JPS6231951A - Alkaline battery - Google Patents

Alkaline battery

Info

Publication number
JPS6231951A
JPS6231951A JP60170750A JP17075085A JPS6231951A JP S6231951 A JPS6231951 A JP S6231951A JP 60170750 A JP60170750 A JP 60170750A JP 17075085 A JP17075085 A JP 17075085A JP S6231951 A JPS6231951 A JP S6231951A
Authority
JP
Japan
Prior art keywords
zinc
flat
particles
zinc particles
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60170750A
Other languages
Japanese (ja)
Inventor
Hirohito Teraoka
浩仁 寺岡
Kazumasa Yoshida
和正 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP60170750A priority Critical patent/JPS6231951A/en
Publication of JPS6231951A publication Critical patent/JPS6231951A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To increase high rate discharge performance without a decrease in filling accuracy by mixing flat-shaped zinc powder with spherical zinc particles containing a specified amount of particles whose ratio of the minor axis to the major axis is in a specified range, and using the mixture as a negative active material. CONSTITUTION:Flat-shaped zinc powder is mixed with spherical zinc particles containing 90% or more of zinc particles whose ratio of the minor axis to the major axis is 1.0-1.5, and the mixture is used as a negative active material. To increase filling accuracy, particle size of zinc particles whose content is 90% or more is limited to 48-40 mesh. The flat-shaped zinc powder whose particle surface is flat or zinc foil is used so that smooth surface contact with spherical zinc particles is maintained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は負極剤の充填精度を低下させずに重負荷放電特
性を向上させ得るアルカリ電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an alkaline battery that can improve heavy load discharge characteristics without reducing the filling accuracy of negative electrode material.

〔従来の技術〕[Conventional technology]

従来、亜鉛粒子とアルカリ電解液を混線したゲル状亜鉛
陰極活物質を用いるアルカリ電池においては、重量当り
の放電反応表面積を増大させるうえで不規則で細長い形
状の亜鉛粒子を用いていた。
Conventionally, in alkaline batteries using a gelled zinc cathode active material in which zinc particles and an alkaline electrolyte are mixed, irregular and elongated zinc particles have been used to increase the discharge reaction surface area per unit weight.

こζで用いられる亜鉛粒子は第3図に示すように粒子の
短軸径Wと長軸径jとの比(//w)が1.8以上とな
る細長い形状のものである。具体的には粒度48〜20
0メツシュのものが大部分で、その内長袖径/短軸径の
比(J/vJ)が1.9〜2.5のものが90襲含まれ
ている。
As shown in FIG. 3, the zinc particles used in this ζ have an elongated shape in which the ratio (//w) of the short axis diameter W and the long axis diameter J of the particles is 1.8 or more. Specifically, the particle size is 48-20
Most of them have 0 mesh, and 90 of them have long sleeve diameter/short axis diameter ratio (J/vJ) of 1.9 to 2.5.

この亜鉛粒子をカルボキシメチルセルロース(aMO)
やポリアクリル酸等の合成糊料もしくはデンプン等の天
然糊料と混合し、との混合粉を所定量秤取して陰極容器
に充填した後、アルカリ電解液を注液して亜鉛負極活物
質を作っていた。
These zinc particles are converted into carboxymethylcellulose (aMO)
A predetermined amount of the mixed powder is weighed out and filled into a cathode container, and then an alkaline electrolyte is poured into the zinc negative electrode active material. was making.

しかしながら、長軸径/短軸径の比(J/lt )が1
.8〜2.5の亜鉛粒子を用いると、負極容器に所定量
の亜鉛粒子を正確に充填することが難しく、アルカリ電
池の小型化に伴い活物質の量が少なくなるほど亜鉛粒子
の充填量のバラツキが大きくなってしまう問題が生じる
However, the ratio of major axis diameter/minor axis diameter (J/lt) is 1
.. When zinc particles with a size of 8 to 2.5 are used, it is difficult to accurately fill the negative electrode container with a predetermined amount of zinc particles, and as alkaline batteries become smaller and the amount of active material decreases, the amount of zinc particles filled becomes more uneven. A problem arises in which the size becomes large.

