JPS58204354A - Method for detecting flaw on surface of metallic object - Google Patents

Method for detecting flaw on surface of metallic object

Info

Publication number
JPS58204354A
JPS58204354A JP8769882A JP8769882A JPS58204354A JP S58204354 A JPS58204354 A JP S58204354A JP 8769882 A JP8769882 A JP 8769882A JP 8769882 A JP8769882 A JP 8769882A JP S58204354 A JPS58204354 A JP S58204354A
Authority
JP
Japan
Prior art keywords
light
polarization
angle
slab
irradiated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8769882A
Other languages
Japanese (ja)
Inventor
Takeshi Kitagawa
北川 孟
Kane Miyake
三宅 苞
Yoshio Ueshima
上嶋 義男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
TOEI DENSHI KOGYO KK
Original Assignee
Kawasaki Steel Corp
TOEI DENSHI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp, TOEI DENSHI KOGYO KK filed Critical Kawasaki Steel Corp
Priority to JP8769882A priority Critical patent/JPS58204354A/en
Publication of JPS58204354A publication Critical patent/JPS58204354A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8901Optical details; Scanning details

Abstract

PURPOSE:To enable the detection of the defect on a surface with high S/N by setting the angle between the indicent direction of the irradiated light having a prescribed plane of polarization and the normal on the surface of a specimen at 15 deg.-55 deg. and detecting the scattered light of <=20 deg. angle to the incident direction. CONSTITUTION:A laser light source 22 disposed in the diagonal direction intersecting orthogonally with the traveling direction of a continuous casting slab 20 on the lateral side of the traveling line of said slab irradiates the external light having a linear polarization characteritic in such a way that the angle theta1 between the normal on the surface of the slab 20 and the incident direction of the irradiated light attains 15 deg.-55 deg.. The laser light 22a is expanded to a belt shape up to the necessary visual field on the slab 20 by a cylidrincal lens 26 through a rotator 24 for the plane of polarization. On the other hand, a photodetection camera 30 which is disposed on the same side as the light source 22 in the slab traveling line and has a polarization filter 28 detects the prescribed polarization complent of the scattered and reflected light of <=20 deg. angle theta2 to the irradiation direction, and a signal processing circuit 32 outputs a defect signal. The S/N of the defect signal is thus made >=2.0 and the defect detection with high accuracy is made possible.

Description

【発明の詳細な説明】 本発明は、金属物体表面探傷方法に係り、特に、連続鋳
造スラブ等の走行中の高温鋼材の表面欠陥tオンライ/
で検出する隙に用いるのに好適な、走行中の被検体の表
面に外部から光を照射し、被検体表面による反射光を受
光して、被検体の表面欠陥を検出するようにした全織物
体表面探傷方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for detecting flaws on the surface of a metal object, and in particular, the present invention relates to a method for detecting flaws on the surface of a metal object, and in particular, to detect surface flaws in running high-temperature steel materials such as continuous casting slabs.
An all-woven fabric that is suitable for use in detecting defects on the surface of a moving object by irradiating light from the outside onto the surface of the object and receiving the reflected light from the surface of the object. Concerning improvements in body surface flaw detection methods.

搬送ラインを走行中の被検体の表向に外部から光を照射
し、被検体表面による反射光を受光して、被検体の表向
欠陥を検出するようにした光学的表面探傷方法が知られ
ている。この光学的表向探傷方法は、例えば第1図に示
す如く、被検体10の走行ライン上方の、被検体直上方
向に配置した投光器12かも被検体10衆而に扇状の外
部光或いは飛点走査される外部光を照射し、則しく被検
体走行ラインの被検体直上方向に配置した受光器14に
より受光される反射光の諸物堆電の減化(光′Mk化又
は回折パターン等)から、被検体100表面欠陥を検出
するものである。例えば、削紀投光器12としてレーザ
光源を用いた場合には、スポット状の光点を飛点走査方
式で被検体10の幅方向に走査し、被検体10からの反
射光を光電子増倍管十シリコンフォトセル勢からなる受
光器14で受光して、各点の光蓋変化から、欠陥部の幅
方向位館を検出する。又、1記投光器12として白色光
のS状光kを用いた場合に(ゴ、被検体10かもの反射
光を、−次元イメージセンサかも1よる受光器14で飛
点走査方式により一点(−両案)ずつ願に受光する。
An optical surface flaw detection method is known in which surface defects on the test object are detected by irradiating light from the outside onto the surface of the test object while it is running on a conveyance line, and receiving the reflected light from the surface of the test object. ing. This optical surface flaw detection method, for example, as shown in FIG. irradiated with external light, and received by the light receiver 14 placed just above the subject on the subject travel line, the reflected light is received by the light receiver 14. , which detects defects on the surface of the object 100. For example, when a laser light source is used as the light projector 12, a spot-like light spot is scanned in the width direction of the subject 10 using a flying spot scanning method, and the reflected light from the subject 10 is reflected by the photomultiplier tube 10. The light is received by a light receiver 14 made of silicon photocells, and the position of the defective portion in the width direction is detected from changes in the light cover at each point. In addition, when a white S-shaped light k is used as the light projector 12, the reflected light from the object 10 is sent to one point (- Both plans) will receive the light.

