JPS58204352A - Method for detecting flaw on surface of metallic object - Google Patents

Method for detecting flaw on surface of metallic object

Info

Publication number
JPS58204352A
JPS58204352A JP8769682A JP8769682A JPS58204352A JP S58204352 A JPS58204352 A JP S58204352A JP 8769682 A JP8769682 A JP 8769682A JP 8769682 A JP8769682 A JP 8769682A JP S58204352 A JPS58204352 A JP S58204352A
Authority
JP
Japan
Prior art keywords
light
angle
slab
reflected light
flaw detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8769682A
Other languages
Japanese (ja)
Inventor
Takeshi Kitagawa
北川 孟
Yoshio Ueshima
上嶋 義男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
TOEI DENSHI KOGYO KK
Original Assignee
Kawasaki Steel Corp
TOEI DENSHI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp, TOEI DENSHI KOGYO KK filed Critical Kawasaki Steel Corp
Priority to JP8769682A priority Critical patent/JPS58204352A/en
Publication of JPS58204352A publication Critical patent/JPS58204352A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8901Optical details; Scanning details

Abstract

PURPOSE:To enable the detection of the flaw on a surface with high S/N and with good accuracy by setting the angle between the incident angle of the irradiated light from forward and the surface of a specimen at 35 deg.-75 deg. and detecting the scattered and reflected light of <=20 deg. angle to the specular reflected light. CONSTITUTION:A laser light source 22 disposed forward in the traveling direction of a continuous casting slab 20 above the traveling line thereof irradiates external light in such a way that the angle theta1 between the surface of the slab 20 and the incident direction of the irradiated light attains 35 deg.-75 deg.. The laser light 22a is expanded to a belt shape up to the necessary visual field on the slab 20 by a cylindrical lens 24. On the other hand, a photodetection camera 26 disposed on the side opposite from the source 22 above the slab traveling line detects the scattered and reflected light of <=20 deg. angle theta2 to the specular reflection direction and a signal processing circuit 28 outputs a defect signal. The S/N of the defect signal is thus made >=2.0 and the defect detection with high accuracy is made possible.

Description

【発明の詳細な説明】 本発明は、金属物体表向探傷方法に係り、特に、連Ml
造スラブ等の走行中の^製綱材の表面欠陥をオンライン
で検出する際に用いるのに好適な、走行中の被検体の表
面に外部から光を照射し、被検体表面による反射光を受
光して、被検体の表面欠陥を検出するようにした金属物
体表向探傷方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for surface flaw detection of metal objects, and in particular,
Suitable for online detection of surface defects in moving steel products such as steel slabs, this method irradiates the surface of a moving object with light from the outside and receives the reflected light from the surface of the object. The present invention relates to an improvement in a surface flaw detection method for a metal object, which detects surface defects in a test object.

搬送ラインを走行中の被検体の表面に外部から光を照制
し、被検体表面による反射光を受光して、被検体の表面
欠陥を検出するようにした光学的表面探傷方法が知られ
ている。この光学的表面探傷り法は、例えば第1図に示
す如く、被検体10の走行ライン上方の、被検体直上方
向に配置した投光112から被検体10表面に扇状の外
部光或いは飛点走査される外部光を照射し、同じく被検
体走行ラインの被検体直上方向に配置した受光器14に
より受光される反射光の諸物理最の変化(光量変化又は
回折パターン等)から、被検体10の表面欠陥を検出す
るものである。例えば、前記投光器12としてレーザ光
源を用いた場合には、スポット状の光点を飛点走査す式
で被検体10の幅方向に走査し、被検体1oがらの反射
光を光電子増倍管やシリ」ンフォトセル等からなる受光
器14′c受光して、各員の光量変化が5、欠陥部の輸
す向位習を検出する。又、前記投光器12として白色光
の棒状光瞭を用いた場合には、被検体10からの反射光
を、−次元イ′−ジセンサからなる受光器14で飛像走
査方式により一点く一画素)ずつ順に受光する。
An optical surface flaw detection method is known in which surface defects on the test object are detected by shining light from outside onto the surface of the test object while it is running on a conveyance line, and receiving the light reflected by the surface of the test object. There is. This optical surface flaw detection method, for example, as shown in FIG. The object 10 is irradiated with external light and received by the light receiver 14, which is also placed directly above the object on the object travel line. It detects surface defects. For example, when a laser light source is used as the light projector 12, a spot-like light point is scanned in the width direction of the object 10 using a flying spot scanning method, and the reflected light from the object 1o is reflected by a photomultiplier tube or the like. A photoreceiver 14'c consisting of a series photocell or the like receives light, detects changes in the amount of light of each member, and detects the orientation caused by the defective portion. In addition, when a bar-shaped light beam of white light is used as the light projector 12, the reflected light from the subject 10 is transmitted to a light receiver 14 consisting of a -dimensional image sensor, one point per pixel, using a flying image scanning method. The light is received one after the other.

