JPH1177363A - Method for inspecting fillet weld part, and device used therefor - Google Patents

Method for inspecting fillet weld part, and device used therefor

Info

Publication number
JPH1177363A
JPH1177363A JP10182357A JP18235798A JPH1177363A JP H1177363 A JPH1177363 A JP H1177363A JP 10182357 A JP10182357 A JP 10182357A JP 18235798 A JP18235798 A JP 18235798A JP H1177363 A JPH1177363 A JP H1177363A
Authority
JP
Japan
Prior art keywords
penetration depth
height
light beam
change
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10182357A
Other languages
Japanese (ja)
Inventor
Yasuo Takagi
靖夫 高木
Katsuji Motoe
克次 本江
Hiromi Chiba
弘美 千葉
Takanori Igarashi
貴教 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topy Industries Ltd
Original Assignee
Topy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topy Industries Ltd filed Critical Topy Industries Ltd
Priority to JP10182357A priority Critical patent/JPH1177363A/en
Publication of JPH1177363A publication Critical patent/JPH1177363A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/242Fillet welding, i.e. involving a weld of substantially triangular cross section joining two parts

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Laser Beam Processing (AREA)

Abstract

PROBLEM TO BE SOLVED: To estimate the penetration depth of the fillet welding of stainless steel by detecting the change in the quantity of the reflected beam of the projected beam in the vicinity of a welded part to measure the melting boundary height, and estimating the penetration depth front the relationship between the melting boundary height measured by changing the target position in advance and the penetration depth. SOLUTION: The point E denotes the height of the melting boundary, H denotes the melting height, and 1 denotes the penetration depth in the direction to indicate the substantial strength of a joint. The change in the intensity of the reflected beam of the spot beam perpendicular to a perpendicular plate 3 is measured by vertically moving an irradiator, and the height E of the melting boundary is obtained. The change in the quantity of the reflected beam can be sensed by the voltage or the difference in brightness of the image. The correlation between the melting height H and the penetration depth I is considered with the output of the laser beam, the focal distance and the target position as the major parameters. If the correlation diagram of the melting height H and the penetration depth I is prepared under the assumption that the output and the focal distance of the laser beam are constant, the penetration depth I can be estimated through comparison with the correlation diagram.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、ステンレス鋼の
すみ肉溶接部の検査方法及び該方法に使用する検査装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for inspecting a fillet weld of stainless steel and an inspection apparatus used for the method.

【0002】[0002]

【従来の技術】従来、すみ肉溶接部の検査方法として
は、図1に示すように、溶接部1を数カ所切断し、切断
面を研磨後、腐食させて溶けた部分を確認して、図2に
示すように、溶け込み深さd、d′を寸法測定するマク
ロ試験法による破壊検査が、多く用いられていた。
2. Description of the Related Art Conventionally, as a method of inspecting a fillet welded portion, as shown in FIG. 1, a welded portion 1 is cut at several places, a cut surface is polished, and a portion which is corroded and melted is confirmed. As shown in FIG. 2, a destructive inspection by a macro test method for measuring the dimensions of the penetration depths d and d 'has been frequently used.

【0003】[0003]

【発明が解決しようとする課題】上記破壊検査による方
法は、現物の溶け込み深さを保証するものではない。即
ち、溶け込み深さを測定した溶接部と同じ溶接条件で行
ったものは、同じ溶け込み深さになっているであろうと
推定するものであるが、現在一般に慣行されている。
The method based on the above-described destructive inspection does not guarantee the penetration depth of the actual product. That is, when the welding is performed under the same welding conditions as the welded portion where the penetration depth is measured, it is estimated that the penetration will be the same, but it is currently generally used.

