JP4636967B2 - Ultrasonic flaw detection method - Google Patents

Ultrasonic flaw detection method Download PDF

Info

Publication number
JP4636967B2
JP4636967B2 JP2005227173A JP2005227173A JP4636967B2 JP 4636967 B2 JP4636967 B2 JP 4636967B2 JP 2005227173 A JP2005227173 A JP 2005227173A JP 2005227173 A JP2005227173 A JP 2005227173A JP 4636967 B2 JP4636967 B2 JP 4636967B2
Authority
JP
Japan
Prior art keywords
ultrasonic
incident
ultrasonic probe
center
inspected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005227173A
Other languages
Japanese (ja)
Other versions
JP2007040906A (en
Inventor
裕久 山田
泰士 長谷川
竜一 本間
豊 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Fukujukogyo Co Ltd
Original Assignee
Nippon Steel Corp
Fukujukogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Fukujukogyo Co Ltd filed Critical Nippon Steel Corp
Priority to JP2005227173A priority Critical patent/JP4636967B2/en
Publication of JP2007040906A publication Critical patent/JP2007040906A/en
Application granted granted Critical
Publication of JP4636967B2 publication Critical patent/JP4636967B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、金属材料又は無機材料からなる被検査体の内部に超音波を入射させ、被検査体内部の欠陥から反射してくる反射エコーを検出することにより、当該欠陥を検出する超音波探傷法に関する。特に、被検査体の超音波照射断面が薄く、かつ探傷すべき欠陥が奥深い部分にあるときに用いて好適な超音波探傷技術である。   The present invention relates to ultrasonic flaw detection for detecting a defect by causing an ultrasonic wave to enter an inspection object made of a metal material or an inorganic material and detecting a reflected echo reflected from the defect inside the inspection object. Regarding the law. In particular, this is an ultrasonic flaw detection technique suitable for use when the ultrasonic irradiation cross section of the object to be inspected is thin and the defect to be flawed is in a deep part.

鋼材やアルミ材などの金属材料や無機材料の内部にある介在物や、鋼材同士を溶接したときの溶接部の不良といった被検査体の欠陥を検出するために、被検査体に超音波を入射させて当該欠陥による反射エコーの有無を調べることが広く行われている。例えば、超音波を被検査体の表面に垂直に入射させる垂直探傷法や、斜めに入射させる斜角探傷法がある。また、接触媒質と被検査体との音響的なカップリングを安定させ、精密な探傷を行うために、超音波を発信、受信する超音波探触子、及び被検査体を水中に配設して測定する水浸式超音波探傷法が通常利用される(非特許文献1)。   In order to detect defects in the object to be inspected, such as inclusions in metal materials and inorganic materials such as steel and aluminum, and defects in welds when welding steel materials, ultrasonic waves are incident on the object to be inspected. Thus, it is widely performed to examine the presence or absence of a reflection echo due to the defect. For example, there are a vertical flaw detection method in which an ultrasonic wave is vertically incident on the surface of an object to be inspected and an oblique flaw detection method in which the ultrasonic wave is incident obliquely. In addition, in order to stabilize the acoustic coupling between the contact medium and the object to be inspected and perform precise flaw detection, an ultrasonic probe that transmits and receives ultrasonic waves and the object to be inspected are placed in water. A water immersion type ultrasonic flaw detection method is generally used (Non-Patent Document 1).

図2は、超音波探傷方法を説明する図である。   FIG. 2 is a diagram for explaining an ultrasonic flaw detection method.