このような光学的表面探傷方法によれば、走行中の被検
体lOの表面欠陥を非接触でオンライン測定できるとい
う特徴を有するが、従来は、雑音信号を欠陥信号と誤認
し7、誤検出の頻良が高く、実用上の障害となっていた
。又、被検体10として、例えば冷間圧蝿銅板等の常温
被検体が主たる対象とされており、連枕鋳造スタブ吟の
ような続温材の表面探賜にそのtま用いることは、lT
l」熱性等の点で間眺がおった。更に、回転ミラ一部等
、複雑な機構をML、装置全体の耐熱対策及び1Iil
liが非常に繁雑であった。
Such an optical surface flaw detection method has the feature of being able to measure surface defects on a moving object 1O in a non-contact manner. Frequency was high, which was an impediment to practical use. In addition, the test object 10 is mainly a room-temperature test object such as a cold-pressed copper plate, and it is difficult to use it for surface detection of continuous-temperature materials such as continuous pillow casting stubs.
1) There was some confusion regarding fever and other issues. In addition, we will ML complex mechanisms such as a part of the rotating mirror, heat resistance measures for the entire device, and 1Iil.
li was very complicated.

本発明は、前記従来の欠点をM ?Mするべ(なされた
もので、走行中の被検体の表面欠陥を格段に高いS/N
比で精度良(検出することができ、し。
The present invention solves the above-mentioned conventional drawbacks. M should be used to detect surface defects on moving objects with an extremely high S/N ratio.
Good accuracy (can be detected and detected).

かも、投光器や受光器の耐熱対策が谷易な金属物体表面
探傷方法を提供−rること全目的とする。
The overall purpose of the present invention is to provide a method for detecting flaws on the surface of a metal object in which heat resistance measures for a projector and a light receiver can be easily taken.

本発明は、走行中の被検体の表面に外bl!から光ヒ・
照射し7、被検体表向による反射光を受光して、被検体
の表面欠陥を検出J−るよ5にしfc金に4物杯表面探
傷方法において、被検体走行ライン側方の、被検体走行
方向と直交する斜め方向に配置した投光器から、被検体
表面の法線と照射光入射方向とのなす角度が15度〜5
5度となるように、被検体表向に所定偏光面を令する外
部光又kl偏光特性を41しない外部光を照射し、被検
体走行う・インの投光器と同−測成(・を工/及び反対
側の何方に配置した受光器により受□光される、照射光
入射方向或いは/及び正反射方向とな]角度が20度以
内の散乱反射光又はそのIり1定偏光成分の変化から、
被検体の表面欠陥を検出するよ5にして、前記目的を達
成したものである。
The present invention provides an external bl! to the surface of a running subject. Karakohi・
7, and detect the surface defects of the specimen by receiving the reflected light from the surface of the specimen. The angle between the normal to the surface of the object and the direction of incidence of the irradiated light is 15 degrees to 5 degrees from the projector placed diagonally perpendicular to the traveling direction.
External light that commands a predetermined polarization plane or that does not have a kl polarization characteristic is irradiated onto the surface of the subject so that the angle is 5 degrees. □The incident direction of the irradiated light and/or the specular reflection direction, which is received by the receiver placed on the opposite side] Scattered reflected light at an angle of 20 degrees or less, or a change in its constant polarization component from,
The above object has been achieved by detecting surface defects on the object.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明は、前用@1図に示したような、投光器12によ
り走行中の被検体10の表面に外部から光を照射シ2、
被検体100表囲K1る反射光を受光器14により受光
[て、被検体10の表面欠陥を検出するようにした表面
探傷方ff:において、発明者吟が、投゛光器12によ
る照射光入射方向と、受光器14による反射光受光方向
とを撞々質オて最適な位置関係について夾験した結果に
基い°Cなされたものである。
The present invention provides a system 2 for irradiating light from the outside onto the surface of a running subject 10 using a projector 12, as shown in Figure 1.
In a surface flaw detection method ff: in which surface defects of the test object 10 are detected by receiving the reflected light from the surface area K1 of the test object 100 by the light receiver 14, the inventor Gin describes The temperature was determined based on the results of experiments to determine the optimum positional relationship between the incident direction and the direction in which the light receiver 14 receives the reflected light depending on the structure.

