JPH02148569A - Alkali battery - Google Patents

Alkali battery

Info

Publication number
JPH02148569A
JPH02148569A JP63300004A JP30000488A JPH02148569A JP H02148569 A JPH02148569 A JP H02148569A JP 63300004 A JP63300004 A JP 63300004A JP 30000488 A JP30000488 A JP 30000488A JP H02148569 A JPH02148569 A JP H02148569A
Authority
JP
Japan
Prior art keywords
zinc powder
weighing
battery
negative electrode
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63300004A
Other languages
Japanese (ja)
Inventor
Masao Kawaguchi
正夫 川口
Hitoshi Takagishi
高岸 仁
Kiyoshi Hosoda
細田 清志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP63300004A priority Critical patent/JPH02148569A/en
Publication of JPH02148569A publication Critical patent/JPH02148569A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To reduce diversity in battery capacity by making bulk density and grain size of spherical amalgam zinc powder to be used for a negative electrode those prescribed so as to improve weighing accuracy thereof. CONSTITUTION:Amalgam zinc powder has its bulk density in the range 5 to 4.5g/cc and its grain size in the range 40 to 150Mesh while a difference of the upper limit value and the lower limit value of grain size is in the range of 40Mesh. Weighing of the amalgam zinc powder to be used for one battery is so performed that the amalgam zinc powder dropping of itself from the bottom of a hopper is cut by rubbing with a weighing plate having a hole of fixed volume in order to measure the volume to be filled in this hole. The amalgam zinc powder is cut by rubbing causing no unevenness on its upper layer surface part always flatwise at the hopper bottom part so that weighing diversity is suppressed. Thereby, a negative electrode having correct volume is secured so that diversity in battery capacity can be suppressed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電池組立時での負極亜鉛の秤量精度を高めると
共に、バラツキの少ない電気容量を得ることを可能にし
たアルカリ電池に係るものである。
[Detailed Description of the Invention] (Field of Industrial Application) The present invention relates to an alkaline battery that improves the accuracy of weighing negative electrode zinc during battery assembly and makes it possible to obtain electric capacity with less variation. .

(従来の技術) 亜鉛粉を負極に用いるアルカリ電池は、酸化銀電池、ア
ルカリマンガン電池、水銀電池、空気電池等に分類され
る。
(Prior Art) Alkaline batteries using zinc powder as a negative electrode are classified into silver oxide batteries, alkaline manganese batteries, mercury batteries, air batteries, and the like.

一般に、前述したアルカリ電池は正極容量が負極客間よ
り大となるように設計されている。これは電池寿命が尽
きた後、仮に前述した容母関係が逆転していたとすると
、水素過電圧との関係から電解液中の水の分解が起こり
、水素ガスが発生し、電池の膨れ、破裂という危険が生
じるので、これを防止するためである。
Generally, the above-mentioned alkaline batteries are designed so that the capacity of the positive electrode is larger than that of the negative electrode. This is because after the battery life has expired, if the above-mentioned capacity relationship were reversed, the water in the electrolyte would decompose due to the hydrogen overvoltage, hydrogen gas would be generated, and the battery would swell and explode. This is to prevent this from occurring, as it may pose a danger.

そして前述した容量関係を保つには、正負種名々の容量
バラツキ、即ち工程上両極のff1ffiバラツキを考
慮し、ある確率以上には両極の容1分布が重ならないよ
うに設計する必要がある。ここで空量はいずれにせよ負
極容量に支配され、このため負極容量バラツキを抑える
ことは全てのアルカリ電池に関係する共通の問題となる
In order to maintain the above-mentioned capacity relationship, it is necessary to take into consideration the capacitance variations between positive and negative types, that is, the ff1ffi variations at both extremes due to the process, and design so that the volume 1 distributions at the two extremes do not overlap beyond a certain probability. Here, the free space is dominated by the negative electrode capacity in any case, and therefore, suppressing negative electrode capacity variations is a common problem related to all alkaline batteries.

従来、負極亜鉛粉の秤量方法は、ホッパー、秤量板、ノ
ズルなどの部品で構成される秤ff1lffiを用いる
マス計量を行なってきた。
Conventionally, negative electrode zinc powder has been weighed by mass weighing using a scale ff1lffi that includes parts such as a hopper, a weighing plate, and a nozzle.