このように、亜鉛粒子の充填量にバラツキが生じると正
極の電気容量と負極の電気容量のバラン □スを取るこ
とが難しくなる。すなわち、亜鉛粒子が多過ぎると負極
がまだ残っているうちに正極が完全に反応してしまうた
め、正極から水素ガスが発生して電池が膨らみ漏液を引
き起すことになる。
As described above, when variations occur in the amount of zinc particles filled, it becomes difficult to maintain a balance between the capacitance of the positive electrode and the capacitance of the negative electrode. That is, if there are too many zinc particles, the positive electrode will completely react while the negative electrode still remains, and hydrogen gas will be generated from the positive electrode, causing the battery to swell and leak.

また、亜鉛粒子が少な過ぎると電池の放電容量が減少し
てしまうととになる。
Furthermore, if the amount of zinc particles is too small, the discharge capacity of the battery will decrease.

以上のことから、アルカリ電池においては正極の電極容
量に対して負極の電気容量を若干少なくし、負極が全部
反応した後に正極が少し残っているようにすることが必
要条件となる0 そこで、特開昭55−117869号では第4図に示す
ように亜鉛粒子の長軸径/短軸径の比(j/w’)が1
.0〜1.5 の範囲内にある粒子が90%以上占める
亜鉛粒子を用いることによシ、負極の充填精度を向上せ
しめ、放電容量のバラツキが小さい電池を得ることを試
みている。
From the above, in alkaline batteries, it is necessary to make the electric capacity of the negative electrode slightly smaller than the electrode capacity of the positive electrode, so that a small amount of the positive electrode remains after all the negative electrode has reacted. In No. 117869/1986, the ratio of the major axis diameter/minor axis diameter (j/w') of zinc particles is 1, as shown in Figure 4.
.. By using zinc particles in which 90% or more of the particles fall within the range of 0 to 1.5, the filling accuracy of the negative electrode is improved, and an attempt is made to obtain a battery with small variations in discharge capacity.

その結果、充填精度のバラツキ割合を4%以下に抑える
ことができ、従来のバラツキ割合63−9.6チに対し
て顕著な効果を得ることができた。しかも、90%以上
を占める亜鉛粒子の粒度を48−80メツシュにすると
とによシ、バラツキ割合を3チ以下に抑えられ秤量精度
を向上させるととができる。
As a result, it was possible to suppress the variation rate in filling accuracy to 4% or less, which was a significant effect compared to the conventional variation rate of 63-9.6 inches. Furthermore, if the particle size of the zinc particles that account for 90% or more is set to 48-80 mesh, it is possible to suppress the variation rate to 3 inches or less and improve the weighing accuracy.

これにより、小型アルカリ電池の負極の充填精度は極め
て高いものとなり、放電電気容量のバラツキを小さくで
きることから、放電性能を向上させるととができる。
As a result, the filling accuracy of the negative electrode of the small alkaline battery becomes extremely high, and the dispersion in the discharge capacity can be reduced, so that the discharge performance can be improved.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

長軸径/短軸径の比が1.0〜1,5  の範囲内にあ
る粒子を90−以上占める亜鉛粒子を用いることで、負
極の充填精度を向上させることができるが、放電性能に
おいては大電流をと夛出すととができず、長袖径/短軸
径の比が1.9〜2.5の亜鉛粒子を用いて構成したア
ルカリ電池に比べて重負荷特性が劣る問題が生じる。
By using zinc particles that account for 90 or more particles with a ratio of major axis diameter/minor axis diameter in the range of 1.0 to 1.5, it is possible to improve the filling accuracy of the negative electrode, but the discharge performance When a large current is applied to the batteries, they cannot be sharpened, resulting in a problem that their heavy load characteristics are inferior to those of alkaline batteries constructed using zinc particles with a ratio of long sleeve diameter/short shaft diameter of 1.9 to 2.5. .