【0004】このように現物の溶け込み深さを保証する
ものではない欠点を補うために、超音波で溶け残り量を
測定する方法も提案されているが、この方法は推定精度
が1mm単位なので、板厚が10mm程度の大きな場合
にしか適用できない問題があった。そればかりか、ステ
ンレス鋼については、超音波の減衰が激しいために適用
が困難な問題があった。
[0004] In order to compensate for the drawback that does not guarantee the penetration depth of the actual product, a method of measuring the amount of residual melting by ultrasonic waves has been proposed. However, since this method has an estimation accuracy of 1 mm unit, There is a problem that can be applied only when the plate thickness is as large as about 10 mm. In addition, there was a problem that stainless steel was difficult to apply due to severe attenuation of ultrasonic waves.

【0005】この発明は、このような問題点を解消しよ
うとするものであり、ステンレス鋼のすみ肉溶接につい
て、現物の溶け込み深さを推定することができる検査方
法及び該方法に使用する検査装置を提供することを目的
とする。
An object of the present invention is to solve such a problem. An inspection method and an inspection apparatus used for estimating an actual penetration depth of a stainless steel fillet weld are disclosed. The purpose is to provide.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明の検査方法は、溶接部及びその近傍に光線を
投射し、その反射光量の変化を検知して、溶接境界高さ
を測定し、予め狙い位置を変えて測定した溶接境界高さ
と溶け込み深さとの関係から、溶け込み深さを推定する
ことを特徴とする。
In order to achieve the above object, an inspection method according to the present invention projects a light beam on a weld portion and its vicinity, detects a change in the amount of reflected light, and adjusts the height of the weld boundary. It is characterized in that the penetration depth is estimated from the relationship between the welding boundary height and the penetration depth, which are measured and the target position is changed in advance.

【0007】また、本発明の検査装置は、溶接部及びそ
の近傍に光線を投射する手段と、該光線の反射光量の変
化を検知する手段とを具備し、検知した反射光量から溶
接境界高さを測定し、予め狙い位置を変えて測定した溶
接境界高さと溶け込み深さとの関係から、溶け込み深さ
を推定することを特徴とする。
Further, the inspection apparatus of the present invention includes means for projecting a light beam at a weld portion and its vicinity, and means for detecting a change in the amount of reflected light of the light beam. Is measured, and the penetration depth is estimated from the relationship between the welding boundary height and the penetration depth measured by changing the target position in advance.

【0008】[0008]

【発明の実施の形態】次に、図面に基づいて、本発明の
実施の形態を説明する。図3に示すように、ステンレス
製の下板2に、ステンレス製の立板3が、すみ肉溶接さ
れている。
Next, embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 3, a stainless steel standing plate 3 is fillet-welded to a stainless steel lower plate 2.

【0009】立板3に垂直なスポット光線4を、照射器
5からスポット状に照射し、照射器5で反射光線を受光
する。反射光量の変化は、電圧若しくは画像の明度(輝
度)差で感知するようにすると良い。
A spot beam 4 perpendicular to the standing plate 3 is radiated in a spot form from an irradiator 5, and the irradiator 5 receives a reflected beam. The change in the amount of reflected light may be sensed by a voltage or a difference in brightness (luminance) of an image.

【0010】また、スポット光線4が立板3に当たる距
離をほぼ一定に保ったまま、照射器5を上下動させる
と、反射光線は、溶接部を完全に離れたとき最大とな
り、逆にスポットが全部溶接部に入ると最小となる。
If the irradiator 5 is moved up and down while keeping the distance that the spot light beam 4 hits the standing plate 3 substantially constant, the reflected light beam becomes maximum when the weld is completely separated, and conversely, the spot is The minimum is obtained when all of them enter the weld.

【0011】図4は、溶接時の狙い位置が、理想の状態
を示すものであり、E点は溶融境界高さを表し、Hは溶
融高さを表し、Iが溶け込み深さを表す。このように、
本発明で溶け込み深さというのは、実質的継手強度を示
す方向の溶け込み深さを意味する。
FIG. 4 shows the ideal position at the time of welding. Point E represents the height of the fusion boundary, H represents the fusion height, and I represents the penetration depth. in this way,
In the present invention, the penetration depth means a penetration depth in a direction showing substantial joint strength.