このような光学的表面探傷方法によれば、走行中の被検
体10の表面欠陥を非接触でオンライン測定できるとい
う特徴を有す−が、従来は、雑音信号を欠陥信号と#l
認し、誤検出のMi度が高く、実用上の障害となってい
た。又、被検体1oとして、例えば冷間圧延鋼板等の常
温被検体が主たる対縁とされており、連続鋳造スラブ等
のような高畠材の表向Hl傷にそのまま用いることは、
耐熱性等の点で@題があった。史に、回転ミラ一部等、
襖雑な機構を有し、@誼全体の耐熱対策及び調整が非常
に繁雑であった。
According to such an optical surface flaw detection method, surface defects of the moving object 10 can be measured online in a non-contact manner.
However, the degree of misdetection was high, which was a practical obstacle. In addition, as the test object 1o, a room temperature test object such as a cold-rolled steel plate is mainly used as the opposite edge, and it is not possible to use it as it is for surface Hl scratches on a Takaba material such as a continuous casting slab.
There were problems with heat resistance, etc. In history, part of the rotating mirror, etc.
It had a complicated mechanism, and the heat resistance measures and adjustments for the entire body were extremely complicated.

本発明は、前記従来の欠点を解消するべくなされたもの
で、走行中の被検体の表面欠陥を、高いS/N比で精度
良(検出することができる金属物体表l1liN傷方法
を提供することを目的とする。
The present invention has been made in order to eliminate the above-mentioned conventional drawbacks, and provides a method for scratching a surface of a metal object that can detect surface defects on a moving object with high precision and high S/N ratio. The purpose is to

本発明は、走行中の被検体の表面に外部から光を照射し
、被検体表面による反射光を受光して、被検体の表面欠
陥を検出するようにした金属物体表面探傷方法において
、被検体走行ライン上方の、被検体走行り向前方又は後
方に配置した投光器から、被検体表面と照射光入射方向
とのなす角度が35度〜75rIILとなるように、被
検体表面に外部光を照射し、被検体走行ライン上方の投
光器と同−一或いは/及び反対側に配置した受光器によ
り受光される、照射光入射方向或いは/及び正反射り向
となす角度が20度以内の散乱反射光の変化から、被検
体の表面欠陥を検出するようにして、前記目的を達成し
たものである。
The present invention provides a method for detecting surface flaws on the surface of a metal object in which surface defects on the object are detected by irradiating light from the outside onto the surface of a moving object and receiving reflected light from the surface of the object. External light is irradiated onto the surface of the test object from a projector placed above the travel line in front or behind the test object in the direction of travel so that the angle between the surface of the test object and the direction of incidence of the irradiation light is 35 degrees to 75rIIL. , scattered reflected light that is received by a receiver located on the same side and/or opposite to the projector above the subject travel line and whose angle with the irradiation light incident direction and/or specular reflection direction is within 20 degrees. The above object is achieved by detecting surface defects of the object based on the changes.

又、前記投光器から照射される外部光を、所定偏光面を
有する光とし、及び/或いは、前記受光器で、散乱反射
光の所定偏光成分を受光するようにして、S/N比を格
段に高めたものである。
Furthermore, the S/N ratio can be significantly increased by making the external light emitted from the projector a light having a predetermined polarization plane, and/or by making the light receiver receive a predetermined polarization component of the scattered reflected light. It is elevated.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明は、前出第1図に示したような、投光器12によ
り走行中の被検体10の表面に外部から光を照射し、被
検体10の表面による反射光を受光器14により受光し
て、被検体10の表面欠陥を検出するようにした表面探
傷方法において、発明1等が、投光器12による照射光
入射方向と、受光器14による反射光受光方向とを種々
変えて最適な位置関係について実験した結果に基づいて
なされたものである。
The present invention, as shown in FIG. , in a surface flaw detection method for detecting surface defects of a test object 10, the invention 1 and the like differs in various ways the incident direction of the irradiated light from the light projector 12 and the direction in which the reflected light is received by the light receiver 14 to determine the optimal positional relationship. This was done based on the results of experiments.

