JPS58198859A - Positive plate for alkaline storage battery - Google Patents

Positive plate for alkaline storage battery

Info

Publication number
JPS58198859A
JPS58198859A JP57083687A JP8368782A JPS58198859A JP S58198859 A JPS58198859 A JP S58198859A JP 57083687 A JP57083687 A JP 57083687A JP 8368782 A JP8368782 A JP 8368782A JP S58198859 A JPS58198859 A JP S58198859A
Authority
JP
Japan
Prior art keywords
graphite
active material
amount
storage battery
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57083687A
Other languages
Japanese (ja)
Inventor
Hideharu Yamamoto
英晴 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP57083687A priority Critical patent/JPS58198859A/en
Publication of JPS58198859A publication Critical patent/JPS58198859A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a positive plate for an alkaline storage battery which has an increased volume energy density by optimumly adjusting the relationship between the grain diameter of an active material and the amount of graphite. CONSTITUTION:A positive plate for an alkaline storage battery is made by mixing 100pts.wt. of an active material with 8-20pts.wt. of graphite. Here, the grain diameter y (mu) of the active material and the amount x (wt%) of graphite used are restricted so that they satisfy the relationship represented by the equation of -(1/8)x+6.5>y>-(1/8)x+5.5. Thus, when the grain diameter of the active material and the amount of graphite used are restricted to within the above range, a positive plate with a high volume energy density can be obtained.

Description

【発明の詳細な説明】 この発明はアルカリ蓄電池用陽極板に関するものでちゃ
、その目的は水酸化ニッケルのごとき活物質の粒径とグ
ラファイト量を最適に設定することにより、体積エネル
ギー密度の高い陽極板を提供することにある。
[Detailed Description of the Invention] This invention relates to an anode plate for alkaline storage batteries.The purpose of this invention is to create an anode with high volumetric energy density by optimizing the particle size of active material such as nickel hydroxide and the amount of graphite. The purpose is to provide a board.

従来からのアルカリ蓄電池1例えばニッケル・カドミウ
ム蓄電池の陽極板の製法としては、カルボニルニッケル
粉末等を用いて焼結基板を作り。
Conventional alkaline storage battery 1 For example, the method for manufacturing the anode plate of a nickel-cadmium storage battery is to make a sintered substrate using carbonyl nickel powder or the like.

その中に活物質を保持させる焼結式、水酸化ニッケルな
どの活物質とグラファイト等の導電剤を混合し、細孔性
金属ポケットに挿入するポケット式。
The sintering type holds the active material in it, and the pocket type involves mixing an active material such as nickel hydroxide with a conductive agent such as graphite and inserting the mixture into a porous metal pocket.

活物質に導電剤とフッ素樹脂等のバインダーを添加しニ
ッケル網等の基板上に塗着するペースト式等がある。 
このうち焼結式はサイクル寿命、利用率等の特性は優れ
ているが、製造工程が複雑であるなどの為高価となる。
There is a paste method in which a conductive agent and a binder such as a fluororesin are added to the active material and applied onto a substrate such as a nickel mesh.
Among these, the sintering type has excellent characteristics such as cycle life and utilization rate, but is expensive because the manufacturing process is complicated.

 一方ポケット式は比較的安価な製法ではあるが、高率
放電、利用率の点で劣っている。 それに対しペースト
式は連続生産が可能な製法であり安価である。 しかし
極板特性は利用率が低い、サイクル寿命が短い等の面で
焼結式に比べ劣っている。 これらの欠点を改良するた
め種々の方法が考えられている。 例えば利用率を向上
させる方法としては、表面積が大きな芯体を用いfcり
、グラファイト等の導電剤を多針に用いる方法がある。
On the other hand, the pocket type is a relatively inexpensive manufacturing method, but is inferior in terms of high rate discharge and utilization rate. On the other hand, the paste method allows for continuous production and is inexpensive. However, the plate characteristics are inferior to the sintered type in terms of low utilization rate and short cycle life. Various methods have been considered to improve these drawbacks. For example, as a method of improving the utilization rate, there is a method of using a core with a large surface area and using a conductive agent such as graphite in multiple needles.

 またサイクル寿命を向上させるには活物質の脱落防止
の為、バインダーの添加量を多くする方法がある。 し
かしこれらのどの方法を用いても単位重量、単位体積当
りの活物質量が少なくなりエネルギー密度が小さくなる
という次点がある。
Furthermore, in order to improve the cycle life, there is a method of increasing the amount of binder added to prevent the active material from falling off. However, no matter which of these methods is used, the second disadvantage is that the amount of active material per unit weight and unit volume decreases, resulting in a decrease in energy density.