との発明はこのような問題点に着目してなされたもので
、長軸径/短軸径の比が1.0〜1.5の範囲 i内で
ある粒子を90−以上有する球状亜鉛粒子に扁平状亜鉛
を加えて負極剤を構成することで充填精度を低下させず
に重負荷放電特性に優れたアルカリ電池を提供するとと
を目的とする。
The invention was made by paying attention to such problems, and provides spherical zinc particles having 90 or more particles having a ratio of major axis diameter/minor axis diameter within the range i of 1.0 to 1.5. The object of the present invention is to provide an alkaline battery with excellent heavy load discharge characteristics without reducing filling accuracy by adding flat zinc to the negative electrode agent.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は長軸径/短軸径の比が1.0〜1.5の範囲
内にある球状亜鉛粒子を90%以上有する亜鉛粒子に、
扁平状亜鉛を加えて負極剤を構成したものである。
This invention provides zinc particles having 90% or more of spherical zinc particles having a ratio of major axis diameter/minor axis diameter within the range of 1.0 to 1.5.
The negative electrode material is made by adding flat zinc.

とこで、充填精度を高める意味から90ts以上占める
亜鉛粒子の粒度を48〜80メ、シュにする必要がある
In order to improve the filling accuracy, it is necessary to set the particle size of the zinc particles occupying 90 ts or more to 48 to 80 mesh.

また、扁平状亜鉛については球状亜鉛粒子との面接触が
円滑に行なわれる形状のものを一部い、具体的には表面
の少なくとも一部が扁平形状の亜鉛粒または亜鉛箔を示
す。この扁平形亜鉛は全表面積に対して扁平状部分の表
面積を20チ以上による必要があシ、特に50チ以上に
することによシ効果が顕蓄に現れる。この場合、扁平状
亜鉛の添加量は負極亜鉛全体の重量に対して5〜50重
量%にすることが望ましい。
Further, some examples of flat zinc include those having a shape that allows smooth surface contact with spherical zinc particles, and specifically, zinc particles or zinc foil having at least a portion of the surface in a flat shape. In this flat zinc, the surface area of the flat portion must be 20 squares or more relative to the total surface area, and especially when the surface area is 50 squares or more, the effect becomes more noticeable. In this case, the amount of flat zinc added is preferably 5 to 50% by weight based on the total weight of negative electrode zinc.

〔作 用〕[For production]

この発明では、90チ以上有する球状亜鉛粒子の長軸径
/短軸径の比を1.0〜1.5  にすることで、球状
亜鉛粒子の形状をほぼ同程度に整えることができる。
In the present invention, the shapes of the spherical zinc particles can be made to be approximately the same by setting the ratio of the major axis diameter to the minor axis diameter of the spherical zinc particles having 90 or more squares to 1.0 to 1.5.

このような球状亜鉛粒子を9096以上含有させること
で、亜鉛粒子を正確に秤量することが可能となシ、負極
剤の充填精度を高めることができる。
By containing 9096 or more of such spherical zinc particles, it is possible to accurately weigh the zinc particles, and it is possible to improve the filling accuracy of the negative electrode material.

また、これに扁平状亜鉛を加えた場合には球状亜鉛粒子
の間に良好に分散されるため、結果として従来の亜鉛粒
子(粒度32〜100メッシ瓢、長軸径/短軸径の比が
1.9〜2.5のものが90%以上)に比べて充填精度
が高くなる。
In addition, when flat zinc is added to this, it is well dispersed between spherical zinc particles, and as a result, the conventional zinc particles (particle size 32 to 100 mesh, ratio of major axis diameter / minor axis diameter) (1.9 to 2.5 is 90% or more), the filling accuracy is higher than that of 1.9 to 2.5 (90% or more).

更に、90q6以上を占める球状亜鉛粒子を48〜80
メツシュの粒度にするととで、はぼ均一な大きさの粒子
が得られることから充填精度を更に高めることができる
Furthermore, 48 to 80 spherical zinc particles occupying 90q6 or more
By using a mesh particle size, particles of a more or less uniform size can be obtained, so that the filling accuracy can be further improved.