即ち、投光器12を、被検体走行ライン上方の、被検体
走行方向前方に配置し、被検体表面と照射光入射方向と
のなす角度θ1を変化させて、被検体走行ライン上方の
投光器12と反対側に配置した受光器14により、正反
射方向となす角度θ2が101![の散乱反射光を受光
し、これから被検体10のti面欠陥を検出したところ
、欠陥信号のS ’N比は、第2図に示す如くとなった
。図から明らかな如く、角度θ1が35度〜7511の
範囲内にある場合には、欠陥信号のS/N比が、実用上
欠陥信号を弁別し得る水準であるS 、、/ N比2.
0以Fとなり、精度の^い欠陥検出が可能である。
That is, the projector 12 is placed above the test object travel line and in front of the test object travel direction, and the angle θ1 formed between the test object surface and the irradiation light incident direction is changed to be opposite to the projector 12 above the test object travel line. With the light receiver 14 placed on the side, the angle θ2 with the specular reflection direction is 101! When the scattered reflected light of [ was received and the Ti-plane defect of the object 10 was detected from it, the S'N ratio of the defect signal was as shown in FIG. As is clear from the figure, when the angle θ1 is within the range of 35 degrees to 7511 degrees, the S/N ratio of the defect signal is at a level S, , /N ratio 2.
0F or more, allowing highly accurate defect detection.

父、投光112による照射先入1147J−向と被検体
表面とのなす角度θ1を45度に固定して、前記受光器
14による散乱反射光受光方向と正反射方向とのなす角
度θ2を変化させ、散乱反射光から検出される欠陥信号
のS/N比の変化状態を調べ!こところ、第3図に示す
ような結果が得られた。
The angle θ1 formed between the irradiation direction 1147J- by the light projector 112 and the surface of the object to be examined is fixed at 45 degrees, and the angle θ2 formed between the direction in which the scattered reflected light is received by the light receiver 14 and the direction of specular reflection is varied. , investigate the change state of the S/N ratio of the defect signal detected from the scattered reflected light! In fact, the results shown in Figure 3 were obtained.

図から明らかな如く、角度θ2が±20度以内であれば
、欠陥信号のS/N比は2.0以上であり、精度の^い
欠陥検出が可能である。
As is clear from the figure, if the angle θ2 is within ±20 degrees, the S/N ratio of the defect signal is 2.0 or more, and highly accurate defect detection is possible.

尚、前記角度θ1をあまり小さくすると、投光器12と
受光器14との距離が大きくなるので、実操業ライン上
における設置条件としては不利である。一方、角度θ1
が人であるほど、被検体10の上下動の影響は受けにく
くなるものの、投光器12と受光器14が接触(る恐れ
がある。従って、上述の如き、35度〜75度の範囲内
が好ましく、特に、実用上は、45度〜75度の範囲が
より有効(−ある。
Incidentally, if the angle θ1 is made too small, the distance between the light projector 12 and the light receiver 14 becomes large, which is disadvantageous as an installation condition on an actual operating line. On the other hand, the angle θ1
The larger the person is, the less affected by the vertical movement of the subject 10, but there is a risk that the emitter 12 and the receiver 14 will come into contact with each other. In particular, in practice, a range of 45 degrees to 75 degrees is more effective (-).

又、前記のような角度範囲において、偏光条件を適正に
設定した場合、欠陥信号のS 、−’ N比は、更に向
上した。即ち、前記投光器12により照射される照射光
をl!II!1−光とし、その−光面を調整して、被検
体10表面上の棒状(帯状)視野の長辺に平行、即ち、
被検体10の幅方向に平行な偏光面を持つ外部光とし、
被検体10からの反射光を受光する際に、やはり該偏光
面の光のみを受光器14に入力するようにしたところ、
鳥屋θ1が45度の場合、正反t#J/J′向と10度
ずれた方向で受光した信号の、縦削れによる散乱反射光
の変化状態は、第4図(B)に示す如、くとなり、同じ
く□ 第4図(A)に示す、−光条件を設定しなかった場合に
比べて、S/N比が格段に向上した。第4図(A>、(
B)において、ビークAが欠陥信号ぐある。尚、偏光条
件は、前記例に限定されず、例えば、照射光の偏光面を
、被検体10表面上の棒状(帯状)視野の短辺に平行、
即ち、被検体10の長手方向に平行なものとし、前記偏
光面と−交ツる散乱偏光面の光、即ら、だ円偏光成分の
みを受光するようにしても、同様の効果が得られる。
Moreover, in the above-mentioned angular range, when the polarization conditions were set appropriately, the S, -'N ratio of the defect signal was further improved. That is, the irradiation light emitted by the light projector 12 is l! II! 1 - light, and adjust its light plane so that it is parallel to the long side of the rod-shaped (band-shaped) field of view on the surface of the subject 10, that is,
The external light has a polarization plane parallel to the width direction of the subject 10,
When receiving the reflected light from the subject 10, only the light of the polarization plane is input to the light receiver 14.
When Toriya θ1 is 45 degrees, the change state of scattered reflected light due to vertical scraping of the signal received in the direction 10 degrees apart from the normal t#J/J' direction is as shown in Fig. 4 (B). The S/N ratio was significantly improved compared to the case where - light conditions were not set, which is also shown in FIG. 4(A). Figure 4 (A>, (
In B), beak A is a defective signal. Note that the polarization conditions are not limited to the above example, and for example, the polarization plane of the irradiated light is parallel to the short side of the bar-shaped (band-shaped) field of view on the surface of the subject 10,
That is, the same effect can be obtained even if the object 10 is parallel to the longitudinal direction and only the light with a scattered polarization plane that intersects the polarization plane, that is, the elliptical polarization component is received. .