即ち、投光器12を、被検体走行ライン側方の、被検体
走行方向と直交する斜め方向に配置し、被検体表面の法
線と照射光入射方向どのなす角度a1を変化ざぜて、被
検体走行ラインの投光器12と同一側の側方に配置しま
た受光器14により、照射光入射方向となす角層θ、が
10度の散乱反射光をは、謔2図に夾綜Aで示す如くと
なった。−から明らかな如(、角度0.が15度〜55
度の範囲内にある場合には、欠陥信号のS/N比が、実
用上欠陥信号を弁別し得る水、準であるS/N比2.0
以上となり、精駅の高い欠陥検出が可能である。
That is, the light projector 12 is placed on the side of the object traveling line in an oblique direction orthogonal to the object traveling direction, and the angle a1 between the normal to the object surface and the incident direction of the irradiated light is varied, and the object is moved. The light receiver 14 is placed on the same side as the projector 12 of the line, and the scattered reflected light with a corner angle θ of 10 degrees from the direction of incidence of the irradiated light is transmitted as shown by A in Figure 2. became. - As is clear from (, angle 0. is 15 degrees to 55 degrees
If the S/N ratio of the defect signal is within the range of 2.0, the S/N ratio of the defect signal is approximately 2.0
As described above, it is possible to detect defects with high accuracy.

又、投光器12による照射光入射方向と被検体表面の法
線とのなす角t: ’+ t 45度に固定して、前記
受光器14による散乱反射光受光方向と前記投光器12
による照射光入射方向とのなす角度QttX化させ、散
乱反射光から検出式れる欠陥信号のS/N比の変化状態
を調べたところ、第3図にボすような結果が得られた。
Further, the angle t between the incident direction of the light emitted by the light projector 12 and the normal to the surface of the subject is fixed at 45 degrees, and the angle t between the incident direction of the light emitted by the light projector 12 and the normal line to the surface of the subject is fixed at 45 degrees, and the direction in which the scattered reflected light is received by the light receiver 14 and the light projector 12 are fixed.
When the change in the S/N ratio of the defect signal detected from the scattered reflected light was investigated by changing the angle QttX with the incident direction of the irradiated light, the results shown in FIG. 3 were obtained.

図から明らかな如く、内政#、が土20f以内であれば
、欠陥信号のS/N比は2.0以上であり、精度の高い
欠陥検出が可能である。
As is clear from the figure, if the domestic signal # is within 20 f, the S/N ratio of the defect signal is 2.0 or more, and highly accurate defect detection is possible.

更に、投光器12による照射光入射方向を、ライン側方
の斜め方向とした場合にをヱ、第4図(イ)に示す如く
、縦割れ10mの肩部からの正反射光に近い反射光が強
調されて散乱反射光となるので、このように、投光器1
2fニライン側方の斜め上方に置く方法は、特に走行方
向と平行な縦割れの検出に対し、て有効である。第4図
@は、入射角度45度の場合の受光波形金示したもので
あり、ビークBが欠陥信号である。又、被検体10から
の垂直距離が小シい状態でも、耐熱対策が容易である。
Furthermore, when the incident direction of the light irradiated by the projector 12 is set diagonally to the side of the line, as shown in Fig. 4 (a), the reflected light close to the regular reflected light from the shoulder of the 10 m vertical crack is The light is emphasized and becomes scattered reflected light, so in this way, the light emitter 1
The method of placing it diagonally above the lateral side of the 2f line is particularly effective for detecting vertical cracks parallel to the running direction. FIG. 4 shows the received light waveform when the incident angle is 45 degrees, and beak B is a defect signal. Further, even when the vertical distance from the subject 10 is small, heat resistance measures can be easily taken.

更に、投光器と反射点の距離を太き(とる必要がなく、
現場に多いほこりの影響に拘らず、十分な光が反射点に
到達する。
Furthermore, there is no need to increase the distance between the projector and the reflection point.
Sufficient light reaches the reflection point regardless of the influence of dust on the site.

冑、前記角度θ、をあまり小で(すると、投光視野の遠
近感が強ガされ、焦点合せ及び信号処理の際のアドレス
付けに支障金もたらすことがある。
However, if the angle θ is too small, the perspective of the projected field of view will be distorted, which may cause problems in focusing and addressing during signal processing.

一方、角度θ1が犬であるほど、被検体10の上下動の
影響は受けにく(なるものの、被検体10の上面に近く
なるので、特に高温材の4熱の面では不利となる。父、
被検体10の下面を反転せずに検査する場合にを1投光
器12を配設するためのビットの深さを太き(する必要
も生じる。従って、上述の如き、15[〜55阪の1範
囲内が好ましく、特に、実用−ヒは、20度〜50度の
範囲がより有効である。
On the other hand, the closer the angle θ1 is, the less it is affected by the vertical movement of the subject 10 (although it is closer to the top surface of the subject 10, which is disadvantageous especially in terms of the four heats of high-temperature materials. ,
When inspecting the lower surface of the object 10 without inverting it, it becomes necessary to increase the depth of the bit for arranging one projector 12. Therefore, as described above, The angle is preferably within the range, and in particular, the range of 20 degrees to 50 degrees is more effective for practical use.