【0012】図5は、狙い位置が、理想の狙い位置から
0.5mm下方にずれた(−0.5mm)状態を示すも
のであり、図6は0.5mm上方にずれた(+0.5m
m)状態を示すものである。
FIG. 5 shows a state in which the target position is shifted downward by 0.5 mm (-0.5 mm) from the ideal target position, and FIG. 6 is shifted by 0.5 mm upward (+0.5 m).
m) Indicates the state.

【0013】前記したように、照射器5を上下動させて
反射光線の強さの変化を測定することによって、溶融境
界高さEを知ることができる。
As described above, the height E of the melting boundary can be known by moving the irradiator 5 up and down and measuring the change in the intensity of the reflected light beam.

【0014】溶融高さHと溶け込み深さIとの相関性
は、光線(レーザ)の出力、焦点距離及び狙い位置を、
主なパラメータとしていると考えられる。光線の出力と
焦点距離とを一定とし、同じ狙い角度で狙い位置を変え
た溶融高さHと溶け込み深さIとの相関図を作成すれ
ば、これとの比較により、溶け込み深さIを推定するこ
とができる。
The correlation between the melting height H and the penetration depth I is based on the output of the light beam (laser), the focal length, and the target position.
It is considered to be the main parameter. If the correlation between the melting height H and the penetration depth I is made with the output of the light beam and the focal length constant and the target position changed at the same target angle, the penetration depth I is estimated by comparison with this. can do.

【0015】上記に加えて、下板2及び立板3の板厚の
組みごとに作成した溶融高さHと溶け込み深さIとの関
係から、板厚ごとに溶け込み深さIを推定すれば、より
正確に溶け込み深さIを推定することができる。
In addition to the above, if the penetration depth I is estimated for each plate thickness from the relationship between the molten height H and the penetration depth I created for each set of the thicknesses of the lower plate 2 and the standing plate 3 , The penetration depth I can be estimated more accurately.

【0016】本発明方法は、レーザ溶接及び電子ビーム
溶接によって溶接部を形成した場合に適用することがで
きる。しかしながら、特にレーザ溶接の場合に、上記相
関性が顕著であるので、レーザ溶接による溶接部に適用
するのが特に好ましい。
The method of the present invention can be applied when a weld is formed by laser welding and electron beam welding. However, particularly in the case of laser welding, the above correlation is remarkable, so that it is particularly preferable to apply the present invention to a welded portion by laser welding.

【0017】本発明に使用する光線は、特に限定されな
いが、通常は、レーザ変位計等に使用するレーザ(波長
670nm)が使用される。光線は、スポット光線とし
て、立板3に垂直に当てるようにするのが良い。立板3
に垂直光を当てた方が、基準の反射光量が明らかになっ
て、溶融高さHを判定し易いからである。
The light beam used in the present invention is not particularly limited, but usually a laser (wavelength 670 nm) used for a laser displacement meter or the like is used. The light beam is preferably applied to the standing plate 3 as a spot light beam at right angles. Standing board 3
This is because, when the vertical light is applied, the reference reflected light amount becomes clear and the melting height H is easily determined.

【0018】立板3と照射器5との距離を略一定とし、
照射器5を上下動させながら、ビードの長さ方向に走行
させるようにするのがよい。尚、照射器5を走行させず
に、ステンレス鋼を長さ方向に移動させてもよい。
The distance between the standing plate 3 and the irradiator 5 is substantially constant,
The irradiator 5 is preferably moved up and down while traveling in the length direction of the bead. The stainless steel may be moved in the length direction without running the irradiator 5.

【0019】立板3が湾曲し、立板3と下板2との溶接
線が同じように湾曲している場合は、その湾曲にほぼ合
致する(立板との距離をほぼ一定とする)ような軌跡
で、照射器5を長さ方向に走行させると良い。
When the standing plate 3 is curved and the welding line between the standing plate 3 and the lower plate 2 is curved in the same manner, the curvature substantially matches the curvature (the distance from the standing plate is almost constant). It is preferable that the irradiator 5 travels in the length direction along such a locus.

