. The oscilloscope screen 110 is continuously recorded.
FIG. 3 shows data obtained by converting the continuously recorded data by image processing.
The data recorded in the manner of FIG. 2 shows the position of the probe 001 on the horizontal axis as shown in FIG. 3, and the distance from the probe 001 of the reflected wave 104 collected by the probe 001 on the vertical axis. .
Further, the amplitude indicating the magnitude of the reflected wave 104 is displayed by a stepwise color change in which the amplitude 0 is indicated by white or an arbitrary color by image processing and the maximum amplitude is black.
Thus, in the recording shown in FIG. 3, the reflected wave 103 indicating the weld line and the reflected wave 103 indicating the thickness reduction due to corrosion are expressed by a dense image of black or dark color, Range and depth of corrosion can be read with image data.

実施例3
図4に曲がり配管013に溶接101された配管を支持するための構造物012について該溶接線に囲まれた内側部分の腐食に起因する肉厚減少103について検査を行った際のガイドウエイブ法による検査の実際の方法を示す。
実施例2と同様に探触子001を曲がり配管013に溶接101された配管を支持するための構造物012の近くにあてて、曲がり配管013の軸方向に平行に探触子001を走査する。
この際の探触子001の位置情報をエンコーダー002で記録すると同時に、実施例1と同様にオシロスコープ画面110を連続的に記録する。
この連続的に記録したデータを実施例2の図3同様の画像処理により変換したデータで表示することで曲がり配管013に溶接101された配管を支持するための構造物012について該溶接線に囲まれた内側部分の腐食に起因する肉厚減少103について位置と範囲及び腐食の深さを画像データで読み取ることができる。
Example 3
FIG. 4 shows a guide wave method when the structure 012 for supporting the pipe 101 welded to the bent pipe 013 is inspected for the thickness reduction 103 caused by the corrosion of the inner part surrounded by the weld line. The actual method of inspection is shown.
Similar to the second embodiment, the probe 001 is placed near the structure 012 for supporting the pipe welded 101 to the bent pipe 013, and the probe 001 is scanned parallel to the axial direction of the bent pipe 013. .
At this time, the position information of the probe 001 is recorded by the encoder 002, and at the same time, the oscilloscope screen 110 is continuously recorded as in the first embodiment.
The continuously recorded data is displayed as data converted by image processing similar to that in FIG. 3 of the second embodiment, so that the structure 012 for supporting the pipe welded 101 to the bent pipe 013 is surrounded by the weld line. The position and range of the thickness reduction 103 caused by the corrosion of the inner portion and the depth of the corrosion can be read with image data.

比較例1
実施例1と同様の金属配管011の外面に溶接101された配管を支持するための構造物012について該溶接線に囲まれた内側部分の腐食に起因する肉厚減少103の検査について特開2003-14704号記載の検査手段とする高出力超音波斜角探傷法により検査を実施した場合を図5に示す。
高出力超音波斜角探傷法探触子から出された超音波は金属配管011の内面で反射し再び表面に達した際に表面に存在する腐食に起因する肉厚減少103に到達した時に反射波となり探触子で反射波を受信する。
しかし、この腐食に起因する肉厚減少103よりさらに奥側に存在する腐食に起因する肉厚減少104には超音波は到達する事無く超音波は全て腐食に起因する肉厚減少103で反射波となり奥に存在する腐食に起因する肉厚減少104を検出することは出来ない。
また、特開2003-14704号公報記載の検査手段とする高出力超音波斜角探傷法で検査可能な範囲に腐食に起因する肉厚減少103が存在しなかった場合を図6に示す。
特開2003-14704号記載の検査手段とする高出力超音波斜角探傷法では超音波の設定角度にもよるが、金属配管011の板厚に対して2〜5倍程度の範囲が一般的な検査可能な限界である。
この検査可能とされる範囲に腐食に起因する肉厚減少103が存在せず、遠くに存在した場合位置や腐食の程度の判定が困難となる。
解決手段とする実施例1のガイドウエイブ法では超音波は金属配管011の断面全体を伝播するため、腐食に起因する肉厚減少103が存在して一部の超音波はこれにより反射波となるものの、殆どの超音波はさらに先へ伝播を続けるため複数の腐食に起因する肉厚減少104が存在しても夫々に反射波を発生するため夫々の反射波を受信して位置を示すことが可能である。
この方法では金属配管011の表面状態や腐食に起因する肉厚減少103の数や広さ、深さにより超音波の到達する距離は変化するものの、金属配管011の肉厚に関係無く 200mm〜500mmの距離について検査が可能である。
Comparative Example 1
Regarding the structure 012 for supporting the pipe welded 101 to the outer surface of the metal pipe 011 similar to that of the first embodiment, the inspection of the thickness reduction 103 caused by the corrosion of the inner part surrounded by the weld line FIG. 5 shows a case where the inspection is performed by the high-power ultrasonic oblique flaw detection method as the inspection means described in No. -14704.
High-power ultrasonic oblique angle flaw detection method Ultrasonic waves emitted from the probe are reflected on the inner surface of the metal pipe 011 and are reflected when they reach the thickness reduction 103 due to corrosion existing on the surface when they reach the surface again. It becomes a wave and the reflected wave is received by the probe.
However, the ultrasonic wave does not reach the thickness reduction 104 caused by the corrosion existing further than the thickness reduction 103 caused by this corrosion, and all the ultrasonic waves are reflected by the thickness reduction 103 caused by the corrosion. Therefore, it is impossible to detect the thickness reduction 104 caused by the corrosion existing in the back.
FIG. 6 shows a case where the thickness reduction 103 due to corrosion does not exist in the range that can be inspected by the high-power ultrasonic oblique flaw detection method as the inspection means described in Japanese Patent Laid-Open No. 2003-14704.
In the high-power ultrasonic oblique angle flaw detection method as an inspection means described in Japanese Patent Laid-Open No. 2003-14704, although it depends on the set angle of the ultrasonic wave, a range of about 2 to 5 times the thickness of the metal pipe 011 is generally used. This is the limit that can be inspected.
The thickness reduction 103 caused by corrosion does not exist in the range in which this inspection is possible, and if it exists far away, it is difficult to determine the position and the degree of corrosion.
In the guide wave method of the first embodiment as a solution, since the ultrasonic wave propagates through the entire cross section of the metal pipe 011, there is a thickness reduction 103 due to corrosion, and a part of the ultrasonic wave becomes a reflected wave thereby. However, since most ultrasonic waves continue to propagate further, even if there are multiple thickness reductions 104 due to multiple corrosions, they generate their own reflected waves, so they can receive each reflected wave and indicate its position. Is possible.
In this method, although the distance that the ultrasonic wave reaches varies depending on the number, width, and depth of the thickness reduction 103 due to the surface condition and corrosion of the metal pipe 011, it is 200 mm to 500 mm regardless of the thickness of the metal pipe 011. Can be inspected.