更に、前記のような角度範囲において、偏光条件を適正
に設定した場合、欠陥信号のS/N比は、更に向上した
。即ち、前記投光器12により照射される照射光を直線
偏光とし、その偏光面を1ll11整して、被検体10
表面上の棒状(帯状) ?Jl!野の短辺に平行、即ち
、被検体100走行方向に平行な偏光面を持つ外部光と
し、被検体10からの反射光を受光する際に、やはり該
偏光面の光のみを受光儀14に入力するようVこしたと
ころ、前記と同様な角度条件において、そのS/N比は
、第2図に央NCで示す如(、又、第4図(Qに示す如
く格段に向上しまた。筒、偏光条件は、前記例に駆足さ
れず、例えば入射偏光面と直交する散乱偏光面の光のみ
1受光するようにした場合でも、11y1様の効果が得
られた。
Furthermore, in the above-mentioned angle range, when the polarization conditions were set appropriately, the S/N ratio of the defect signal was further improved. That is, the irradiation light irradiated by the light projector 12 is linearly polarized light, the plane of polarization is adjusted 1ll11, and the object 10 is
Rod-like (band-like) on the surface? Jl! The external light has a polarization plane that is parallel to the short side of the field, that is, parallel to the running direction of the object 100. When receiving reflected light from the object 10, only the light with this polarization plane is sent to the receiver 14. When V was turned for input, under the same angle conditions as above, the S/N ratio was significantly improved as shown by center NC in FIG. 2 (and as shown by Q in FIG. 4). Even when the tube and polarization conditions were not limited to those in the previous example, and only one beam of light with a scattering polarization plane perpendicular to the incident polarization plane was received, an effect similar to 11y1 was obtained.

本発明は、上記υような知晃に基いてなされたものであ
る。
The present invention has been made based on the above-mentioned knowledge υ.

以下1図面を参照して、本発明に係る金属物体表向探傷
方法が採用された連続鋳造スラブV表面探か装置の実施
例を1細r(説明する。
Hereinafter, an embodiment of a continuous casting slab V surface detection apparatus employing the metal object surface flaw detection method according to the present invention will be described with reference to the drawings.

本実施例は、#!5図に示す如く、連続鋳造スラブ20
の走行ライン側方のスラブ走行方向と直交する斜め方向
に配置された、連続鋳造スラブ20表面の法線と照射光
入射方向とのなす角11’+が、15度〜55度となる
ように連続鋳造スラブ20V表面に直線偏光特性を有す
る外部光を照射するためりレーザ光源22と、該レーザ
光源22かも発振されたレーザ光の偏光面を所定偏光面
、例えば、連続@造スラブ20の棒状(帯状)視野の短
辺に平行(即ち連続鋳造スラブ200走行方回に平行)
な偏光面を持つレーザ光22mとするための偏光面回転
子24と、該偏光面回転子24田力の所定偏光面を令す
るレーザ光22mを、連続鋳造スラブ20上の必要視野
幅迄帯状に広げる几めのシリンドリカルレンズ26と、
スラブ走行ラインの前記レーザ光源22と同一側の側方
に配置さ;J?照射光入射方方向なす角度θ2が20度
以内の散乱反射光の所定偏光成分を受光するための、1
個又は複数個の偏光フィルタ28が装置された受ら構成
されている。第5図において、34は、受光カメラ30
(IJ受光部に配役さt’L友、レーザ光源22から照
射されたレーザ光22av使用波長域のみを通過させる
ことによって、連続−造スラブ20v自発元エネルギの
影Iwを除去し、検出精度を高めるための干渉)づルタ
である。
In this example, #! As shown in Figure 5, continuous casting slab 20
The angle 11'+ between the normal to the surface of the continuous casting slab 20 and the incident direction of the irradiation light, which is arranged in an oblique direction perpendicular to the slab traveling direction on the side of the traveling line, is 15 degrees to 55 degrees. A laser light source 22 irradiates the surface of the continuous casting slab 20V with external light having linear polarization characteristics, and the laser light source 22 also converts the polarization plane of the emitted laser light into a predetermined polarization plane, for example, the rod shape of the continuous casting slab 20. (band-shaped) parallel to the short side of the field of view (i.e. parallel to the 200 travel direction of the continuous cast slab)
A polarization plane rotator 24 is used to generate a laser beam 22m having a polarization plane, and a laser beam 22m that commands a predetermined polarization plane of the polarization plane rotator 24 is formed into a strip shape up to the required field width on the continuous casting slab 20. A widening cylindrical lens 26,
J? is placed on the same side of the slab traveling line as the laser light source 22; 1 for receiving a predetermined polarized light component of scattered reflected light having an angle θ2 of 20 degrees or less in the direction of incidence of the irradiated light;
A receiver is constructed in which one or more polarizing filters 28 are installed. In FIG. 5, 34 is the light receiving camera 30
(By passing only the wavelength range used by the laser light 22av irradiated from the laser light source 22, the shadow Iw of the spontaneous energy of the continuous slab 20v is removed, and the detection accuracy is improved. Interference to enhance) Zurta.