超音波探触子21と比べて大きな面を持つ金属板11の被検査体の内部にある欠陥41(介在物や空隙など)を垂直探傷法で検出するときには、図2(a)に示すように配置して、集束型探触子21を金属板11の面内方向に二次元走査して測定すればよい。ここで、31は、超音波である。一方、図2(b)に示したような超音波探触子21の寸法と比べて薄い金属板材12の深い部位にある欠陥41の検出や、図2(c)に示した金属板14上に別の薄い金属板15をロウ付けや溶接等によって接合したときの接合部51の検査をするときには、超音波探触子から出射する超音波の大半を薄い金属板内に入射させて、深さ方向に伝播させにくいので、垂直探傷法では高感度に欠陥検出するのが難しかった。すなわち、超音波を入射する深さに対して、入射方向と垂直な板厚が薄い被検査体や棒状の被検査体の内部を検査する場合においては以下の問題があった。
(a)欠陥が物体の中央にある場合と端部にある場合では有効な超音波ビームの拡がりが異なるために欠陥の感度が大きく異なってしまい、両者を同じしきい値で検出することが困難である。
(b)SNが悪い場合には端部にある欠陥を見逃す場合がある。
When detecting defects 41 (inclusions, voids, etc.) inside the object to be inspected of the metal plate 11 having a larger surface than the ultrasonic probe 21, as shown in FIG. 2 (a). The focusing probe 21 may be measured by two-dimensional scanning in the in-plane direction of the metal plate 11. Here, 31 is an ultrasonic wave. On the other hand, the detection of the defect 41 in the deep part of the thin metal plate material 12 as compared with the size of the ultrasonic probe 21 as shown in FIG. 2B, or on the metal plate 14 shown in FIG. When inspecting the joint portion 51 when another thin metal plate 15 is joined by brazing or welding, most of the ultrasonic waves emitted from the ultrasonic probe are incident on the thin metal plate, Since it is difficult to propagate in the vertical direction, it is difficult to detect defects with high sensitivity by the vertical flaw detection method. That is, there are the following problems when inspecting the inside of an inspection object having a thin plate thickness perpendicular to the incident direction or the inside of a rod-shaped inspection object with respect to the depth at which the ultrasonic waves are incident.
(A) Since the effective ultrasonic beam divergence differs between the case where the defect is in the center and the end of the object, the sensitivity of the defect is greatly different, and it is difficult to detect both with the same threshold value. It is.
(B) When SN is poor, a defect at the end may be missed.

そのため、板の広い面や、棒の側面に超音波を入射させて探傷検査することが普通に行われている。図3に示した斜角探傷法で欠陥するときには、送信用と受信用に2つの超音波探触子6,7が必要である。被検査部の形状で、受信用の探触子が設置できないときには、1つの探触子で測定する必要があった。   For this reason, it is common practice to perform flaw detection inspection by making ultrasonic waves incident on the wide surface of the plate or the side surface of the bar. When the defect is detected by the oblique flaw detection method shown in FIG. 3, two ultrasonic probes 6 and 7 are required for transmission and reception. When a receiving probe could not be installed due to the shape of the part to be inspected, it was necessary to measure with one probe.

しかしながら、被検査体の形状や被検査体周辺の環境によっては、板状や棒状の被検査体の狭い面に超音波を入射させる必要がある。   However, depending on the shape of the object to be inspected and the environment around the object to be inspected, it is necessary to make ultrasonic waves incident on a narrow surface of the plate-shaped or bar-shaped object to be inspected.

新非破壊検査便覧(日刊工業新聞社1992年10月15日発行)、P295図2.379、 P297 図2.280、 P307 図2.392New Nondestructive Inspection Handbook (Nikkan Kogyo Shimbun, published October 15, 1992), P295 Figure 2.379, P297 Figure 2.280, P307 Figure 2.392

板状、棒状、及び管状の被検査体の端面など狭い面(入射面)に超音波を入射させて反射エコーを検出するとき、超音波探触子が、入射面の中心部にあるときと端部にあるときとでは、欠陥による反射エコーの強度が大きく異なることがあった。そして、超音波探触子を走査して自動的に反射エコー高さを弁別するときに大きな誤差を含むことが多かった。また、検出したい欠陥寸法が小さいとき等はSN比が低下するため、端部の欠陥を見逃す可能性もある。   When detecting the reflected echo by making the ultrasonic wave incident on a narrow surface (incident surface) such as the end face of a plate-like, rod-like, or tubular object, when the ultrasonic probe is at the center of the incident surface In some cases, the intensity of the reflected echo due to the defect is greatly different from that at the end. In many cases, a large error is included when the height of the reflected echo is automatically discriminated by scanning the ultrasonic probe. Further, when the defect size to be detected is small or the like, the SN ratio is lowered, so there is a possibility of overlooking the defect at the end.