この欠点を改良するため種々の実験を重ねた結果、活物
質粒径とグラファイト量の間に関連があることがわかっ
た。 すなわち特定の粒径の水酸化ニッケルに対し特定
のグラファイト量を用いた場合、高い体積エネルギー密
度をもつ陽極板が得られることがわかった。
As a result of various experiments conducted to improve this drawback, it was found that there is a relationship between the particle size of the active material and the amount of graphite. In other words, it was found that when a specific amount of graphite is used for nickel hydroxide of a specific particle size, an anode plate with a high volumetric energy density can be obtained.

この発明によれば、グラファイトが活物質100重量部
に対し8〜20重量部の範囲において1次式 〔式中Xはグラファイト量(電量%)、yは活物質の粒
径(μ)を示す〕 の範囲内にある粒径の活物質とグラファイト量を用いて
製作したことを特徴とするアルカリ蓄電池用陽極板が提
供される。
According to this invention, when graphite is in the range of 8 to 20 parts by weight with respect to 100 parts by weight of the active material, the linear formula [where X represents the amount of graphite (coulometric %) and y represents the particle size (μ) of the active material] ] Provided is an anode plate for an alkaline storage battery, characterized in that it is manufactured using an active material having a particle size within the following range and an amount of graphite.

この発明における活物質とは、アルカリ蓄電池の陽極用
の活物質を意味し、その例としては水酸化ニッケル、酸
化銀などが挙げられる。 また。
The active material in this invention means an active material for an anode of an alkaline storage battery, and examples thereof include nickel hydroxide, silver oxide, and the like. Also.

この発明のアルカリ蓄電池用陽極板の製作において、使
用される方法、この発明の特徴とする部分を除く他の資
材などは特に限定がなく、当該分野で公知のものが適宜
利用される。
In the production of the anode plate for an alkaline storage battery of the present invention, there are no particular limitations on the method used and other materials other than those that are characteristic of the present invention, and those known in the field may be used as appropriate.

次に、実験結果を含めて、この発明を説明する。Next, this invention will be explained including experimental results.

活物質として水酸化ニッケルの各種粒径のものを用い、
これに対しグラファイト量を変化させた場合の結果を表
1に示す。
Using various particle sizes of nickel hydroxide as the active material,
On the other hand, Table 1 shows the results when the amount of graphite was changed.

8− 4− 表1の測定は陽極板1枚、陰極板2枚をセパレーターを
介して巻き、ビニール袋に入れ、プラスチック板で加圧
して行なった。 電解液はKOH1成分(SG 1.2
8 )を用い液リッチで行なった。
8-4- The measurements shown in Table 1 were performed by wrapping one anode plate and two cathode plates with a separator in between, placing them in a plastic bag, and pressurizing them with a plastic plate. The electrolyte is KOH1 component (SG 1.2
8) in a rich liquid state.

充電は極板理論容量のO,xCX16hr、放電は0、
ICで行なった。
Charging is the theoretical capacity of the electrode plate, O, xCX16hr, discharging is 0,
I did it with IC.

注2)粒径はサブシーブサイザーで測定した平均粒径で
ある。
Note 2) Particle size is the average particle size measured with a subsieve sizer.

ここに示した充填率は極板単位体積当りに含まれる水酸
化ニッケル量を示しているので5高い体積エネルギー密
度の極板を得るためには充填率が大きい方が望ましい。
Since the filling factor shown here indicates the amount of nickel hydroxide contained per unit volume of the electrode plate, it is desirable that the filling factor be larger in order to obtain an electrode plate with a higher volumetric energy density.

 しかしこの結果よりわかるように充填事大なる条件と
利用事大なる条件は一致しておらず高い体積エネルギー
密度を得るためには最適条件の組成を見つける必要があ
る。
However, as can be seen from this result, the conditions that are most important for filling and the conditions that are most important for utilization do not match, and it is necessary to find a composition that meets the optimal conditions in order to obtain a high volumetric energy density.