【0020】また、上下方向及び/又は長さ方向に、照
射器5を複数台配設して、照射器5を移動させないよう
にしてもよい。また、照射器5を上下動させずに、スポ
ット光線を円弧状に移動させてもよい。
Further, a plurality of irradiators 5 may be arranged in the vertical direction and / or the length direction so that the irradiators 5 are not moved. Further, the spot beam may be moved in an arc without moving the irradiator 5 up and down.

【0021】図7は、レーザ変位センサを使用して、溶
融高さHを測定する方法を示すものである。レーザ変位
センサを利用する場合、レーザ変位計はセンサから立板
3までの距離を微細に測定できるようになっている。
FIG. 7 shows a method for measuring the melt height H using a laser displacement sensor. When a laser displacement sensor is used, the laser displacement meter can measure the distance from the sensor to the standing plate 3 minutely.

【0022】変位センサを立板3に当てAの状態からB
の状態に下降させると、例えばアンプを通すことによ
り、距離1mm変化することにより、例えば1Vの出力
が得られるようにすることができる。
The displacement sensor is brought into contact with the upright plate 3 and the state A is changed to B.
In this case, for example, an output of 1 V can be obtained by changing the distance by 1 mm by passing through an amplifier, for example.

【0023】今、変位センサを立板3に当て、基準の出
力を得ているAの状態から、Bの状態に下降させると、
基準出力と比較しての出力差から微細な距離変化を読む
ことができる。これは、一見AとBの距離の差を読んで
いるようであるが、反射面の角度差を含めて読んでい
る。即ち、溶融高さ境界の微細な段差を判定することが
できる。
Now, when the displacement sensor is brought into contact with the standing plate 3 to lower from the state A where the reference output is obtained to the state B,
A minute distance change can be read from the output difference compared with the reference output. This seems to read the difference in the distance between A and B at first glance, but it also includes the angle difference between the reflection surfaces. That is, a minute step at the fusion height boundary can be determined.

【0024】図8は、CCDカメラを使用して、溶融高
さHを測定する方法を示すものである。CCDカメラへ
の像を安定化させるため、投射光としてレーザ光を使用
している。
FIG. 8 shows a method for measuring the melt height H using a CCD camera. In order to stabilize the image on the CCD camera, laser light is used as projection light.

【0025】CCDカメラで溶接部を写し出し、二値化
等の画像処理を行って、溶融境界高さHを判定する。溶
融境界高さHは、画像の明度差、即ち白黒の度合いによ
って判定することができる。
The welded portion is imaged by a CCD camera, and image processing such as binarization is performed to determine the fusion boundary height H. The melt boundary height H can be determined based on the brightness difference of the image, that is, the degree of black and white.

【0026】溶接入熱が少なくその入熱位置の微妙な変
化が結果に影響する場合、例えば薄板のレーザ溶接の場
合、図9に示すように、理想となる狙い位置aから狙い
位置bに1mm変化しただけでも必要な部分が溶けない
ことが起こりうる。
In the case where the welding heat input is small and a slight change in the heat input position affects the result, for example, in the case of laser welding of a thin plate, as shown in FIG. 9, 1 mm is shifted from the ideal target position a to the target position b. Necessary parts may not melt even if they are changed.

【0027】しかしながら、上記の場合でも、表面側c
から見たときに、図10に示すように、肉眼での差が明
確でなくとも、狙い位置aとbとの差が、結果に明確に
出ることが実験により確認されている。
However, even in the above case, the surface side c
As shown in FIG. 10, it has been confirmed by an experiment that the difference between the target positions a and b clearly appears in the result, even when the difference with the naked eye is not clear, as shown in FIG.

【0028】本発明は、溶接時の狙い位置の差を検出す
るものであるが、従来このような狙い位置の差を検出で
きる検出器は、全く知られていないし、このような発想
も全く知られていない。
The present invention detects a difference between target positions at the time of welding. However, a detector capable of detecting such a difference between target positions has not been known at all, and such an idea has not been known at all. Not been.