このような状況に鑑みて本発明は、超音波探触子の寸法と比べて薄い板状、細い棒状、または薄肉の管状の被検査体の欠陥を高感度に検出することを第一の目的とする。また、超音波の伝播方向と直交する被検査体断面全体に亘って可及的に均一な感度で欠陥検出することを第二の目的とする。   In view of such a situation, the first object of the present invention is to detect a defect in a thin plate-like, thin rod-like, or thin tubular inspection object with high sensitivity as compared with the size of an ultrasonic probe. And It is a second object of the present invention to detect a defect with as uniform sensitivity as possible over the entire cross section of the object to be inspected that is orthogonal to the ultrasonic propagation direction.

本発明の超音波探傷方法は、少なくとも1つの平面を有する被検査体を水槽中に設置し、超音波探触子によって、被検査体の平面(入射面)に超音波探触子を対向させて該平面に垂直に超音波を入射させ、被検査体内部の欠陥による反射エコーを検出する超音波探傷方法であって、超音波入射方向と垂直な被検査体の幅方向の端部に超音波探触子の中心があるときに被検査体の内部に入射する超音波エネルギー(E1)と、中心にあるときに被検査体の内部に入射する超音波エネルギー(E2)の比(E1/E2)が、−3dB以上になるように前記超音波探触子の寸法を定めて測定することを特徴とする。
In the ultrasonic flaw detection method of the present invention, an inspection object having at least one plane is placed in a water tank, and the ultrasonic probe is made to face the plane (incident surface) of the inspection object by the ultrasonic probe. An ultrasonic flaw detection method in which an ultrasonic wave is incident perpendicularly to the plane and a reflected echo due to a defect inside the inspection object is detected, and is detected at the end in the width direction of the inspection object perpendicular to the ultrasonic incident direction. The ratio (E1 /) of the ultrasonic energy (E1) incident on the inside of the inspection object when the center of the acoustic probe is located and the ultrasonic energy (E2) incident on the inside of the inspection object when located at the center The dimension of the ultrasonic probe is determined and measured so that E2) becomes −3 dB or more .

また、もう一つ発明である超音波探傷方法は、前記超音波探触子の振動子は円形または楕円形の集束型であって、超音波入射方向と垂直な被検査体の幅方向の端部に超音波探触子の中心があるときの前記超音波エネルギーE1を、前記入射面上の超音波スポット面積(S(a/2))で評価し、幅方向の中心に超音波探触子の中心があるときの前記超音波エネルギーE2を前記入射面上の超音波スポット面積(S(0))で評価し、前記比(E1/E2)が、−3dB以上になるように前記超音波探触子の寸法を定めて測定することを特徴とする。 Further, in another ultrasonic flaw detection method according to the present invention, the transducer of the ultrasonic probe is a circular or elliptical focusing type, and the end in the width direction of the inspection object is perpendicular to the ultrasonic incident direction. The ultrasonic energy E1 when the center of the ultrasonic probe is in the part is evaluated by the ultrasonic spot area (S (a / 2)) on the incident surface, and the ultrasonic probe is centered in the width direction. The ultrasonic energy E2 when there is a child center is evaluated by an ultrasonic spot area (S (0)) on the incident surface, and the superposition is performed so that the ratio (E1 / E2) is −3 dB or more. It is characterized in that the dimensions of the acoustic probe are determined and measured.

本発明の超音波探傷方法においては、幅の小さな板状、棒状、又は薄肉の管状の被検査体について、狭い入射面に超音波を入射させて反射エコーを検出する際に、入射面の中心部また端部に入射させるときのそれぞれの有効な超音波強度の比を所定範囲内になるようにしたので、被検査材の断面全体に亘ってほぼ均一に高感度で欠陥検出することができる。   In the ultrasonic flaw detection method of the present invention, the center of an incident surface is detected when a reflected echo is detected by making an ultrasonic wave incident on a narrow incident surface for a plate-like, rod-like, or thin tubular inspection object having a small width. The ratio of the effective ultrasonic intensities at the time of incidence on the part or the end is set within a predetermined range, so that the defect can be detected almost uniformly and with high sensitivity over the entire cross section of the material to be inspected. .