ガイドウエイブ法の超音波伝播とオシロスコープで表示された検査結果の説明図である。It is explanatory drawing of the test result displayed with the ultrasonic wave propagation of the guide wave method and an oscilloscope. 縦方向金属配管検査方法の説明図である。It is explanatory drawing of the vertical direction metal piping inspection method. オシロスコープに表示された検査結果について画像処理変換した検査結果の図である。It is a figure of the inspection result which carried out image processing conversion about the inspection result displayed on the oscilloscope. 曲がり金属配管検査方法の説明図である。It is explanatory drawing of the bending metal piping inspection method. 超音波斜角法による連続した腐食に起因する肉厚減少検査方法の説明図である。It is explanatory drawing of the thickness reduction inspection method resulting from the continuous corrosion by an ultrasonic bevel method. 超音波斜角法による検査可能な範囲外に腐食に起因する肉厚減少がある場合の検査方法の説明図である。It is explanatory drawing of the test | inspection method when there exists thickness reduction resulting from corrosion out of the range which can be test | inspected by the ultrasonic bevel method.

符号の説明Explanation of symbols

001:超音波探触子
002:エンコーダー
011:金属配管
012:配管を支持するための構造物
013:曲がりを含む金属配管
101:溶接
102:超音波ガイド波
103:腐食に起因する肉厚減少
104:探触子より遠い位置に存在する腐食に起因する肉厚減少
110:オシロスコープに表示された検査結果
111:溶接部を示す振幅
112:腐食による肉厚減少を示す振幅
001: Ultrasonic probe
002: Encoder
011: Metal piping
012: Structure for supporting piping
013: Metal piping including bending
101: Welding
102: Ultrasonic guide wave
103: Wall thickness reduction due to corrosion
104: Thickness reduction due to corrosion existing far from the probe
110: Test results displayed on the oscilloscope
111: Amplitude indicating the weld
112: Amplitude indicating thickness reduction due to corrosion

Claims (5)

金属配管の外面に他の構造物が溶接されており、溶接線に囲まれた内側部分にあってその部分を直接検査できない配管金属の形態変化を非破壊的に検査する方法であって、該検査部部分近傍で溶接線で囲まれた部分の外側に超音波ガイドウエーブ法の探触子を置いて検査する金属配管の非破壊検査方法。 A method of non-destructively inspecting a change in the shape of a pipe metal in which another structure is welded to the outer surface of the metal pipe and the inner part surrounded by the weld line cannot directly inspect the part, A nondestructive inspection method for metal pipes in which an ultrasonic guide wave probe is placed outside the portion surrounded by the weld line near the inspection portion. 配管金属が鉄である請求項1記載の方法。 The method according to claim 1, wherein the pipe metal is iron. 配管金属の形態変化が腐食に起因する配管の肉厚減少によるものである請求項1記載の方法。 The method according to claim 1, wherein the change in shape of the pipe metal is due to a reduction in the thickness of the pipe due to corrosion. 構造物が配管を支持するための構造物である請求項1記載の方法。 The method according to claim 1, wherein the structure is a structure for supporting a pipe. 配管が化学プラント内で流体を輸送するためのものである請求項1記載の方法。 The method of claim 1 wherein the piping is for transporting fluid within a chemical plant.
JP2005032833A 2005-02-09 2005-02-09 Nondestructive inspection method of metal piping Pending JP2006220477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005032833A JP2006220477A (en) 2005-02-09 2005-02-09 Nondestructive inspection method of metal piping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005032833A JP2006220477A (en) 2005-02-09 2005-02-09 Nondestructive inspection method of metal piping