【0029】本発明は、狙い角度を一定とし、溶接時の
狙い位置の理想状態との差について、溶け込み深さIと
の関係を標準試料について求めておくことによって、測
定しようとするすみ肉溶接部の溶融高さHから溶け込み
深さIを推定することができる。
According to the present invention, a fillet weld to be measured is obtained by fixing a target angle and determining a relationship between a target position at the time of welding and an ideal state and a penetration depth I for a standard sample. The penetration depth I can be estimated from the melting height H of the portion.

【0030】また、上記に加えて、溶融高さHと溶け込
み深さIとの関係を、板厚ごとに、標準試料について求
めておくことによって、溶融高さHから溶け込み深さI
を更に高精度に推定することができる。
In addition, in addition to the above, the relationship between the melting height H and the penetration depth I is obtained for a standard sample for each sheet thickness.
Can be estimated with higher accuracy.

【0031】本発明の検出器は、しきい値を設けること
によって、自動検査装置とすることもできる。このよう
にすれば、非破壊で現実ワークを連続的に検査すること
もできるので、検査費用を安価にすることができる。
The detector according to the present invention can be used as an automatic inspection device by providing a threshold value. In this way, since the actual work can be continuously inspected nondestructively, the inspection cost can be reduced.

【0032】[0032]

【発明の効果】本発明によれば、ステンレス鋼のすみ肉
溶接部を、現物について、非破壊で溶け込み深さが推定
できるという従来解決できなかった課題を解決したもの
であり、それ故極めて画期的な発明である。
According to the present invention, it has been possible to solve the previously unsolved problem that the penetration depth of a stainless steel fillet weld can be estimated nondestructively with respect to the actual material. This is a periodical invention.

【0033】[0033]

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の破壊検査を示す斜視図である。FIG. 1 is a perspective view showing a conventional destructive inspection.

【図2】従来の破壊検査で切断した切断面を示す図であ
る。
FIG. 2 is a diagram showing a cut surface cut by a conventional destructive inspection.

【図3】本発明の装置を示す概略側面図である。FIG. 3 is a schematic side view showing the device of the present invention.

【図4】溶接時の狙い位置の理想状態を示す図である。FIG. 4 is a diagram showing an ideal state of a target position during welding.

【図5】溶接時の狙い位置から0.5mm下方にずれた
状態を示す図である。
FIG. 5 is a diagram showing a state shifted from a target position at the time of welding by 0.5 mm downward.

【図6】溶接時の狙い位置から0.5mm上方にずれた
状態を示す図である。
FIG. 6 is a diagram showing a state shifted from a target position at the time of welding by 0.5 mm upward.

【図7】レーザ変位センサを使用して溶融高さを測定す
る方法を示す概略図である.
FIG. 7 is a schematic diagram showing a method for measuring a melt height using a laser displacement sensor.

【図8】CCDカメラを使用して溶融高さを測定する方
法を示す概略図である.
FIG. 8 is a schematic diagram showing a method for measuring a melt height using a CCD camera.

【図9】理想の狙い位置aから狙い位置bにずれた状態
を示す側面図である。
FIG. 9 is a side view showing a state shifted from an ideal target position a to a target position b.

【図10】図9の正面図である。FIG. 10 is a front view of FIG. 9;

【符号の説明】[Explanation of symbols]

1 溶接部(溶接ビード) 2 下板 3 立板 6 狙い位置 DESCRIPTION OF SYMBOLS 1 Weld part (weld bead) 2 Lower plate 3 Standing plate 6 Target position

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI G01N 21/88 G01N 21/88 A (72)発明者 五十嵐 貴教 東京都千代田区四番町五番地九 トピー工 業株式会社内──────────────────────────────────────────────────続 き Continuing on the front page (51) Int.Cl. 6 Identification code FI G01N 21/88 G01N 21/88 A (72) Inventor Takanori Igarashi