一方、球状亜鉛粒子に扁平状亜鉛を加えることで、球状
亜鉛粒子のみを用いた場合に起とる亜鉛粒子の放電反応
表面積が減少すること、また亜鉛粒子同士の相互接触点
が減少することによる電子電導性の低下を防ぐことがで
きる。これは扁平状亜鉛を加えることによシ亜鉛粒子同
士の面接触が良好にな9、亜鉛粒子間の電子電導性およ
び放電反応表面積が増大するためと思われる。
On the other hand, by adding flat zinc to spherical zinc particles, the surface area for the discharge reaction of zinc particles, which occurs when only spherical zinc particles are used, is reduced, and the number of mutual contact points between zinc particles is reduced. Deterioration of conductivity can be prevented. This is thought to be because the addition of flat zinc improves the surface contact between the zinc particles9, increasing the electronic conductivity and discharge reaction surface area between the zinc particles.

〔実施例〕〔Example〕

以下、この発明の第一実施例を図面に従い説明する。 A first embodiment of this invention will be described below with reference to the drawings.

第1図はこの発明を小型でしかも重負荷特性に優れだL
RO3アルカリマンガン電池に適用したものである。図
中1は全面にニッケルメッキを施した鉄製容器で正極端
子を兼ねている。2は二酸化マンガンに導電剤として黒
鉛を添加して加圧成形した正極合剤である。3は正極合
剤2の上にセパレータ4を介して配設され酸化亜鉛を溶
解させたアルカリ電解液にゲル化剤とともに本発明の亜
鉛粒子を分散させて成るゲル状負極剤である。5は黄銅
製の負極集電体であり、6は負極金属端子板で負極集電
体5と接触している。7は絶縁バッキングで、鉄製容器
1と負極金属端子6との間を絶縁するとともに、その間
を密封口するものである。
Figure 1 shows that this invention is compact and has excellent heavy load characteristics.
This is applied to RO3 alkaline manganese batteries. In the figure, 1 is an iron container whose entire surface is nickel-plated and also serves as a positive terminal. 2 is a positive electrode mixture prepared by adding graphite as a conductive agent to manganese dioxide and press-molding the mixture. 3 is a gelled negative electrode material which is disposed on the positive electrode mixture 2 with a separator 4 interposed therebetween and is made by dispersing the zinc particles of the present invention together with a gelling agent in an alkaline electrolytic solution in which zinc oxide is dissolved. 5 is a negative electrode current collector made of brass, and 6 is a negative electrode metal terminal plate that is in contact with the negative electrode current collector 5. Reference numeral 7 denotes an insulating backing, which insulates between the iron container 1 and the negative electrode metal terminal 6, and also seals the gap therebetween.

上記ゲル状負極剤3は亜鉛粒子の粒度が48−80メツ
シーで、粒子の長軸径/短軸径の比が1.0〜1.5の
範囲内にある粒子を9096以上有する球状亜鉛粒子に
扁平状亜鉛を負極亜鉛全体の重量に対して5〜50重量
%添加して構成したものである。
The above-mentioned gelled negative electrode material 3 is a spherical zinc particle having a particle size of 48-80 mesh and having 9096 or more particles with a ratio of the major axis diameter/minor axis diameter of the particles in the range of 1.0 to 1.5. 5 to 50% by weight of flat zinc is added to the total weight of the negative electrode zinc.

ことで用いられる扁平状亜鉛は扁平状部分の表面積が全
表面積の20チ以上であることが望まれる。この扁平状
亜鉛は次のようにして製造される。
It is desired that the surface area of the flat portion of the flat zinc used for this purpose is 20 inches or more of the total surface area. This flat zinc is manufactured as follows.