以下、図面を参照して、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本発明においては、振動子中心が被検査体の入射面の端部にあるときと中央にあるとき、それぞれの有効ビーム面積の比が所定の値以上になるように超音波振動子の直径を定める。図1を用いて、本実施形態の水浸探傷法における具体的な決定方法を以下に示す。図1において、超音波探触子2で超音波3を発生させて幅aの被検査体1に入射させて、欠陥からの反射エコーを超音波探触子2で検知する。超音波探触子は集束型でも非集束型でも良いが、集束型について説明する。超音波探触子2から発射された超音波3は水から被検査体へ入射する際に屈折し、被検査体中の点Pに収束するものとする。   In the present invention, when the center of the transducer is located at the end of the incident surface of the object to be inspected and at the center, the diameter of the ultrasonic transducer is set so that the ratio of the respective effective beam areas becomes a predetermined value or more. Determine. A specific determination method in the water immersion flaw detection method of the present embodiment will be described below with reference to FIG. In FIG. 1, an ultrasonic wave 2 is generated by an ultrasonic probe 2 and is incident on an inspected object 1 having a width a, and a reflected echo from a defect is detected by the ultrasonic probe 2. The ultrasonic probe may be either a focusing type or a non-focusing type, but the focusing type will be described. It is assumed that the ultrasonic wave 3 emitted from the ultrasonic probe 2 is refracted when entering the object to be inspected from water and converges to a point P in the object to be inspected.

超音波探触子2の焦点距離Fと被検査体1の中の検出深さ(検査する位置)tと、超音波探触子2と被検査体1との距離(以後、水距離と呼ぶ)Lの間には(1)式の関係が成立つ。   The focal length F of the ultrasonic probe 2, the detection depth (inspection position) t in the inspection object 1, and the distance between the ultrasonic probe 2 and the inspection object 1 (hereinafter referred to as water distance). ) The relationship of equation (1) is established between L.

Figure 0004636967
Figure 0004636967

ここで、Cは被検査体の縦波音速、Cは水の縦波音速、rは探触子の振動子半径である。 Here, C s is a longitudinal wave sonic speed of the object to be inspected, the C w longitudinal sound velocity of water, r 0 is a vibrator radius of the probe.

一方、振動子半径r0と入射面での超音波ビームの半径rの間には(2)式が成立つ。したがって、集束型超音波探触子を用いて検出したい深さに超音波を集束させた場合に、被検査体の入射面での超音波ビーム半径rは(3)式で表される。 On the other hand, the equation (2) is established between the transducer radius r 0 and the radius r of the ultrasonic beam on the incident surface. Accordingly, when the ultrasonic wave is focused to a depth to be detected using the focusing type ultrasonic probe, the ultrasonic beam radius r on the incident surface of the object to be inspected is expressed by the equation (3).

超音波探触子から出射する超音波全体の強度のうち被検査体へ入射する強度の比率は、入射面上の超音波スポットの面積(有効ビーム面積)の比で近似できる。入射面での超音波ビームの半径r、被検査体の幅a、入射面上の超音波スポットの図、振動子が中央にあるときと端部にあるときの有効なビーム面積(それぞれS(0)とS(a/2))、及びデシベルで表示した有効ビーム面積比(S(a/2)/ S(0))の関係を、超音波振動子が円形である場合について表1に示す。有効ビーム面積比をRで示すが、Rは、欠陥が中央にあるときと端部にあるときの信号強度を表すと考えられる。たとえば、振動子が小さくてr≦(a/2)のときには、被検査体の縁では同じ大きさの欠陥であっても検出信号は6dB小さくなる。Rは、超音波振動子の半径が無限大であっても零である。Rを所定の値(-3dB以上が好ましい)となるように振動子径を選ぶことにより、全面積にわたってほぼ均等な感度で欠陥を検出可能となる。また、SN比の劣化により端部の欠陥を見逃すこともない。   The ratio of the intensity incident on the object to be inspected out of the intensity of the entire ultrasonic wave emitted from the ultrasonic probe can be approximated by the ratio of the area (effective beam area) of the ultrasonic spot on the incident surface. Radius r of the ultrasonic beam on the incident surface, the width a of the object to be inspected, a diagram of the ultrasonic spot on the incident surface, the effective beam area when the transducer is at the center and at the end (S 0) and S (a / 2)) and the effective beam area ratio (S (a / 2) / S (0)) expressed in decibels are shown in Table 1 when the ultrasonic transducer is circular. Show. The effective beam area ratio is indicated by R, which is considered to represent the signal intensity when the defect is at the center and at the end. For example, when the vibrator is small and r ≦ (a / 2), the detection signal is reduced by 6 dB even if the defect has the same size at the edge of the inspection object. R is zero even if the radius of the ultrasonic transducer is infinite. By selecting the vibrator diameter so that R becomes a predetermined value (preferably −3 dB or more), defects can be detected with almost equal sensitivity over the entire area. Moreover, the defect of the end portion is not overlooked due to the deterioration of the SN ratio.