この機械の具体的な構成は、ホッパー底部から自然落下
する亜鉛粉をある一定容積の孔の開いた秤m板を平行に
往復運動させ、その孔に亜鉛粉を充填しホッパー底部と
ですり切りを行ない、この後別箇所に設けた孔よりその
下に接続されたノズルを通して負極容器に秤m板の亜鉛
粉を自然落下させて供給する方式である。
The specific structure of this machine is to reciprocate the zinc powder that naturally falls from the bottom of the hopper in parallel with a scale plate with a certain volume of holes, fill the holes with zinc powder, and scrape the zinc powder with the bottom of the hopper. After that, zinc powder on a scale plate is allowed to fall naturally into the negative electrode container through a hole provided at a separate location and a nozzle connected below the hole.

しかし、これまでは平伏または棒状をした一般的な噴霧
亜鉛を用いてきた。特開昭62−31951号には、4
8〜ao+eshの略球状亜鉛粒子を用いている記載も
ある。
However, up until now, common atomized zinc in the form of a flattened or rod-like structure has been used. In Japanese Patent Application Laid-open No. 62-31951, 4
There is also a description of using substantially spherical zinc particles of 8 to ao+esh.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、従来の秤量方法で平伏または棒状をした亜鉛粉
を用いていたので、秤量バラツキが大ぎい。このためそ
の分、正極容量の中心値を規定電池容量よりかなり大き
く設定しなければならず、本来の規定容量以上に正極活
物質を電池に組み込むことになるので、次の様な問題が
生じた。第1に正極スペースが大きくとられるので規定
寸法に余裕が無くなり、電池設計が困雌となる。第2に
正極活物質が多くなる分電池としてのコスト高となる。
However, because the conventional weighing method uses flattened or rod-shaped zinc powder, there are large variations in weighing. For this reason, the center value of the positive electrode capacity had to be set considerably larger than the specified battery capacity, and as more positive electrode active material was incorporated into the battery than the original specified capacity, the following problems arose. . First, since a large space is required for the positive electrode, there is no margin in the specified dimensions, making battery design difficult. Second, the cost of the battery increases as the amount of positive electrode active material increases.

特に高価な酸化銀電池ではこの影響が大となる。This effect is particularly significant in expensive silver oxide batteries.

次に、電池容量が負極容器に支配されるので亜鉛粉の秤
量バラツキが電池としての容量バラツキとなり、品質特
性値が問題となる。
Next, since the battery capacity is controlled by the negative electrode container, variations in the weight of the zinc powder lead to variations in the capacity of the battery, which poses a problem in quality characteristic values.

そして今後、電池が小型化薄型化するにつれて従来以上
に亜鉛粉の秤量精度が増々m要な要素となってくる。
In the future, as batteries become smaller and thinner, the accuracy of weighing zinc powder will become an increasingly important factor than ever before.

本発明は以上の様な問題点を改善するもので、負極汞化
亜鉛粉の秤量精度を向上さVることににす、バラツキの
少ない電池容量をイ]シ、規定寸法に余裕のある小型薄
型アルカリ電池を提供する事を目的とするものである。
The present invention is intended to improve the above-mentioned problems, and aims to improve the weighing accuracy of the negative electrode zinc chloride powder, achieve a battery capacity with less variation, and a compact size with plenty of room in the specified dimensions. The purpose is to provide a thin alkaline battery.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はこれらの問題点を解決するために球状の汞化亜
鉛粉を用い、カサ密度3.5〜4.5g/ccで、40
〜150Meshの粒度であり、かつ上限値と下限値と
の差が40Hcsh以内の粒度範囲に分級した汞化亜鉛
粉を用いてマス計量による秤量を行なった負極を用いる
ことを特徴とするアルカリ電池である。
In order to solve these problems, the present invention uses spherical zinc chloride powder, has a bulk density of 3.5 to 4.5 g/cc, and has a
An alkaline battery characterized by using a negative electrode that is weighed by mass weighing using zinc chloride powder that has a particle size of ~150 Mesh and is classified into a particle size range in which the difference between the upper limit and the lower limit is within 40 Hcsh. be.

〔作 用〕[For production]

本発明は前記汞化亜鉛粉を用いることで、まず亜鉛粉そ
のものの流動性が良好となり、ホッパーから秤m板に常
に一定mの供給ができる。また、秤量板の計量孔内の亜
鉛粉の上層表面部が凹凸化せず常に平らにホッパー底部
ですり切られるため、秤量バラツキを抑えることができ
、バラツキの少ない電気容量を持つアルカリ電池を供給
できるものである。
In the present invention, by using the above-described zinc powder, the fluidity of the zinc powder itself becomes good, and a constant amount of zinc powder can be constantly supplied from the hopper to the scale plate. In addition, since the upper surface of the zinc powder in the measuring hole of the weighing plate does not become uneven and is always ground flat at the bottom of the hopper, variations in weighing can be suppressed and alkaline batteries with a uniform electrical capacity can be supplied. It is possible.