前記レーザ光#22としては、例えは出力5WOアルゴ
ンレーザtMいることができる。一般に、1IIl、r
M物体を被検体とした一合、被検体の自発光エネルギは
、赤外及び可視の長波長側に豫いエネルギ成分會持つの
で、反射光を受光して欠陥信号を得る場合には、なるべ
く自発光成分の少ない短波長の光音投射した方が壱°利
である。アルゴンレーザを工、最@田方の波長が500
 nm近傍の波長を持つので′、連続鋳造スラブのよう
なm−銅材の自発光成分の比較的弱い波長域に該当し、
且つ、この棹のレーザ・工、連続して比較的強い出力が
得らl’Lるので、表向探傷の光源として1工壱幼であ
る。
The laser beam #22 may be, for example, a 5WO output argon laser tM. In general, 1IIl, r
When an M object is used as the test object, the self-luminous energy of the test object has a large energy component on the long wavelength side of infrared and visible, so when receiving reflected light and obtaining a defect signal, it is necessary to It is more advantageous to project a short wavelength optical sound with less self-luminous components. The maximum @Takata wavelength is 500 when using argon laser.
Since it has a wavelength in the vicinity of nm, it corresponds to the wavelength range where the self-luminous component of m-copper materials such as continuous casting slabs is relatively weak.
In addition, since this laser beam produces a continuous and relatively strong output, it is suitable as a light source for surface flaw detection.

罰1受光カメラ30としては、例えば電衝結合ナバイス
會用いた電子走査型イメージセンサが焦照面に配設され
たものを用いることができる。受光カメラのレンズはζ
被検体−受光カメラ間距離、帯状投光面の−等により、
最適な口径に選定されている。今、204g素子のセン
サを用いて視野幅1m1−検査する場合、その幾何学的
分解能は約G、5龍となる。
As the first light-receiving camera 30, for example, one in which an electronic scanning image sensor using an electric shock coupling system is disposed on the focal plane can be used. The lens of the light receiving camera is ζ
Depending on the distance between the object and the light-receiving camera, the width of the band-shaped light emitting surface, etc.
The optimum diameter has been selected. Now, when inspecting a field of view of 1 m1 using a sensor with a 204 g element, its geometric resolution is about G, 5 dragons.

前記レーザ光源22、偏光面回転子24、シリンドリカ
ルレンズ26等を含む投光装置、及び、前り己偏光フィ
ルタ28、受光カメラ30、干渉フィルタ34等を含む
受光装置は、いずれも、連続鋳造スラブ20の斜め方向
に十分大きい距離を保って配置され、且つ、長時間連続
便用可能なように、気体或いは液体による耐熱対策が施
されている。
The light projecting device including the laser light source 22, polarization plane rotator 24, cylindrical lens 26, etc., and the light receiving device including the front self-polarizing filter 28, light receiving camera 30, interference filter 34, etc. are all made of continuous casting slabs. It is arranged at a sufficiently large distance in the diagonal direction of 20, and is heat-resistant with gas or liquid so that it can be used continuously for a long time.

以下、作用を説明する。The action will be explained below.

表面温度500℃以上の連続鋳造スラブ20は、製造ラ
インを矢印りの方向にはは一足の速度で走行しており、
少なくとも被検@Jが平地とみなし得る状態となってい
る。レーザ光源22かも発振≧れたレーザ光22mは、
偏光面回転子24により偏光面がPA定偏光曲とされた
のち、シリンドリカAレンズ26により帯状に連続鋳造
スラブ20上に投光される。連続#造スラブ20の被検
面によつ°C反射されたレーザ光は、干渉フィルタ34
及び偏光フィルタ281!:介して受光カメラ30に入
射し、帯状光の像が、受光カメラ30の焦点面に一次元
情報として入力され、信号処理N路32で欠陥信号化さ
れて出力される。
The continuous casting slab 20 with a surface temperature of 500° C. or more is running on the production line at a speed of one foot in the direction of the arrow.
At least the test subject @J is in a state that can be considered as flat ground. The laser light 22m oscillated by the laser light source 22 is
After the polarization plane is made into a PA constant polarization curve by the polarization plane rotator 24, the light is projected onto the continuous casting slab 20 in a band shape by the cylindrical A lens 26. The laser beam reflected by the test surface of the continuous slab 20 passes through an interference filter 34.
and polarizing filter 281! : The image of the band-shaped light is inputted to the focal plane of the light receiving camera 30 as one-dimensional information, converted into a defect signal by the signal processing N path 32, and output.