第1の方法としては、気体噴霧法により所定粒径の球状
または涙滴状の噴霧亜鉛粒を調製し、これをローラプレ
ス機に通して圧延するととによシ、ローラとの接触面が
第2図(a)に示すように扁平状に変形した扁平状亜鉛
が得られる。
The first method is to prepare spherical or teardrop-shaped atomized zinc particles with a predetermined particle size by a gas atomization method, and then roll them through a roller press machine. As shown in FIG. 2(a), flat zinc deformed into a flat shape is obtained.

第2の方法としては、溶融噴霧時に溶融滴を平滑な板面
等に噴きつけて、板面と接触した部分を扁平状に変形さ
せることで扁平状亜鉛が得られる。
As a second method, flat zinc can be obtained by spraying molten droplets onto a smooth plate surface or the like during melt spraying, and deforming the portion in contact with the plate surface into a flat shape.

第3の方法としては、溶融亜鉛を平滑板や回転ドラム上
に流し、圧延などの手段を用いて薄い亜鉛を 板または亜鉛箔に形成し、これを細かく裁断することで
第2図6)に示すような扁平状亜鉛が得られる。
The third method is to pour molten zinc onto a smooth plate or rotating drum, form the thin zinc into a plate or zinc foil using means such as rolling, and then cut this into fine pieces to create the shape shown in Figure 2 (6). Flat zinc as shown is obtained.

ちなみに、粒度32〜100メツシーで長軸径/短軸径
の比が1.8〜2.8の範囲内である亜鉛粒子を90チ
以上含む負極剤をLRO3アルカリマンガン電源に充填
した従来品人と、粒度48〜80メツシ。
By the way, the LRO3 alkaline manganese power supply was filled with a negative electrode material containing 90 or more zinc particles with a particle size of 32 to 100 metric and a ratio of major axis diameter/minor axis diameter of 1.8 to 2.8. And the particle size is 48 to 80 mesh.

で長軸径/短軸径の比が1.0〜1.5の範囲内である
球状亜鉛粒子を90%以上含みgtの方法で製造した扁
平亜鉛粒を負極亜鉛全体の重量に対して20重量%添加
した負極剤をLRO3アルカリマンガン電池に充填した
本発明品Bと、本発明品Bと同じ球状亜鉛粒子を909
g以上含み第3の方法で製造した100μmの亜鉛箔を
0.3n角に細かく切断した扁平状亜鉛を負極亜鉛全体
の重量に対して20重量%添加した負極剤をLRO3ア
ルカリマンガン電池に充填した本発明品Cとをそれぞれ
100個試作し、充填平均重量(X)、バラツキ(3σ
)、充填量バラツキ率(3σ/X)Xiooを調べたと
ころ第1表に示す結果が得られた。
The flat zinc particles produced by the method of gt containing 90% or more of spherical zinc particles with a ratio of major axis diameter/minor axis diameter within the range of 1.0 to 1.5 are 20% of the weight of the entire negative electrode zinc. Inventive product B, in which an LRO3 alkaline manganese battery was filled with a negative electrode agent containing 909% by weight, and the same spherical zinc particles as inventive product B,
An LRO3 alkaline manganese battery was filled with a negative electrode agent containing 20% by weight of flat zinc obtained by cutting a 100 μm zinc foil produced by the third method into 0.3n square pieces, based on the total weight of the negative electrode zinc. We made 100 prototypes of each of the invention products C and the filling average weight (X), the variation (3σ
), and the filling amount variation rate (3σ/X) Xioo were investigated, and the results shown in Table 1 were obtained.

表1 この表によると、本発明品B、Oけ従来品Aに比べ充填
量のバラツキ・、率が小さくなっていることがわかる。
Table 1 According to this table, it can be seen that the variation in filling amount and rate are smaller compared to product B of the present invention and conventional product A.