〔実施例〕〔Example〕

本発明の一実施例による酸化銀電池を図面にもとづき説
明する。
A silver oxide battery according to an embodiment of the present invention will be explained based on the drawings.

図中、1は酸化銀を主活物質とする正極、2は鉄にニッ
ケルメッキした正極ケース、3は本発明による80〜1
20)1eshに分級したカサ密度4.0g/CCの球
状汞化亜鉛粉8からなる負極で、1〜10重電解液を保
持する液保持材、7は絶縁バッキングである。
In the figure, 1 is a positive electrode whose main active material is silver oxide, 2 is a positive electrode case made of iron plated with nickel, and 3 is 80-1 according to the present invention.
20) A negative electrode made of spherical zinc oxide powder 8 with a bulk density of 4.0 g/CC classified into 1 esh, a liquid holding material that holds 1 to 10 heavy electrolytes, and 7 is an insulating backing.

このよ・うな本発明電池Aと従来のカリ゛密度3.3g
/CCの平伏または棒状をした粒度分布80〜120M
eshの汞化亜鉛粉を負極に用いた従来電池Bの電池容
量のバラツキを直径5.8m、高さ1.25 mmの酸
化銀電池(5R5123W)として比較して広大に示し
た。
This invention battery A and the conventional battery density 3.3g
/CC flat or rod-shaped particle size distribution 80-120M
The variation in battery capacity of conventional battery B using esh's zinc chloride powder as the negative electrode is shown in detail by comparing it with a silver oxide battery (5R5123W) with a diameter of 5.8 m and a height of 1.25 mm.

この表は5R512SWを20℃で240にΩの連続放
電した時の電池容量の平均値更とバラツキσでおる。
This table shows the average value and variation σ of the battery capacity when 5R512SW is continuously discharged to 240Ω at 20°C.

次に球状汞化亜鉛粉8の秤量バラツキ(σ)と、カサ密
度(g/cc)、粒度(Mesh )との関係を表1に
示す。
Next, Table 1 shows the relationship between the weight variation (σ) of the spherical zinc powder 8, the bulk density (g/cc), and the particle size (Mesh).

レンのグラフト重合膜よりなるセパレータ、6は表1 秤量バラツキ(σ)(IAIl) 表2 秤量バラツキ(σ) 表1から、カサ密度が3.59/CC未満になると秤量
バラツキが急に悪くなり、カサ密度が3.0g/CCの
汞化亜鉛粉は球状とはいえず、むしろ棒状に近くなる。
Separator 6 made of a graft polymer film of Ren is shown in Table 1 Weighing variation (σ) (IAIl) Table 2 Weighing variation (σ) From Table 1, when the bulk density becomes less than 3.59/CC, the weighing variation suddenly worsens. The zinc chloride powder having a bulk density of 3.0 g/CC cannot be said to be spherical, but rather has a rod shape.

またカサ密度が4.59/CCを越えると、球状より立
方体に近くなるので、流動性が悪くなり、秤量バラツキ
が大きくなる。次に粒度においても、+40)!esh
は粗いので秤量バラツキが大きくなり、−150MeS
hでは細かすぎて粉が飛散したり目づまりを起し、流動
性、秤はバラツキが共に悪い。
Moreover, when the bulk density exceeds 4.59/CC, the shape becomes closer to a cube than a sphere, resulting in poor fluidity and large variations in weighing. Next, in terms of particle size, +40)! esh
-150MeS
In h, the powder is too fine, causing scattering and clogging, and poor fluidity and poor balance.

次に秤量バラツキ(σ)と粒度中との関係を表2に示す
Next, Table 2 shows the relationship between the weighing variation (σ) and the particle size.

表2から、Mesh巾が40を越えると、升切り面が凹
凸状となり、秤量バラツキが急に大ぎくなることがわか
る。
From Table 2, it can be seen that when the mesh width exceeds 40, the square cut surface becomes uneven and the weight variation suddenly becomes large.