又ここでグラファイト量が多いほど充填率は高くなって
おり、少ガくともこの程度の添加ではグラファイトは潤
滑剤のような働きもしているものと思われる。 次に体
積エネルギー密度と水酸化ニッケルの粒径、グラファイ
ト量の関係を第1図に示す。
In addition, the larger the amount of graphite, the higher the filling rate, and it seems that graphite also functions as a lubricant when added at least to this extent. Next, FIG. 1 shows the relationship between the volumetric energy density, the particle size of nickel hydroxide, and the amount of graphite.

第1図よりわかるように体積エネルギー密度が最大とな
る場合は水酸化ニッケルの粒径が4μまたは5μの場合
である。 なお、粒径が8μ以下の場合には、利用率は
4〜5μと同等程度得られるが、充填率が低くなるため
に体積エネルギー密度が低くなり不適当である。
As can be seen from FIG. 1, the volume energy density is maximum when the particle size of nickel hydroxide is 4μ or 5μ. In addition, when the particle size is 8 μm or less, a utilization rate equivalent to that of 4 to 5 μm can be obtained, but the filling rate becomes low and the volumetric energy density becomes low, which is unsuitable.

ところでグラファイト量が同一な極板間で比較する場合
、充填率×利用率が最大のものが体積エネルギー密度は
最大になると考えてよい。 このように考えて求めた体
積エネルギー密度が最大になる条件を第2図に示す。
By the way, when comparing electrode plates with the same amount of graphite, it can be considered that the one with the largest filling factor x utilization factor has the largest volumetric energy density. FIG. 2 shows the conditions under which the volumetric energy density obtained from this consideration is maximized.

通常、ペースト式において用いられるグラファイト量は
8重量部以上でアク、また体積エネルギー密度の点から
20重量部以上のグラファイトの添加は望ましくない。
Usually, the amount of graphite used in a paste type is 8 parts by weight or more, which causes an unpleasant effect, and it is not desirable to add 20 parts by weight or more of graphite from the viewpoint of volumetric energy density.

 グラ、・、、ファイト量が8〜20重量部の範囲で高
い体積エネルギー密度を与える条件は第2図より次式で
与えられると思われる。
From FIG. 2, it seems that the conditions for providing a high volumetric energy density when the amount of phytophyte is in the range of 8 to 20 parts by weight are given by the following equation.

X:グラファイト量(重量部) y:活物質粒径(μ) 以下、実施例及び比較例を示しこの発明を更に詳しく説
明する。
X: Graphite amount (parts by weight) y: Active material particle size (μ) The present invention will be described in more detail below with reference to Examples and Comparative Examples.

実施例1 水酸化ニッケル1粒径5μ)100重量部、グラファイ
ト12重量部、PTFE(ポリテトラフルオロエチレン
の懸濁液使用)2重量部、水48重量部を秤量してペー
スト状となし、ニッケル網上に塗着し、ローラーを通し
て圧延加圧して極板を作製した。 その極板の特性とし
ては充填率:2、469fic、利用率:?2%、体積
エネルギー密度: 401 mAH/cc 比較例1 水酸化ニッケル1粒径19μ)100重量部。
Example 1 Weigh out 100 parts by weight of nickel hydroxide (1 particle size: 5μ), 12 parts by weight of graphite, 2 parts by weight of PTFE (using a suspension of polytetrafluoroethylene), and 48 parts by weight of water to make a paste, It was applied onto a mesh and rolled and pressed through a roller to produce an electrode plate. The characteristics of the electrode plate are filling rate: 2, 469fic, utilization rate: ? 2%, volumetric energy density: 401 mAH/cc Comparative Example 1 100 parts by weight of nickel hydroxide (1 particle size: 19μ).

グラフアイ) 1 j?、重量部、PTFE!重量部、
水48重量部を秤量してペースト状となし、ニッケル網
上に塗着し、ローラーを通して圧延加圧して極板を作製
した。 その極板特性は充填率:2.47f/cc、利
用率68チ1体積エネルギー密度822mAfl / 
Ce 比較例2 水酸化ニッケル1粒径4μ)100重量部、グラファイ
ト28重量部、PTFE2重量部、水48重量部を秤量
してペースト状となし、ニッケル網上に塗着し、ローラ
ーを通して圧延加圧して極板を作製した。 この極板の
特性は充填率:2.80f/ac利用率=79チ、体積
エネルギー密度820mAl(/ CC
Graphai) 1 j? , weight part, PTFE! weight part,
48 parts by weight of water was weighed to form a paste, which was applied onto a nickel mesh, and rolled and pressed through rollers to produce an electrode plate. Its plate characteristics are: filling rate: 2.47f/cc, utilization rate: 68cm, volumetric energy density: 822mAfl/
Ce Comparative Example 2 Weighed 100 parts by weight of nickel hydroxide (1 particle size: 4μ), 28 parts by weight of graphite, 2 parts by weight of PTFE, and 48 parts by weight of water to make a paste, applied it on a nickel mesh, and rolled it through a roller. An electrode plate was prepared by pressing. The characteristics of this electrode plate are: filling rate: 2.80f/ac utilization rate = 79cm, volumetric energy density 820mAl(/CC