本発明は、上記のような知見に基いてなされたものであ
る。
The present invention has been made based on the above findings.

以下図面を参照して、本発明に係る金属物体表面探傷方
法が採用された連続鋳造スラブの表面探III装置の実
施例を詳細に説明づる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a continuous casting slab surface detection III apparatus employing the metal object surface flaw detection method according to the present invention will be described in detail below with reference to the drawings.

本発明の第1実施例は、第5図に示す如く、連続鋳造ス
ラブ20の走行ライン上方のスラブ走行り向前方に配置
された、連続鋳造スラブ20表面ど照射光入射方向と、
、♀なす角度θ1が、35度〜75度どなるように:1
、連続鋳造スラブ2oの表面に外部光を照&丈るレーザ
光源22と、該レーザ光源22により発振されたレーザ
光22aを、連続鋳造スラブ20上の必要視野幅まで帯
状に広げるだめのシリンドリカルレンズ24と、スラブ
走行ラインーE方の前記レーザ光源22と反対側に配置
された、正反射方向となす角度θ2が20度以内の散乱
反射光を受光するための受光カメラ26と、該受光カメ
ラ26出力の散N反射光信号を処理して、欠陥信号を出
力するための信号処理回路28とから構成されている。
As shown in FIG. 5, the first embodiment of the present invention has a continuous casting slab 20 surface which is placed in front of the continuous casting slab 20 in the slab running direction above the running line of the continuous casting slab 20, and
, ♀ so that the angle θ1 is between 35 degrees and 75 degrees: 1
, a laser light source 22 that illuminates and extends external light onto the surface of the continuous casting slab 2o, and a cylindrical lens that spreads the laser light 22a oscillated by the laser light source 22 into a band shape to the required field width on the continuous casting slab 20. 24, a light-receiving camera 26 for receiving scattered reflected light having an angle θ2 with the specular reflection direction of 20 degrees or less, which is disposed on the side opposite to the laser light source 22 on the E side of the slab travel line; It is comprised of a signal processing circuit 28 for processing the output scattered N reflected light signal and outputting a defect signal.

第5図において、30は、受光カメラ26の受光部に配
設された、レーザ光1m22から照射されたレーザ光2
2aの使用波長域のみを通過させることによって、連続
鋳造スラブ20の自発光エネルギの影響を除去し、検出
精度を高めるための干渉フィルタである。
In FIG. 5, reference numeral 30 indicates a laser beam 2 irradiated from a laser beam 1 m 22 disposed in the light receiving section of the light receiving camera 26.
This is an interference filter for eliminating the influence of self-luminous energy of the continuous casting slab 20 and improving detection accuracy by passing only the wavelength range used by the continuous casting slab 2a.

前記レーザ光源22としては、例えば出力5Wのアルゴ
ンレーザを用いることができる。一般に、高温物体を被
検体とした場合、被検体の自発光エネルギは、赤外及び
可視の長波長側に強いエネルギ成分を持つので、反射光
を受光して欠陥信号を得る場合には、なるべく自発光成
分の少ない短波長の光を投射した方が有利である。アル
ゴンレーザは、最強出りの波長が500u近傍の波長を
持〕ので、連続鋳造スラブのようなll4a!鋼材の自
発光成分の比較的弱い波S域に該当し、且つ、この柚の
レーザは、連続し【比較的強い出りが得られるので、表
面探傷の光源としては有効て゛ある。このレーザ光11
22は、受光信号処理時におけるアドレス付けを客層と
するため、連続鋳造スラブ20の幅方向中央位置、或い
は、そこから±10%程度以内の位置に配置されている
As the laser light source 22, for example, an argon laser with an output of 5 W can be used. Generally, when a high-temperature object is tested, the self-luminous energy of the test object has strong energy components on the long wavelength side of infrared and visible wavelengths, so when receiving reflected light and obtaining defect signals, it is necessary to It is more advantageous to project light with a short wavelength and less self-luminous components. The argon laser has the strongest output wavelength near 500u], so it can be used for continuous casting slab-like ll4a! This Yuzu laser corresponds to the relatively weak wave S region of the self-luminous component of steel materials, and it is effective as a light source for surface flaw detection because it can provide a continuous and relatively strong output. This laser beam 11
22 is arranged at the center position in the width direction of the continuous casting slab 20, or at a position within about ±10% therefrom, in order to address the customer group when processing the received light signal.