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】溶接部及びその近傍に光線を投射し、その
反射光量の変化を検知して、溶接境界高さを測定し、予
め狙い位置を変えて測定した溶接境界高さと溶け込み深
さとの関係から、溶け込み深さを推定することを特徴と
するステンレス鋼のすみ肉溶接部の検査方法。
1. A light beam is projected onto a weld and its vicinity, a change in the amount of reflected light is detected, the height of the weld boundary is measured, and the difference between the weld boundary height and the penetration depth measured by changing the target position in advance is measured. A method for inspecting fillet welds of stainless steel, comprising estimating the penetration depth from the relationship.
【請求項2】前記溶接部が、レーザ溶接によって形成さ
れたものである請求項1に記載の検査方法。
2. The inspection method according to claim 1, wherein the welding portion is formed by laser welding.
【請求項3】前記光線は、前記溶接部の長さ方向と上下
方向に投射してなる請求項1又は2に記載の検査方法。
3. The inspection method according to claim 1, wherein the light beam is projected in a length direction and a vertical direction of the welded portion.
【請求項4】前記光線を、下板に溶接した立板との距離
をほぼ一定とし、スポット光線として、前記立板に垂直
に投射してなる請求項1ないし3のいずれか1項に記載
の検査方法。
4. The light beam according to claim 1, wherein a distance between the light beam and a standing plate welded to the lower plate is substantially constant, and the light beam is projected perpendicularly to the standing plate as a spot light beam. Inspection method.
【請求項5】前記反射光量の変化を、電圧若しくは画像
の明度の変化として検知する請求項1ないし4のいずれ
か1項に記載の検査方法。
5. The inspection method according to claim 1, wherein the change in the amount of reflected light is detected as a change in voltage or brightness of an image.
【請求項6】溶接部及びその近傍に光線を投射する手段
と、該光線の反射光量の変化を検知する手段とを具備
し、検知した反射光量から溶接境界高さを測定し、予め
狙い位置を変えて測定した溶接境界高さと溶け込み深さ
との関係から、溶け込み深さを推定することを特徴とす
るステンレス鋼のすみ肉溶接部の検査装置。
6. A means for projecting a light beam on a welded portion and its vicinity, and a means for detecting a change in the amount of reflected light of the light beam. An inspection apparatus for a stainless steel fillet weld, wherein the penetration depth is estimated from the relationship between the welding boundary height and the penetration depth measured by changing the welding depth.
【請求項7】前記反射光量の変化を検知する手段が、レ
ーザ変位センサを利用するレーザ変位計である請求項6
に記載の検査装置。
7. A laser displacement meter using a laser displacement sensor, wherein the means for detecting a change in the amount of reflected light is provided.
The inspection device according to item 1.
【請求項8】前記反射光量の変化を検知する手段が、画
像の明度の変化として検知するCCDカメラである請求
項7に記載の検査装置。
8. An inspection apparatus according to claim 7, wherein said means for detecting a change in the amount of reflected light is a CCD camera for detecting a change in brightness of an image.
【請求項9】前記光線を投射する手段を、前記溶接部の
上下方向及び/又は長さ方向に移動させる手段を具備し
てなる請求項6ないし8のいずれか1項に記載の検査装
置。
9. The inspection apparatus according to claim 6, further comprising: means for moving the means for projecting the light beam in a vertical direction and / or a length direction of the welded portion.
【請求項10】前記長さ方向に移動させる手段は、前記
溶接線が長さ方向に湾曲している場合は、その溶接線の
湾曲にほぼ合致するような軌跡で、長さ方向に移動させ
る請求項9に記載の検査装置。
10. The means for moving in the length direction, when the welding line is curved in the length direction, moves in the length direction along a locus substantially matching the curvature of the welding line. The inspection device according to claim 9.
JP10182357A 1997-07-04 1998-06-29 Method for inspecting fillet weld part, and device used therefor Pending JPH1177363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10182357A JPH1177363A (en) 1997-07-04 1998-06-29 Method for inspecting fillet weld part, and device used therefor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP17990597 1997-07-04
JP9-179905 1997-07-04
JP10182357A JPH1177363A (en) 1997-07-04 1998-06-29 Method for inspecting fillet weld part, and device used therefor

Publications (1)