次に、本発明品B、Oと、粒度48〜80メツシュで長
軸径/短軸径の比が1.0〜1.5の範囲内である球状
亜鉛粒子を9096以上含む負極剤をLRO3アルカリ
マンガン電池に充填した従来品りとをそれぞれ50個試
作し、初度20℃で50の抵抗にて閉路電圧および短絡
電流を調べるとともに、5Ωの定抵抗にて放電持続時間
を調べたところ第2表に示す結果が得られた。
Next, inventive products B and O and a negative electrode material containing 9096 or more spherical zinc particles having a particle size of 48 to 80 mesh and a ratio of major axis diameter/minor axis diameter within the range of 1.0 to 1.5 were added to LRO3. We prototyped 50 of each of the conventional products filled with alkaline manganese batteries, and first examined the closed circuit voltage and short circuit current with a resistance of 50 at 20°C, and also examined the discharge duration with a constant resistance of 5 Ω. The results shown in the table were obtained.

表  2 この表によると本発明品B、Oは従来品りに比べて大き
な短絡電流をとシ出すことができ、かつ優れた重負荷放
電特性を有することが判明した。
Table 2 According to this table, it was found that products B and O of the present invention were able to generate a larger short circuit current than the conventional products and had excellent heavy load discharge characteristics.

なお、この発明は上記実施例に限定されるものではなく
、要旨を変更しない範囲において種々変形して実施する
ことができる。
Note that the present invention is not limited to the above-mentioned embodiments, and can be implemented with various modifications without changing the gist.

〔発明の効果〕〔Effect of the invention〕

この発明によれば長軸径/短軸径の比が1.0〜1.5
の範囲内である粒子を90−以上有する球状亜鉛粒子に
扁平状亜鉛を加えて負極剤を構成するととで、充填量の
バラツキ巾を小さくでき、しかも大きな短絡電流をとシ
出せるとともに重負荷特性に優れたアルカリ電池を得る
ことができる。特に、小型、薄型電池においては負極剤
の秤量精度が高まるため、正極と負極の電気容量のバラ
ンスをとり、電池の放電特性を均一にすることができる
According to this invention, the ratio of major axis diameter/minor axis diameter is 1.0 to 1.5.
By adding flat zinc to spherical zinc particles having particles in the range of 90 or more to form the negative electrode material, it is possible to reduce the variation in filling amount, and also to generate a large short circuit current and to have heavy load characteristics. It is possible to obtain an excellent alkaline battery. In particular, in small and thin batteries, the accuracy of weighing the negative electrode material is increased, so the capacitance of the positive electrode and the negative electrode can be balanced and the discharge characteristics of the battery can be made uniform.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す断面図、第2図(a)
、(b)は同実施例に用いられるそれぞれ異なる扁平状
亜鉛を示す拡大図、第3図は従来のアルカリ電池に用い
られる亜鉛粒子の代表的な形状を示す拡大図、第4図は
従来および本発明のアルカリ電池に用いられる球状亜鉛
粒子の代表的な形状を示す拡大図である。 1・・・鉄製容器    2・・・正極合剤3・・・ゲ
ル状負極剤  4・・・セパレータ5・・・負極集電体
   6・・・負極金属端子板7・・・絶縁バッキング 第1図 第2図 (a)(b) 第3図 第4図
Figure 1 is a sectional view showing one embodiment of the present invention, Figure 2 (a)
, (b) are enlarged views showing different flat zinc particles used in the same example, Fig. 3 is an enlarged view showing typical shapes of zinc particles used in conventional alkaline batteries, and Fig. 4 is an enlarged view of the conventional and FIG. 2 is an enlarged view showing a typical shape of spherical zinc particles used in the alkaline battery of the present invention. 1... Iron container 2... Positive electrode mixture 3... Gel-like negative electrode agent 4... Separator 5... Negative electrode current collector 6... Negative electrode metal terminal plate 7... Insulating backing first Figure 2 (a) (b) Figure 3 Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)長軸径/短軸径の比が1.0〜1.5の範囲内で
ある粒子を90%以上有する球状亜鉛粒子に扁平状亜鉛
を加えて負極剤を構成したことを特徴とするアルカリ電
池。
(1) A negative electrode material is formed by adding flat zinc to spherical zinc particles having 90% or more of particles having a ratio of major axis diameter/minor axis diameter in the range of 1.0 to 1.5. alkaline battery.
(2)球状亜鉛粒子の90%以上が48〜80メッシュ
の粒度であることを特徴とする特許請求の範囲第1項記
載のアルカリ電池。
(2) The alkaline battery according to claim 1, wherein 90% or more of the spherical zinc particles have a particle size of 48 to 80 mesh.
(3)扁平状亜鉛は負極亜鉛粒子全体の重量に対して5
〜50重量%にしたことを特徴とする特許請求の範囲第
1項記載のアルカリ電池。
(3) Flat zinc is 5% of the weight of the entire negative electrode zinc particle.
The alkaline battery according to claim 1, characterized in that the content is 50% by weight.
JP60170750A 1985-08-02 1985-08-02 Alkaline battery Pending JPS6231951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60170750A JPS6231951A (en) 1985-08-02 1985-08-02 Alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60170750A JPS6231951A (en) 1985-08-02 1985-08-02 Alkaline battery