本実施例においては、投光器として、レーザ光@22’
f(用いているので、レーザ光源22及びシリンドリカ
ルレンズ26の部分と高温材である連続鋳造スラブ20
とのパスラインの距離、及び、連れ鋳造スラブ20と受
光カメラ30とのパスラインの距離を大きくとることが
可能であり、耐熱対策上一層有利である。即ち、レーザ
光(工、強い指向性を持っておりそのビームが非常に小
さく、エネルギ密度が極めて向いため、距1li11t
C対する減衰が殆んど無く、シリンドリカルレンズ26
で機番こ広げても、十分に高いエネルギ密度が得られる
In this embodiment, a laser beam @22' is used as a projector.
f (Since the laser light source 22 and the cylindrical lens 26 and the continuous casting slab 20 which is a high temperature material are used)
It is possible to increase the distance between the pass line between the casting slab 20 and the light receiving camera 30, and this is more advantageous in terms of heat resistance. In other words, the laser beam has strong directivity, the beam is very small, and the energy density is extremely direct, so the distance is 1li11t.
There is almost no attenuation for C, and the cylindrical lens 26
Even if the machine number is increased, a sufficiently high energy density can be obtained.

又、レーザ光の物性として、その波長成分が単一である
ので、本実施例のように、使用するレーザに遇した干渉
フィルタ34t−、受光カメラ30のレンズ前面に取付
けることによって、レーザ光のみを極めて選択的に受光
することがb」能であり、自発光エネルギの影醤を効果
的に除去することが容易である。同、投光器の種類は、
これに限定されず、例えば、白色光を投射する水銀灯を
用いることも口J h’ieである。
Furthermore, since the physical property of laser light is that its wavelength component is single, as in this embodiment, by attaching the interference filter 34t to the front surface of the lens of the light-receiving camera 30, which is suitable for the laser used, only the laser light can be isolated. It is possible to receive light extremely selectively, and it is easy to effectively remove shadows of self-luminous energy. Same, the types of floodlights are:
The present invention is not limited to this, and for example, it is also possible to use a mercury lamp that projects white light.

又、本実施例を′こおいては、レーザ光源22かもの元
を、連れ胸16スラブ20の表向に帯状に投光し、その
反射光を、電子走査型のイメージセンサで受光して出力
信号f:得るようにしているので、信号取出し定食を、
従来の機械的走査より格殺に高速化できる。従って、被
検体の走行速度が1000−/分取上の一合でも、応答
することが5J能である。又、光電子増倍管やシリコン
フォトセル、増幅器等で受光器を構成し友場合に比べて
、蛍光器が小型であり、4湿、iFJ#!l、劃r#を
等のしやへい対策が行いやすい。更に、探傷装置全体と
して、回転部分がないので、保守も容易である。
In addition, in this embodiment, a laser light source 22 emits light in a band shape onto the surface of the slab 20, and the reflected light is received by an electronic scanning image sensor. Since the output signal f: is obtained, the signal extraction set meal is
It can be significantly faster than conventional mechanical scanning. Therefore, even if the running speed of the object is 1000-/-, it is possible to respond by 5J. In addition, compared to the case where the receiver is composed of a photomultiplier tube, a silicon photocell, an amplifier, etc., the fluorescent lamp is smaller, and the fluorescent lamp is smaller than the one in which the receiver is composed of a photomultiplier tube, a silicon photocell, an amplifier, etc. It is easy to take safety measures such as l, r#, etc. Furthermore, since there are no rotating parts in the flaw detection device as a whole, maintenance is easy.

向、罰に実施例においては、受光カメラ30がスラブ走
行ラインのレーザ光源22と同一@jの側〕jに配置さ
れ、該受光カメラ30により、照射光入射方向となす角
度が20[以内の散乱反射光を受光するようにされてい
たが、散乱反射光を受光する方法は、これに限定されず
、受光カメラ30を、スラブ走行ラインのレーザ光源2
2と反対側の側方に配置して、前記受光カメラ30によ
り、正反射方向となす角度が20嵐以内の散乱反射光を
受光することも可能である。
In this embodiment, the light-receiving camera 30 is placed on the same side as the laser light source 22 of the slab running line, and the light-receiving camera 30 allows the light-receiving camera 30 to detect an angle within 20 Although the scattered reflected light is received, the method of receiving the scattered reflected light is not limited to this.
It is also possible to arrange the light receiving camera 30 on the side opposite to the specular reflection direction to receive scattered reflected light having an angle of less than 20 degrees with respect to the specular reflection direction.