Publications (1)

Publication Number Publication Date
JP2006220477A true JP2006220477A (en) 2006-08-24

Family

ID=36982907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005032833A Pending JP2006220477A (en) 2005-02-09 2005-02-09 Nondestructive inspection method of metal piping

Country Status (1)

Country Link
JP (1) JP2006220477A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102841143A (en) * 2012-08-29 2012-12-26 广东电网公司电力科学研究院 Method for detecting corrosion of grounded grid circular steel bar based on lateral loading of piezoelectric sensors
CN103207237A (en) * 2013-03-04 2013-07-17 江苏大学 Detection method of weld joint characteristic guided wave of butt weld

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62113060A (en) * 1985-11-12 1987-05-23 Idemitsu Petrochem Co Ltd Ultrasonic flaw detection method and apparatus for pipe body
JPH08233786A (en) * 1995-02-23 1996-09-13 Totsuka Denshi Keisoku Kenkyusho:Kk Method and apparatus for inspecting surface layer of metallic body based on propagation time of ultrasonic wave
JP2002148385A (en) * 2000-11-14 2002-05-22 Toshiba Corp In-reactor line inspection apparatus
JP2002243704A (en) * 2001-02-22 2002-08-28 Osaka Gas Co Ltd Method and device for inspecting corrosion

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62113060A (en) * 1985-11-12 1987-05-23 Idemitsu Petrochem Co Ltd Ultrasonic flaw detection method and apparatus for pipe body
JPH08233786A (en) * 1995-02-23 1996-09-13 Totsuka Denshi Keisoku Kenkyusho:Kk Method and apparatus for inspecting surface layer of metallic body based on propagation time of ultrasonic wave
JP2002148385A (en) * 2000-11-14 2002-05-22 Toshiba Corp In-reactor line inspection apparatus
JP2002243704A (en) * 2001-02-22 2002-08-28 Osaka Gas Co Ltd Method and device for inspecting corrosion

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102841143A (en) * 2012-08-29 2012-12-26 广东电网公司电力科学研究院 Method for detecting corrosion of grounded grid circular steel bar based on lateral loading of piezoelectric sensors
CN103207237A (en) * 2013-03-04 2013-07-17 江苏大学 Detection method of weld joint characteristic guided wave of butt weld

Similar Documents

Publication Publication Date Title
CA2496370C (en) Ultrasonic flaw detecting method and ultrasonic flaw detector
JP4166222B2 (en) Ultrasonic flaw detection method and apparatus
JP2009186489A (en) Ultrasonic flaw detector
JP2009229064A (en) Ultrasonic inspection method and ultrasonic inspection device
Long et al. Ultrasonic phased array inspection using full matrix capture
JP6758083B2 (en) Piping inspection equipment
JP5565904B2 (en) Method for identifying surface shape of ultrasonic testing specimen, identification program, aperture synthesis processing program, and phased array testing program
JP6397252B2 (en) Inspection method for remaining life of welded parts of heat-resistant materials
Lozev et al. Evaluation of methods for detecting and monitoring of corrosion damage in risers
JP2011027571A (en) Piping thickness reduction inspection apparatus and piping thickness reduction inspection method
JP5132886B2 (en) Boundary surface position detection method and boundary surface position detection device
JP4144703B2 (en) Tube inspection method using SH waves
JP2006220477A (en) Nondestructive inspection method of metal piping
JP2008164396A (en) Flaw detection method and flaw detector used therefor
JP2008070283A (en) Ultrasonic guide wave non-destructive inspection method and apparatus
JP6387161B2 (en) Damage analysis method for piping
JP4364031B2 (en) Ultrasonic flaw detection image processing apparatus and processing method thereof
JP5428883B2 (en) Roller outer surface crack diagnostic apparatus and diagnostic method
JP2008164397A (en) Flaw detection method and flaw detector used therein
Lozev et al. Optimized inspection of thin-walled pipe welds using advanced ultrasonic techniques
JPH10274642A (en) Ultrasonic sensor, flaw detector and detecting method
JP2019138700A (en) Welded part flaw detector and method for detecting flaw
JP2017191114A (en) Planning method of maintenance of piping
JP2010048817A (en) Nondestructive inspection device and method using guide wave
Edwards et al. Detection of corrosion in offshore risers using guided ultrasonic waves

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071009

RD04 Notification of resignation of power of attorney

Effective date: 20080124

Free format text: JAPANESE INTERMEDIATE CODE: A7424

RD04 Notification of resignation of power of attorney

Effective date: 20080520

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100423

A131 Notification of reasons for refusal

Effective date: 20100511

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20101005

Free format text: JAPANESE INTERMEDIATE CODE: A02