Figure 0004636967
Figure 0004636967

F、L、r0から(3)式により求められる入射面での超音波ビーム径rと被検査体厚さaを用いて、表1にしたがい所定の感度差となるように超音波ビーム径rを決定する。さらに(3)式を逆に計算して超音波振動子径r0を決定する。 Using the ultrasonic beam diameter r on the incident surface obtained from Eq. (3) and the inspected object thickness a from F, L, r0, the ultrasonic beam diameter r is set so as to obtain a predetermined sensitivity difference according to Table 1. To decide. Further, the equation (3) is calculated in reverse to determine the ultrasonic transducer diameter r 0 .

被検査体の超音波伝播深さtから必要とされる超音波探触子の焦点距離Fと水距離Lを決定する。Lをあまり大きくするとFが大きくなり、(F・λ)/2r0(ただし、λは超音波の波長)に比例する集束深さでのスポット径が大きくなるので注意が必要である。また、Lの決定には超音波探触子と被検査体の間で発生する多重反射エコーが検査部に混入しないように注意が必要である。距離Lは測定時に適宜決めれば良く、近似的に零としても良い。そのとき、r≒rとなる。 The required focal length F and water distance L of the ultrasonic probe are determined from the ultrasonic propagation depth t of the object to be inspected. If L is made too large, F becomes large, and the spot diameter at the focusing depth proportional to (F · λ) / 2r 0 (where λ is the wavelength of the ultrasonic wave) becomes large. Further, in determining L, care must be taken so that multiple reflection echoes generated between the ultrasonic probe and the object to be inspected do not enter the inspection part. The distance L may be appropriately determined at the time of measurement, and may be approximately zero. At that time, r 0 ≈r.

また、超音波振動子が楕円形の場合の有効ビーム面積比も、上記の円形の場合と同様に導出することが出来て、結果を表2に示す。楕円形超音波振動子の長軸方向を入射面の幅方向に向けることによって入射面でのケラレを補償すると、検査する位置での超音波スポットの形状を円形により近づけることができる。   Further, the effective beam area ratio when the ultrasonic transducer is elliptical can be derived in the same manner as in the case of the circular shape, and the results are shown in Table 2. By compensating for vignetting on the incident surface by directing the major axis direction of the elliptical ultrasonic transducer in the width direction of the incident surface, the shape of the ultrasonic spot at the inspection position can be made closer to a circle.

Figure 0004636967
Figure 0004636967

被検査体として鋼材(SS400)の板に人工欠陥を作製して、超音波探触子の感度試験をした。超音波伝播経路に垂直な方向の幅(厚さ)が薄い図4に示す形状(板材)の被検査体を用いた。人工欠陥としてφ0.5mm、深さ2mmの縦穴が、下面中央部(F1)と、欠陥端部が被検査体の側面から1mmとなる場所(F2)の2箇所に設けた。   An artificial defect was produced on a steel (SS400) plate as an object to be inspected, and the sensitivity test of the ultrasonic probe was performed. A test object having a shape (plate material) shown in FIG. 4 having a thin width (thickness) in a direction perpendicular to the ultrasonic wave propagation path was used. As an artificial defect, vertical holes of φ0.5 mm and depth 2 mm were provided at two locations, the center portion of the lower surface (F1) and the location where the defect end portion was 1 mm from the side surface of the object to be inspected (F2).