又、前記実施例においては、レーザ光源22に偏光面回
転子24が設けられると共に、受光カメラ30の前面に
偏光フィルタ28が配設されていたが、レーザ光源22
が、直線偏光性レーザ光源である場合には、その配設位
tMを1[夫することによって、偏光面回転子24i省
略することも可能である。又、前記レーザ光源22が、
ランダム偏光レーザ光源又は白色光源である場合には、
該投光器の前圓に1個又は被数イーの偏光フィルタを追
加することも可能である。更に、前1投光器による照射
光を、偏光%8.を有しない外部光とし、前も己受光器
のs’lI面に偏光フィルタを配設して、受光器により
散乱反射光の所定偏光成分のみを受光するように構成す
ることもh1能である。
Furthermore, in the embodiment described above, the laser light source 22 was provided with the polarization plane rotator 24 and the polarization filter 28 was provided in front of the light receiving camera 30.
is a linearly polarized laser light source, it is also possible to omit the polarization plane rotator 24i by changing its arrangement position tM to 1. Further, the laser light source 22 is
If it is a randomly polarized laser light source or a white light source,
It is also possible to add one or more polarizing filters to the front circle of the projector. Furthermore, the irradiated light from the front 1 floodlight is polarized by 8. It is also possible to configure the receiver to receive only a predetermined polarized component of the scattered reflected light by disposing a polarizing filter on the s'lI plane of the receiver. .

前811夾施例においては、本発明が、高温材である連
続鋳造スラブの探傷に適用されていたが、本発明の適用
範囲はこれに限定されず、より高速で走行する仕上圧姑
機出側の熱延鋼帯のオンライン探傷、酸洗ラインのオン
ライン探傷、冷延鋼帯、鋼板のオンライン探傷等にも同
様に適用できることは明らかである。
In the previous 811 example, the present invention was applied to the flaw detection of continuously cast slabs, which are high-temperature materials. It is clear that the present invention can be similarly applied to online flaw detection of side hot rolled steel strips, online flaw detection of pickling lines, online flaw detection of cold rolled steel strips, steel plates, etc.

以上説明したノ出り、本発明によれば、連続鋳造スラブ
尋の走行中の被検体の表向欠陥を、格段に高いS/N比
で精度良く検出することができ、しかも、投光器や受光
器のTh熱対策も容易であるという優れた効果を有する
As explained above, according to the present invention, it is possible to accurately detect surface defects of a continuously cast slab while it is being inspected with a significantly high S/N ratio. It has an excellent effect in that it is easy to take measures against Th heat in the vessel.

【図面の簡単な説明】[Brief explanation of drawings]

絽1図は、従来の表面探傷方法が行われている状l!i
′lr:示す斜視図、絽2図は、本発明の原理を示す、
偏光条件を設定した場合と設定しない場合になす角度と
、散乱反射光の変化から検出した欠陥信号のS/N比と
の関係を比較して示す縮図、第3図は、同じく、照射光
入射方向と散乱反射光受光方向とのなす角度と、散乱反
射光の変化から検出した欠陥信号のS/N比との関係の
一例を示す縮図、第4図(A)は、同じく、縦割れを有
する被検体の表面に斜め方向から照射光を入射している
状態を示す断−面図、第4図(B)、(C)は、同じく
、偏光条件を設定しない場合と設定した場合における、
散乱反射光の変化状態を比較して示す縮図、第5図は、
本発明に係る金属物体表面探偽方法が採用された連続鋳
造スラブの表面探傷装置の寅論例の構成を示す、一部ブ
ロック線図を含む斜視図である。 10・・・被検体、    10a・・・縦割れ、12
・・・投光器、    14・・・受光器、20・・・
連続鋳造スラブ、22・・・レーザ光源、24・・・偏
光向回転子、 26・・・シリンドリカルレンズ、 28・・・−光フィルタ、 3o・・・受光カメラ、3
2・・・信号処理回路、 34・・・干渉フィルタ。 代理人  高 矢  論 (ほか1名) 第1図 第2図 一4度θ1 第3図 第4図 (A) (B)          (C)
Figure 1 shows a situation where the conventional surface flaw detection method is being used! i
'lr: Perspective view shown, Figure 2 shows the principle of the present invention,
Figure 3 is a miniature diagram showing the relationship between the angle made when the polarization condition is set and when it is not set, and the S/N ratio of the defect signal detected from the change in the scattered reflected light. FIG. 4(A) is a miniature diagram showing an example of the relationship between the angle formed by the direction and the direction of receiving the scattered reflected light, and the S/N ratio of the defect signal detected from the change in the scattered reflected light. FIGS. 4(B) and 4(C) are cross-sectional views showing a state in which irradiation light is incident obliquely on the surface of a subject with polarization conditions, and when polarization conditions are not set and when polarization conditions are set.
Fig. 5 is a miniature map showing the state of change of scattered reflected light in comparison.
1 is a perspective view, including a partial block diagram, showing the configuration of a theoretical example of a continuous casting slab surface flaw detection apparatus in which the metal object surface detection method according to the present invention is adopted; FIG. 10... Subject, 10a... Vertical crack, 12
... Emitter, 14... Light receiver, 20...
Continuous casting slab, 22... Laser light source, 24... Polarization rotator, 26... Cylindrical lens, 28... - Optical filter, 3o... Light receiving camera, 3
2... Signal processing circuit, 34... Interference filter. Agent Takaya Ron (and 1 other person) Fig. 1 Fig. 2 14 degrees θ1 Fig. 3 Fig. 4 (A) (B) (C)