前記受光カメラ26としCは、例えばi1重結合デバイ
スを用いた電子走査型イメージセンサが焦点面に配設さ
れたものを用いることができる。受光カメラのレンズは
、被検体−受光カメラ間距離、帯状投光面の幅等により
、最適な口径に選定され(いる。今、2048Jl子の
センサを用いて視野幅1園を検査する場合、その幾何学
的分解能は約0.5園−となる。
The light-receiving camera 26 C may be, for example, an electronic scanning image sensor using an i1 double-coupled device disposed on the focal plane. The lens of the light-receiving camera is selected to have an optimal aperture depending on the distance between the object and the light-receiving camera, the width of the band-shaped light projection surface, etc.Currently, when inspecting one field of view using a 2048Jl sensor, Its geometric resolution is about 0.5 decimals.

前記レーザ光1122、シリンドリカルレンズ24等を
含む投光WAll、及び、前記受光カメラ26、干渉フ
ィルタ30等を含む受光装置は、いずれも、長時間連続
使用可能なように、気体或いは液体による耐熱対画が施
されている。
The light emitting wall including the laser beam 1122, the cylindrical lens 24, etc., and the light receiving device including the light receiving camera 26, interference filter 30, etc. are all equipped with heat-resistant gas or liquid heat-resistant counters so that they can be used continuously for a long time. It has a picture on it.

以下作用を説明する。The action will be explained below.

表面温度500℃以上の連続鋳造スラブ20は、製造ラ
インを矢Ell 43の方向にほぼ一定の速度で走行し
ており、少なくとも被検面が平坦とみなし得る状態とな
っている。レーザ光源22から発蚕されlこレーザ光2
2aは、シリンドリカルレンズ24により帯状に連続鋳
造スラブ20上に投光される。連続鋳造スラブ20の被
検面によって反射されたレーザ光は、干渉フィルタ30
を経て受光カメラ26に入射し、帯状光の縁が、受光カ
メラ26の焦点面に一次元情報として人力され、信号処
理回路28で欠陥信号化されて出力される。
The continuously cast slab 20 having a surface temperature of 500° C. or more is running on the production line at a substantially constant speed in the direction of arrow Ell 43, and is in a state where at least the surface to be inspected can be considered flat. Laser light 2
2a is projected onto the continuous casting slab 20 in a band shape by a cylindrical lens 24. The laser beam reflected by the test surface of the continuous casting slab 20 passes through an interference filter 30.
The edge of the band-shaped light is input to the focal plane of the light receiving camera 26 as one-dimensional information, converted into a defect signal by the signal processing circuit 28, and output.

本実施例においては、投光器として、レーザ光122を
用いているので、レーザ光1122及びシリンドリカル
レンズ24の部分と、^144である連続鋳造スラブ2
0とのパスレインの距離、及び、連続鋳造スラ720と
受光カメラ26とのパスラインの距離を大きくとること
が可能Cあり、耐熱ス4策上−@有利である。即ら、レ
ーザ光は、強い指向性を持っており、そのビームが非常
に小さく、1ネルギ@度が極めて高いため、距離に対4
−る減貞が姶んど無く、シリンドリカルレンズ24で横
に広げても、1−分に高いエネルギ密度が得られる。
In this example, since the laser beam 122 is used as the projector, the laser beam 1122 and the cylindrical lens 24 and the continuous casting slab 2 which is ^144 are
0 and the distance between the continuous casting slurry 720 and the light receiving camera 26, which is advantageous in terms of heat resistance. That is, laser light has strong directivity, the beam is very small, and the energy per degree is extremely high, so the distance is
There is no reduction in energy density, and even if it is spread laterally with the cylindrical lens 24, a high energy density can be obtained in 1 minute.

又、レーIJ’光の特性として、その波長成分が単一(
゛あるので、本実施例のように、使用づ−るレーザに適
しIこ干渉フィルタ30を、受光カメラ26のレンズ前
向に取付けることによって、レーザ光のみを極めて選択
的に受光することが可能であり、自発光エネルギの影響
を効果的に除去することが容易である。尚、投光器の種
類は、これに限定されず、例えば、白色光を投射する水
銀灯を用いることも可能である。
Also, as a characteristic of Ray IJ' light, its wavelength component is single (
Therefore, as in this embodiment, by attaching an interference filter 30 suitable for the laser to be used in front of the lens of the light-receiving camera 26, it is possible to extremely selectively receive only the laser light. Therefore, it is easy to effectively eliminate the influence of self-luminous energy. Note that the type of projector is not limited to this, and for example, a mercury lamp that projects white light can also be used.