使用したプローブは周波数15MHz、超音波振動子直径12mm(半径r0=6mm)、焦点距離F=100mmであり、t=24mmから水距離L=4mmで実験を行った。被検査体の幅aは5mm、入射面での半径rは5.8mmで、表1の(c)のケースの相当する。この場合に算出されるエコー強度の比はR= -1.1dBであった。 The probe used had a frequency of 15 MHz, an ultrasonic transducer diameter of 12 mm (radius r 0 = 6 mm), a focal length F = 100 mm, and an experiment was conducted from t = 24 mm to a water distance L = 4 mm. The width a of the object to be inspected is 5 mm and the radius r at the incident surface is 5.8 mm, which corresponds to the case of (c) in Table 1. The echo intensity ratio calculated in this case was R = −1.1 dB.

実際に測定したF1とF2欠陥から得られる反射エコーの様子を図5に示す。図中に破線で囲んだ欠陥エコー高さを正負振幅の大きいほうで測定すると、図5(a)からF1エコー高さは95%、図5(b)からはF2エコー高さが86%である。R=20log(86/95)=-0.85dBで上記の表1に基づく計算値に近く、2つの欠陥をほぼ同様の感度で検出可能であることを確認した。   FIG. 5 shows the reflected echo obtained from the actually measured F1 and F2 defects. When the defect echo height surrounded by a broken line in the figure is measured with the larger positive / negative amplitude, the F1 echo height is 95% from FIG. 5 (a), and the F2 echo height is 86% from FIG. 5 (b). is there. It was confirmed that R = 20 log (86/95) = − 0.85 dB, which is close to the calculated value based on Table 1 above, and that two defects can be detected with substantially the same sensitivity.

本発明の超音波探傷方法に超音波振動子の寸法で決めるための説明図である。It is explanatory drawing for determining with the dimension of an ultrasonic transducer | vibrator in the ultrasonic flaw detection method of this invention. 超音波探触子と被検査体との配置の説明図で、(a)は幅広の被検査体、(b)は幅の狭い板材、(c)は板材を接合した被検査体の場合の配置である。It is explanatory drawing of arrangement | positioning of an ultrasonic probe and a to-be-inspected object, (a) is a wide to-be-inspected object, (b) is a narrow board | plate material, (c) is a to-be-inspected object which joined the board | plate material. Arrangement. 斜角探傷法の配置図である。It is a layout view of the oblique flaw detection method. 実施例の試料の説明図である。It is explanatory drawing of the sample of an Example. 実施例の反射エコーの例である。It is an example of the reflective echo of an Example.

符号の説明Explanation of symbols

1 被検査体
2 超音波探触子
3 超音波
4 欠陥
51 接合部(ロウ付け、溶接部)
6 超音波探触子(送信)
7 超音波探触子(受信)
DESCRIPTION OF SYMBOLS 1 Test object 2 Ultrasonic probe 3 Ultrasonic wave 4 Defect 51 Joint part (brazing, welding part)
6 Ultrasonic probe (transmission)
7 Ultrasonic probe (Reception)

Claims (2)