Publication Number Publication Date
JPH1177363A true JPH1177363A (en) 1999-03-23

Family

ID=26499613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10182357A Pending JPH1177363A (en) 1997-07-04 1998-06-29 Method for inspecting fillet weld part, and device used therefor

Country Status (1)

Country Link
JP (1) JPH1177363A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008246499A (en) * 2007-03-29 2008-10-16 Ihi Corp Laser welding apparatus and laser welding method
JP2010149153A (en) * 2008-12-25 2010-07-08 Honda Motor Co Ltd Method for managing accuracy
CN103084735A (en) * 2012-11-21 2013-05-08 丹东通博电器(集团)有限公司 Stainless steel thin-wall pore-free laser welding method
WO2016024468A1 (en) * 2014-08-12 2016-02-18 Ntn株式会社 Device for inspecting junction-type outer joint member of constant velocity universal joint
JP2020082148A (en) * 2018-11-27 2020-06-04 トヨタ自動車株式会社 Welding inspection device
CN111872562A (en) * 2020-07-14 2020-11-03 河南航天液压气动技术有限公司 Welding method of thin-wall bearing piece
CN113333950A (en) * 2021-06-30 2021-09-03 中国航空制造技术研究院 Laser welding method for T-shaped joint

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008246499A (en) * 2007-03-29 2008-10-16 Ihi Corp Laser welding apparatus and laser welding method
JP2010149153A (en) * 2008-12-25 2010-07-08 Honda Motor Co Ltd Method for managing accuracy
CN103084735A (en) * 2012-11-21 2013-05-08 丹东通博电器(集团)有限公司 Stainless steel thin-wall pore-free laser welding method
WO2016024468A1 (en) * 2014-08-12 2016-02-18 Ntn株式会社 Device for inspecting junction-type outer joint member of constant velocity universal joint
US10761065B2 (en) 2014-08-12 2020-09-01 Ntn Corporation Device for inspecting junction-type outer joint member of constant velocity universal joint
JP2020082148A (en) * 2018-11-27 2020-06-04 トヨタ自動車株式会社 Welding inspection device
CN111872562A (en) * 2020-07-14 2020-11-03 河南航天液压气动技术有限公司 Welding method of thin-wall bearing piece
CN113333950A (en) * 2021-06-30 2021-09-03 中国航空制造技术研究院 Laser welding method for T-shaped joint

Similar Documents

Publication Publication Date Title
KR100922478B1 (en) Method and device for detecting a joint between workpieces and use of the method
JP5312033B2 (en) Method and apparatus for evaluating the joint location of a workpiece
US11260471B2 (en) Method and device for monitoring a joining seam during joining by means of a laser beam
JP2009515705A5 (en)
US20160039046A1 (en) Method of Beam-Type Joining
JPH1177363A (en) Method for inspecting fillet weld part, and device used therefor
JP4187818B2 (en) Inspection method of welding state
JP3015877B2 (en) Dynamic strain measurement method for welds
JP4267789B2 (en) Method and apparatus for detecting weld bead shape
JPH11226766A (en) Method for controlling laser welding position
JP7170223B2 (en) Welding determination device, welding device, and welding determination method
KR20010041402A (en) Testing a weld seam
JPH11500225A (en) Optical inspection equipment for online evaluation of welded or soldered joints
JP3720939B2 (en) Laser automatic welding equipment and welding method
JP3166624B2 (en) Seam position detecting device and method for manufacturing welded pipe
JPH06137853A (en) Automatic beveling inspection device
JPS6242004A (en) Seam position detecting device for electric welded pipe
JP2001038467A (en) Method and device for checking welding quality
JPS6358104A (en) Measurement of fine interval
JP3754144B2 (en) Lead float inspection method
KR100861744B1 (en) Cutting distance measurement method for glass cutting
JPH05322517A (en) Method of detecting position of welding line
JPS61212494A (en) Welding quality detecting device
Gorkic et al. Optical system for weld-piece distortion measurement during pulsed laser welding
JPH0642926A (en) Method of measuring gap between objects to be welded