Publications (1)

Publication Number Publication Date
JPS6231951A true JPS6231951A (en) 1987-02-10

Family

ID=15910692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60170750A Pending JPS6231951A (en) 1985-08-02 1985-08-02 Alkaline battery

Country Status (1)

Country Link
JP (1) JPS6231951A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6284410B1 (en) 1997-08-01 2001-09-04 Duracell Inc. Zinc electrode particle form
JP2006228503A (en) * 2005-02-16 2006-08-31 Sony Corp Alkaline battery
JP2007287627A (en) * 2006-04-20 2007-11-01 Fdk Energy Co Ltd Alkaline dry cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6284410B1 (en) 1997-08-01 2001-09-04 Duracell Inc. Zinc electrode particle form
JP2006228503A (en) * 2005-02-16 2006-08-31 Sony Corp Alkaline battery
JP2007287627A (en) * 2006-04-20 2007-11-01 Fdk Energy Co Ltd Alkaline dry cell

Similar Documents

Publication Publication Date Title
CN105406033B (en) Anode mixture, positive pole, solid state battery and their manufacture method
JP3191751B2 (en) Alkaline storage battery and surface treatment method for positive electrode active material thereof
CN108735985A (en) Negative electrode material together, the cathode comprising the negative electrode material together and the all-solid-state lithium-ion secondary battery with the cathode
US5529857A (en) Hydrogen-absorbing alloy electrode and process for producing the same
JPS6231951A (en) Alkaline battery
JP3499924B2 (en) Hydrogen storage alloy electrodes for metal-hydride alkaline storage batteries
JP2000306574A (en) Manufacture of battery electrode
US3888695A (en) Rechargeable cell having improved cadmium negative electrode and method of producing same
JPS6269463A (en) Alkaline battery
EP0796509B1 (en) Method of manufacturing a battery electrode
Edwards et al. Evaluation of hollow, glass microspheres used as an additive in negative, lead/acid battery paste
JP3530302B2 (en) Method for producing hydrogen storage alloy electrode
KR100666168B1 (en) Method for Producing the Positive Electrode of Lithium Primary Cell
JP2918560B2 (en) Manufacturing method of hydrogen storage electrode
JP2001068170A (en) Zinc air battery
JP3030146B2 (en) Electrode
JPH09306508A (en) Manufacture of catalyst layer sheet, catalyst sheet by this method, and air battery therewith
JPH0677454B2 (en) Non-sintered nickel electrode for alkaline storage battery
JPS58198859A (en) Positive plate for alkaline storage battery
JPS59139556A (en) Manufacturing method of positive electrode black mix for solid electrolyte battery
JPH03190060A (en) Polyaniline battery
JPS6110858A (en) Manufacture of plate for alkaline battery
JPH02148569A (en) Alkali battery
JPH01267956A (en) Manufacture of hydrogen absorption alloy electrode
JPH10270017A (en) Non-aqueous electrolytic battery positive pole plate and non-aqueous electrolytic battery therewith