少なくとも1つの平面を有する被検査体を水槽中に設置し、超音波探触子によって、被検査体の平面(入射面)に超音波探触子を対向させて該平面に垂直に超音波を入射させ、被検査体内部の欠陥による反射エコーを検出する超音波探傷方法であって、
超音波入射方向と垂直な被検査体の幅方向の端部に超音波探触子の中心があるときに被検査体の内部に入射する超音波エネルギー(E1)と、
幅方向の中心に超音波探触子の中心があるときに被検査体の内部に入射する超音波エネルギー(E2)の比(E1/E2)が、−3dB以上になるように前記超音波探触子の寸法を定めて測定することを特徴とする超音波探傷方法。
An object to be inspected having at least one plane is placed in a water tank, and an ultrasonic probe is opposed to the plane (incident surface) of the object to be inspected by an ultrasonic probe, and ultrasonic waves are perpendicular to the plane. An ultrasonic flaw detection method for detecting incident echoes and reflection echoes caused by defects inside the inspection object,
Ultrasonic energy (E1) incident on the inside of the inspection object when the center of the ultrasonic probe is at the end in the width direction of the inspection object perpendicular to the ultrasonic incident direction;
When the ultrasonic probe center is in the center of the width direction, the ultrasonic probe (E1 / E2) ratio (E1 / E2) of the ultrasonic energy (E2) incident on the inside of the inspection object is −3 dB or more. An ultrasonic flaw detection method characterized by measuring a dimension of a touch element.
前記超音波探触子の振動子は円形または楕円形の集束型であって、超音波入射方向と垂直な被検査体の幅方向の端部に超音波探触子の中心があるときの前記超音波エネルギーE1を、前記入射面上の超音波スポット面積(S(a/2))で評価し、
幅方向の中心に超音波探触子の中心があるときの前記超音波エネルギーE2を前記入射面上の超音波スポット面積(S(0))で評価し、
前記比(E1/E2)が、−3dB以上になるように前記超音波探触子の寸法を定めて測定することを特徴とする請求項1に記載の超音波探傷方法。
The transducer of the ultrasonic probe is a circular or elliptical focusing type, and the ultrasonic probe has a center when the center of the ultrasonic probe is at the end in the width direction of the inspection object perpendicular to the ultrasonic incident direction. The ultrasonic energy E1 is evaluated by the ultrasonic spot area (S (a / 2)) on the incident surface,
The ultrasonic energy E2 when the center of the ultrasonic probe is at the center in the width direction is evaluated by the ultrasonic spot area (S (0)) on the incident surface,
The ultrasonic flaw detection method according to claim 1, wherein the ultrasonic probe is dimensioned and measured such that the ratio (E1 / E2) is −3 dB or more .
JP2005227173A 2005-08-04 2005-08-04 Ultrasonic flaw detection method Active JP4636967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005227173A JP4636967B2 (en) 2005-08-04 2005-08-04 Ultrasonic flaw detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005227173A JP4636967B2 (en) 2005-08-04 2005-08-04 Ultrasonic flaw detection method

Publications (2)

Publication Number Publication Date
JP2007040906A JP2007040906A (en) 2007-02-15
JP4636967B2 true JP4636967B2 (en) 2011-02-23

Family

ID=37799014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005227173A Active JP4636967B2 (en) 2005-08-04 2005-08-04 Ultrasonic flaw detection method

Country Status (1)

Country Link
JP (1) JP4636967B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5963253B2 (en) * 2011-09-29 2016-08-03 日立Geニュークリア・エナジー株式会社 Ultrasonic sensor

Also Published As

Publication number Publication date
JP2007040906A (en) 2007-02-15

Similar Documents

Publication Publication Date Title
JP4816731B2 (en) Ultrasonic flaw detection method, welded steel pipe manufacturing method, and ultrasonic flaw detection apparatus
JP4910770B2 (en) Tubular ultrasonic inspection apparatus and ultrasonic inspection method
KR101163549B1 (en) Calibration block for phased-array ultrasonic inspection
US7010982B2 (en) Method of ultrasonically inspecting airfoils
US20180259489A1 (en) Phased array probe and method for testing a spot-weld
KR101163554B1 (en) Calibration block for phased-array ultrasonic inspection and verification
JP5420525B2 (en) Apparatus and method for ultrasonic inspection of small diameter tube
US7762137B2 (en) Method for checking a weld between two metal pipelines
WO1988009931A1 (en) Method of measuring depth of surface opening defects of a solid material by using ultrasonic waves
JP2010043989A (en) Defect height estimation method by ultrasonic flaw detection
JP3535417B2 (en) Ultrasonic defect height measuring device and defect height measuring method
KR101163551B1 (en) Sensistivity calibration referece block for phased-array ultrasonic inspection
JP5285845B2 (en) Defect detection apparatus and defect detection method
JP2002062281A (en) Flaw depth measuring method and its device
JP2007278854A (en) Ultrasonic inspection method and device
JP4636967B2 (en) Ultrasonic flaw detection method
JP2004077292A (en) Method and device for inspecting stress corrosion cracking
JP2011529170A (en) Improved ultrasonic non-destructive inspection using coupling check
JP3761883B2 (en) Ultrasonic flaw detection method
RU2596242C1 (en) Method for ultrasonic inspection
JPH0513263B2 (en)
SRIVASTAVA et al. Automated ultrasonic immersion through-transmission imaging technique–a novel way to evaluate dissimilar metal joints
RU2739385C1 (en) Soldered joints ultrasonic testing method
JP7318617B2 (en) Ultrasonic flaw detection method for tubular test object
JPH07325070A (en) Ultrasonic method for measuring depth of defect

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4636967

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250