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、グラファイト量及び活物質粒径を変化させた
際の体積効率の変化を示すグラフであシ。 第2図は、仁の発明のアルカリ蓄電池用陽極板に □お
けるグラファイト量と活物質粒径との相関を示すグラフ
である。 7゛フフア科11 (珈I4部) 第1!!2’1 第2図
FIG. 1 is a graph showing changes in volumetric efficiency when the amount of graphite and the particle size of the active material are changed. FIG. 2 is a graph showing the correlation between the amount of graphite and the particle size of the active material in the anode plate for an alkaline storage battery according to Jin's invention. 7゛Furaceae 11 (Chapter I 4) Part 1! ! 2'1 Figure 2

Claims (1)

【特許請求の範囲】 L グラファイトが活物質100重量部に対し8〜20
重量部の範囲において1次式 〔式中Xはグラファイト量(重量%)、yは活物質の粒
径(ロ)を示す〕 の範囲内にある粒径の活物質とグラファイト量を用いて
製作したことを特徴とするアルカリ蓄電池用陽極板。
[Claims] L graphite is 8 to 20 parts by weight based on 100 parts by weight of the active material.
Manufactured using an active material with a particle size within the range of parts by weight and an amount of graphite according to the linear formula [where X represents the amount of graphite (wt%) and y represents the particle size (b) of the active material]. An anode plate for alkaline storage batteries characterized by:
JP57083687A 1982-05-17 1982-05-17 Positive plate for alkaline storage battery Pending JPS58198859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57083687A JPS58198859A (en) 1982-05-17 1982-05-17 Positive plate for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57083687A JPS58198859A (en) 1982-05-17 1982-05-17 Positive plate for alkaline storage battery

Publications (1)

Publication Number Publication Date
JPS58198859A true JPS58198859A (en) 1983-11-18

Family

ID=13809397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57083687A Pending JPS58198859A (en) 1982-05-17 1982-05-17 Positive plate for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPS58198859A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2568726A1 (en) * 1984-05-14 1986-02-07 Fuji Electrochemical Co Ltd Manganese-containing alkali cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2568726A1 (en) * 1984-05-14 1986-02-07 Fuji Electrochemical Co Ltd Manganese-containing alkali cell

Similar Documents

Publication Publication Date Title
JP3468492B2 (en) Plate for lead-acid battery
JPS58198859A (en) Positive plate for alkaline storage battery
JP3136738B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH11288710A (en) Foam-less nickel positive electrode and its manufacture
JP2581362B2 (en) Electrodes for alkaline storage batteries
KR100477730B1 (en) Hydrogen storage alloy for nickel hydrogen battery
JP3010992B2 (en) Battery electrode
JPS60254564A (en) Nickel positive electrode for alkaline storage battery
JPH05205772A (en) Cylindrical nickel-zinc storage battery
JP3519836B2 (en) Hydrogen storage alloy electrode
JP3292204B2 (en) Nickel sintered electrode for alkaline storage battery
JP2002042794A (en) Sealed lead-acid battery
JPS60140661A (en) Negative electrode plate for nickel cadmium storage battery
JPS6231951A (en) Alkaline battery
KR100477729B1 (en) Hydrogen storage alloy for nickel hydrogen battery
JP2623413B2 (en) Paste nickel electrode for alkaline storage batteries
JP2975635B2 (en) Method for producing hydrogen storage alloy electrode for alkaline storage battery
JPH04262367A (en) Hydrogen storage electrode
JPS62128448A (en) Hermetically sealed type nickel-zinc storage battery
JPH09259875A (en) Manufacture of hydrogen absorbing alloy electrode, and metal hydroxide storage battery
JPH01307163A (en) Organic electrolyte battery
JPH02112158A (en) Metal-hydrogen alkaline storage battery
JPH02148569A (en) Alkali battery
JPH0513078A (en) Nickel positive electrode for alkaline battery
JPH03149753A (en) Nickel electrode for alkaline battery