又、本実施例においては、レーザ光源22からの光を、
連続鋳造スラブ20の表面に帯状に投光し、その反射光
を、電子走査型のイメージセンサで受光して出力信号を
得るようにしているので、信号取出し走査を、従来の機
械的走査より格段に高速化できる。従って、被検体の走
行速度が1000S 、/分収−Lの場合でも、応答す
ることが可能である。又、光電子増倍管やシリコンフォ
トセル、増幅器等ぐ受光器を構成した場合に比べて、受
光器が小型であり、耐湿、耐熱、耐酸等の遮蔽対策が行
いやすい。史(こ、探傷装置全体として、回転部分がな
いのぐ、保守も容易である。
Furthermore, in this embodiment, the light from the laser light source 22 is
Since light is projected in a band shape onto the surface of the continuous casting slab 20 and the reflected light is received by an electronic scanning image sensor to obtain an output signal, signal extraction scanning is much more efficient than conventional mechanical scanning. The speed can be increased to Therefore, it is possible to respond even if the running speed of the subject is 1000S/min. In addition, compared to a case where the light receiver is configured with a photomultiplier tube, a silicon photocell, an amplifier, etc., the light receiver is smaller, and it is easier to take measures for shielding such as moisture resistance, heat resistance, and acid resistance. History (The flaw detection device as a whole is easy to maintain as there are no rotating parts.

次に本発明の第2実施例/!:詳細に説明する。Next, the second embodiment of the present invention/! : Explain in detail.

4東施例は、第6図に小f如く、前記第1実施例と同様
の、レーザ光源22と、シリンドリカルレンズ24と、
受光カメラ26と、信号処理回路28と、干渉フィルタ
30とを有づ−る連続鋳造スラ720の表面探傷装置に
おい(、前記レーザ光源22を、所定−光面を有する直
線偏光性レーザ光源とすると共に 該レーザ光1122
の投光レンズ前面に、偏光面を回転するための偏光面回
転子32を光軸まわりに回転可能な状態で装着し、更に
、前記受光カメラ26の受光レンズ前面と干渉フィルタ
30の間に、1個又は複数個の偏光フィルタ34を光軸
まわりに回転可能な状態ぐ装着したものである。他の構
成及び基本的な作用につ(A(は、前記第1東施例と同
様であるのぐ、説明は省略する。
The fourth embodiment has a laser light source 22, a cylindrical lens 24, and a cylindrical lens 24, which are similar to those of the first embodiment, as shown in FIG.
In the surface flaw detection device for continuous casting slurry 720, which includes a light receiving camera 26, a signal processing circuit 28, and an interference filter 30, the laser light source 22 is a linearly polarized laser light source having a predetermined light plane. With the laser beam 1122
A polarization plane rotator 32 for rotating the polarization plane is rotatably mounted around the optical axis on the front surface of the light projection lens of the light reception camera 26, and between the front surface of the light reception lens of the light reception camera 26 and the interference filter 30, One or more polarizing filters 34 are mounted rotatably around the optical axis. The other configurations and basic functions (A) are the same as those of the first embodiment, so their explanations will be omitted.

本実施例においては、欠陥のパターンに合わV(−光条
件を適宜設定することにより、S 、7 N比が格段に
良好な欠陥信号を得ることができる。例えば、トーチカ
ット前の連続騎造スラ/を探傷する場合は、スラブ走行
速度が鋳造機の引抜き速度と等しく、2鴎/分以下の低
速ぐあるので、投光系、受光系の偏光条件を、欠陥のパ
ターンに合せC順次切換えて、はぼ同一視野を検出する
ことが可能ε・あり、数種の欠陥を同時に検出すること
が(゛きる。
In this example, by appropriately setting the V(- light conditions) according to the defect pattern, it is possible to obtain a defect signal with an extremely good S,7N ratio. When detecting slab defects, the slab running speed is equal to the drawing speed of the casting machine, which is at a low speed of less than 2 mm/min, so the polarization conditions of the light emitting system and light receiving system are changed in sequence according to the pattern of the defect. Therefore, it is possible to detect almost the same field of view, and it is possible to detect several types of defects at the same time.

尚、fMj記実施例においては、レープ光822に偏光
面回転子32が設けられると共に、受光)Jタラ26の
前面に偏光フ・rシタ34が配設されていたが、レーザ
光源22が、直Iil偏光性レーザ光源−(・ある場合
には、その配役位置をT夫することによって、−光面回
転子32を省略することも可能Cある。
In the embodiment described in fMj, the polarization plane rotator 32 was provided for the rape light 822, and the polarization shifter 34 was disposed in front of the light receiving (J) cod 26, but the laser light source 22 In some cases, it is possible to omit the optical plane rotator 32 by changing the position of the direct polarizing laser light source.

又、前記レーザ光源22が、ランダム偏光レー1f光録
又は白色光源である場合には、該投光器の前面に1個又
は複数個の偏光フィルタを追加することも可能である。
Furthermore, if the laser light source 22 is a randomly polarized 1f light source or a white light source, it is also possible to add one or more polarizing filters in front of the projector.