Claims (1)

【特許請求の範囲】[Claims] (1)  走行中の被検体の異面に外部から光を照射し
、被検体表面による反射光を受光して、被検体の表面欠
陥を検出するようにした金属物体異面探傷方法において
、被検体走行ライン側力の、被検体走行方向と直交する
斜め方向に配置した投光器から、被検体表面の法線と照
射光入射方向とのなす角度が15度〜55度となるよう
に、被検体表面に所足偏光面t−’!−する外部光又は
偏光特性を有しない外部光を照射し、被検体走行ライン
の投光器と同−側或いは/及び反対側の側方に配置した
受光器により受光される、照射光入射方向或いは/及び
正反射方向となす角度が20嵐以内の散乱反射光又はそ
の所足偏光成分の変化から、被検体の表面欠陥を検出す
るようにしたことを特徴とする金属物体異面探傷方法。
(1) In a metal object different surface flaw detection method in which surface defects on the object are detected by irradiating light from the outside onto different surfaces of the object being inspected while the object is moving and receiving reflected light from the surface of the object, Specimen running line From the projector placed in the diagonal direction perpendicular to the running direction of the specimen, move the specimen so that the angle between the normal to the surface of the specimen and the incident direction of the irradiated light is 15 degrees to 55 degrees. Polarization plane t-' on the surface! irradiated with external light or external light without polarization characteristics, and received by a light receiver placed on the same side and/or on the opposite side of the subject travel line as the projector, in the incident direction of the irradiated light or/and A method for detecting defects on a different surface of a metal object, characterized in that a surface defect of the object to be inspected is detected from a change in the scattered reflected light or its polarized light component at an angle of 20 degrees or less with the direction of specular reflection.
JP8769882A 1982-05-24 1982-05-24 Method for detecting flaw on surface of metallic object Pending JPS58204354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8769882A JPS58204354A (en) 1982-05-24 1982-05-24 Method for detecting flaw on surface of metallic object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8769882A JPS58204354A (en) 1982-05-24 1982-05-24 Method for detecting flaw on surface of metallic object

Publications (1)

Publication Number Publication Date
JPS58204354A true JPS58204354A (en) 1983-11-29

Family

ID=13922138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8769882A Pending JPS58204354A (en) 1982-05-24 1982-05-24 Method for detecting flaw on surface of metallic object

Country Status (1)

Country Link
JP (1) JPS58204354A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108226629A (en) * 2018-01-08 2018-06-29 河海大学常州校区 A kind of method that Double-sided battery pack power generation performance is calculated using more irradiation sensors

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108226629A (en) * 2018-01-08 2018-06-29 河海大学常州校区 A kind of method that Double-sided battery pack power generation performance is calculated using more irradiation sensors
CN108226629B (en) * 2018-01-08 2020-03-10 河海大学常州校区 Method for calculating power generation performance of double-sided battery pack by adopting multiple radiation sensors

Similar Documents

Publication Publication Date Title
US3814946A (en) Method of detecting defects in transparent and semitransparent bodies
US20080013084A1 (en) Surface Inspection Method and Surface Inspection Apparatus
JPS57131039A (en) Defect detector
JPH03267745A (en) Surface property detecting method
US10094787B2 (en) Multi-surface specular reflection inspector
US20230358688A1 (en) Foreign Substance Detection Device and Detection Method
JPS58204353A (en) Method for detecting flaw on surface of metallic object
JPS58204354A (en) Method for detecting flaw on surface of metallic object
JPS58204356A (en) Method for detecting flaw on surface of metallic object
JP2873450B2 (en) Defect inspection device using light
JPS58204355A (en) Method for detecting flaw on surface of metallic object
JP2001041719A (en) Inspection device and method of transparent material and storage medium
JPS58204348A (en) Method for detecting flaw on surface of metallic object
JPS58204350A (en) Method for detecting flaw on surface of metallic object
JP3432273B2 (en) Foreign matter inspection device and foreign matter inspection method
JPS58204349A (en) Method for detecting flaw on surface of metallic object
JPS5933855B2 (en) Surface inspection method
JPS58204352A (en) Method for detecting flaw on surface of metallic object
JP3336392B2 (en) Foreign matter inspection apparatus and method
JPS58204351A (en) Method for detecting flaw on surface of metallic object
JPS58216938A (en) Surface flaw detector for metal object
JPS5892937A (en) Automatic inspecting device for surface flaw
JPH0618230A (en) Thickness measuring apparatus
JPS62188334A (en) Inspection apparatus
JPH05172731A (en) Particle detection