史に、前記投光器による蕉射光を、偏光特性を有しない
外部光とし、前記受光器の前面に偏光フィルタを配設し
て、受光器により散乱反射光の所定−光成分のみを受光
するように構成することも可能−(ある。
In history, the light emitted by the projector is treated as external light without polarization characteristics, and a polarizing filter is disposed in front of the light receiver so that only a predetermined light component of the scattered reflected light is received by the light receiver. It is also possible to configure - (Yes.

尚、前記実施例においては、いずれも、受光カメラ26
が、スラブ走行ライン上りのレーザ光源22と反対側に
配Mされ、該受光カメラ26により、正反射り向となす
へ度が20度以内の散乱反射光を受光するようにされて
いたが、散乱反射光を受光する方法は、これに限定され
ず、散乱反射光受光カメラ26を、スラブ走行ライン上
方のレーザ光源22と同一側に配置して、前記受光カメ
ラ26により、照射光入射方向となす角度が20、、・
ρ 度以内の散乱反射光を受光するパことも可能である。
Incidentally, in each of the above embodiments, the light receiving camera 26
was disposed on the opposite side of the laser light source 22 up the slab running line, and the light receiving camera 26 was designed to receive scattered reflected light with an angle of 20 degrees or less relative to the specular direction. The method of receiving the scattered reflected light is not limited to this, but the scattered reflected light receiving camera 26 is placed above the slab traveling line on the same side as the laser light source 22, and the light receiving camera 26 detects the incident direction of the irradiated light. The angle made is 20...
It is also possible to receive scattered reflected light within ρ degrees.

前記実施例においては、いずれも、本発明が、高温材で
ある連続鋳造スラブの探傷に適用されていたが、本発明
の適用範囲はこれに限定されず、より^速(゛走行する
仕上圧延機出側の熱延鋼帯の4ンライン探傷、酸洗ライ
ンのオンライン探傷、冷延銅帯、鋼板のオンライン探傷
等にも同様に適用(きることは明らかCある。
In all of the above embodiments, the present invention was applied to flaw detection of continuously cast slabs, which are high-temperature materials, but the scope of application of the present invention is not limited to this. The same applies to 4-line flaw detection of hot-rolled steel strips on the exit side, online flaw detection of pickling lines, online flaw detection of cold-rolled copper strips, steel plates, etc. (obviously there is C).

以上説明した通り、本発明によれば、連続鋳造スフ1等
の走行中の被検体のfi面欠陥を、高いS N比で精度
良く検出することかぐきるという優れた効果を有する。
As explained above, the present invention has the excellent effect of accurately detecting and detecting fi-plane defects in a running object such as continuous casting fabric 1 with a high signal-to-noise ratio.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の表面探1 h−法が行われ(いる状態
を示す斜視図、第2図は、本発明の原理を示す、被検体
表面と点射光入射方向とのなす角度と、散乱反射光の変
化から検出した欠陥信号の8 、、’ N比との関係の
一例を示す縮図、第3図は、同じく正反射方向と散乱反
射光受光方向とのなす角度と、散乱反射光の変化から検
出した欠陥信号のS/N比との関係の一例を、示す線図
、第4図(A)、(B)は、周じく、偏光条件の有無に
よる、縦割れ検出時の散乱反射光の変化状態の比較を示
す縮図、第5図は、本発明に係る金属物体表面探傷り法
が採用された連続鋳造スラブの表面探傷装置の第1実施
例の構成を示す、一部ブロック線図を含む斜視図、第6
図は、則じく、第2実施例の構成を示す、一部ブロック
線−を含む斜視図ぐある。 10・・・被検体、   12・・・投光器、14・・
・受光器、   20・・・連続鋳造スフ1.22・・
・レープ光源、 24・・・・・・シリンドリカルレンズ、26・・・受
光カメラ、 28・・・信号処理回路、30・・・干渉
フィルタ、32・・・−光面回転子、34・・・偏光フ
ィルタ。 代理人  ^ 矢  論 (ばか1名)
FIG. 1 is a perspective view showing a state in which the conventional surface detection 1h-method is performed, and FIG. 2 is a perspective view showing the principle of the present invention. Figure 3 is a miniature diagram showing an example of the relationship between the defect signal detected from the change in the scattered reflected light and the N ratio. Figures 4 (A) and (B) are diagrams showing an example of the relationship between the S/N ratio and the S/N ratio of the defect signal detected from the change in the polarization condition. FIG. 5, which is a miniature diagram showing a comparison of the state of change of scattered reflected light, is a partial diagram showing the configuration of a first embodiment of a continuous casting slab surface flaw detection apparatus in which the metal object surface flaw detection method according to the present invention is adopted. Perspective view including block diagram, No. 6
The figure is a perspective view partially including block lines, showing the configuration of the second embodiment. 10... Subject, 12... Floodlight, 14...
・Receiver, 20...Continuous casting 1.22...
- Rape light source, 24... Cylindrical lens, 26... Light receiving camera, 28... Signal processing circuit, 30... Interference filter, 32... - Optical surface rotator, 34... polarizing filter. Agent ^ Arrow Theory (1 idiot)

Claims (3)

【特許請求の範囲】[Claims] (1)走行中の被検体の表面に外部から光を照射し、被
検体表面による反射光を受光して、被検体の表面欠陥を
検出するようにした金属物体表面探傷方法において、被
検体走行ライン上方の、被検体走行方向前方又は後方に
配置した投光器から、被検体表面と照射光入射方向との
なす角度が35度〜75fiとなるように被検体表面に
外部光を照射し、被検体走行ライン上方の投光器と同−
側或いは/及び反対側に配置した受光器により受光され
る、照射光入射方向或いは/及び正反射方向となす角度
が20度以内の散乱反射光の変化から、被検体の表面欠
陥を検出するようにしたことを特徴とする金属物体表面
探傷方法。
(1) In a metal object surface flaw detection method in which the surface of a moving object is irradiated with light from the outside and the reflected light from the surface of the object is received to detect surface defects on the object, the object is External light is irradiated onto the surface of the object from a projector placed above the line in front or behind the object in the direction of movement of the object so that the angle between the surface of the object and the direction of incidence of the irradiated light is 35 degrees to 75 fi. Same as the floodlight above the travel line.
Surface defects on the object to be inspected are detected from changes in scattered reflected light within 20 degrees with respect to the direction of incidence of irradiation light and/or the direction of specular reflection, which is received by a light receiver placed on the side and/or the opposite side. A method for detecting flaws on the surface of a metal object.
(2)前記投光器から照射される外部光が、所定細光面
を有する光とされている特許請求の範囲第1項に記載の
金属物体表面探傷方法。
(2) The metal object surface flaw detection method according to claim 1, wherein the external light emitted from the projector is light having a predetermined narrow optical surface.
(3)前記受光器で、散乱反射光の所定偏光成分を受光
するようにされている特許請求の範囲第1項に記載の金
属物体表面探傷方法。
(3) The metal object surface flaw detection method according to claim 1, wherein the light receiver receives a predetermined polarized light component of the scattered reflected light.
JP8769682A 1982-05-24 1982-05-24 Method for detecting flaw on surface of metallic object Pending JPS58204352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8769682A JPS58204352A (en) 1982-05-24 1982-05-24 Method for detecting flaw on surface of metallic object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8769682A JPS58204352A (en) 1982-05-24 1982-05-24 Method for detecting flaw on surface of metallic object

Publications (1)

Publication Number Publication Date
JPS58204352A true JPS58204352A (en) 1983-11-29

Family

ID=13922083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8769682A Pending JPS58204352A (en) 1982-05-24 1982-05-24 Method for detecting flaw on surface of metallic object

Country Status (1)

Country Link
JP (1) JPS58204352A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60184456A (en) * 1984-03-02 1985-09-19 Nippon Steel Corp Treatment of hot billet in continuous casting

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60184456A (en) * 1984-03-02 1985-09-19 Nippon Steel Corp Treatment of hot billet in continuous casting
JPH0245537B2 (en) * 1984-03-02 1990-10-09 Nippon Steel Corp

Similar Documents

Publication Publication Date Title
US4555635A (en) Surface flaw inspection apparatus for a convex body
US3748047A (en) Method of detecting surface defects of material surfaces
JPH08261953A (en) Defect detecting method and device for transparent body
JPH0225121B2 (en)
JPS58204353A (en) Method for detecting flaw on surface of metallic object
US4296333A (en) Method and apparatus for detecting surface defects in a workpiece
JPS58204352A (en) Method for detecting flaw on surface of metallic object
JP2873450B2 (en) Defect inspection device using light
JPS58204356A (en) Method for detecting flaw on surface of metallic object
US3322024A (en) Optical method for the inspection of a transparent object for deffects including comparing light energy at two stations
JP2001041719A (en) Inspection device and method of transparent material and storage medium
JPS58204348A (en) Method for detecting flaw on surface of metallic object
JP2000314707A (en) Device and method for inspecting surface
JPS58204355A (en) Method for detecting flaw on surface of metallic object
JP2020139942A (en) Device and method for inspecting surface
JPS58204351A (en) Method for detecting flaw on surface of metallic object
JPS58204350A (en) Method for detecting flaw on surface of metallic object
JP2002048727A (en) Laver visual inspection device
JPH10132758A (en) Device and method for detecting defect in plate glass
JPS58204349A (en) Method for detecting flaw on surface of metallic object
JP3040131B2 (en) Spherical surface scratch inspection device
JPS58216938A (en) Surface flaw detector for metal object
JPS58204354A (en) Method for detecting flaw on surface of metallic object
JP2698696B2 (en) Surface flaw inspection method
JPS608737A (en) Surface flaw detecting method of metallic material