(発明の効果) 以上の結果より、明らかに本発明の電池Aは従来電池B
に比べて汞化亜鉛粉の秤量バラツキが小さ〈従来電池B
の175以下、電池容量の約2%以下となり、電池容量
の極めてバラツキの少ないアルカリ電池を得ることがで
きる。また全く設(116改善等の必要なく、従来通り
の秤量方式で本発明を実施することができる。
(Effect of the invention) From the above results, it is clear that the battery A of the present invention is different from the conventional battery B.
Compared to conventional battery B, the weight variation of zinc chloride powder is smaller.
175 or less, which is about 2% or less of the battery capacity, making it possible to obtain an alkaline battery with very little variation in battery capacity. Further, the present invention can be carried out using a conventional weighing method without any need for improvement.

以上のように、本発明によれば秤量)幾を変えることな
く、秤量精度の優れたバラツキの少ない電気容量のアル
カリ電池が得られる。
As described above, according to the present invention, an alkaline battery with excellent weighing accuracy and small variation in electric capacity can be obtained without changing the weighing ratio.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例における負極を用いた酸化銀電池
5R5123Wの断面図である。 1・・・正極、     3・・・負極、5・・・セパ
レータ、  8・・・汞化亜鉛粉。
The drawing is a sectional view of a silver oxide battery 5R5123W using a negative electrode in an example of the present invention. DESCRIPTION OF SYMBOLS 1...Positive electrode, 3...Negative electrode, 5...Separator, 8...Zinc chloride powder.

Claims (1)

【特許請求の範囲】 負極(3)に球状汞化亜鉛粉(8)を用いるアルカリ電
池において、 該汞化亜鉛粉(8)が、カサ密度が3.5〜4.5g/
cc、粒度が40〜150Meshの範囲内にあり、か
つ粒度の上限値と下限値との差が、40Meshの範囲
内にあることを特徴とするアルカリ電池。
[Claims] In an alkaline battery using spherical zinc oxide powder (8) for the negative electrode (3), the spherical zinc oxide powder (8) has a bulk density of 3.5 to 4.5 g/
cc, the particle size is within the range of 40 to 150 Mesh, and the difference between the upper limit and the lower limit of the particle size is within the range of 40 Mesh.
JP63300004A 1988-11-28 1988-11-28 Alkali battery Pending JPH02148569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63300004A JPH02148569A (en) 1988-11-28 1988-11-28 Alkali battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63300004A JPH02148569A (en) 1988-11-28 1988-11-28 Alkali battery

Publications (1)

Publication Number Publication Date
JPH02148569A true JPH02148569A (en) 1990-06-07

Family

ID=17879570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63300004A Pending JPH02148569A (en) 1988-11-28 1988-11-28 Alkali battery

Country Status (1)

Country Link
JP (1) JPH02148569A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001250544A (en) * 2000-03-07 2001-09-14 Dowa Mining Co Ltd Zinc alloy powder for alkaline battery and its preparation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001250544A (en) * 2000-03-07 2001-09-14 Dowa Mining Co Ltd Zinc alloy powder for alkaline battery and its preparation method

Similar Documents

Publication Publication Date Title
US7524582B2 (en) Zinc powder or zinc alloy powder for alkaline batteries
JP3907946B2 (en) Particle morphology of zinc-based electrodes
KR100315370B1 (en) Alkaline storage battery gas sealed in button cell
JP3341693B2 (en) Active material powder for electrode of silver oxide battery, electrode material and production method thereof
JPH0765825A (en) Metal hydride battery
JPH02148569A (en) Alkali battery
JP2000164220A (en) Electrode material for silver oxide battery
US7323031B2 (en) Zinc powder or zinc alloy powder with inhomogeneous bulk density for alkaline batteries
JP2002008650A (en) Positive active material and nickel zinc cell
JPS6040667B2 (en) Manufacturing method of nickel electrode
JPS6231951A (en) Alkaline battery
JP2878294B2 (en) Lithium battery
JPH10116607A (en) Manufacture of battery positive electrode mixture
JPS5914265A (en) Manufacture of button shaped alkali manganese cell
JPS6091562A (en) Cylindrical alkali battery
JPH10270017A (en) Non-aqueous electrolytic battery positive pole plate and non-aqueous electrolytic battery therewith
JPS58198859A (en) Positive plate for alkaline storage battery
JPH1021904A (en) Alkaline storage battery
JP2530281B2 (en) Alkaline storage battery
JPS6178057A (en) Method for manufacturing alkaline battery
JPH09180712A (en) Hydrogen storage alloy electrode and manufacture thereof
JPS6264060A (en) Cylindrical alkaline manganese battery
JPS612271A (en) Negative plate for sealed cylindrical nickel-cadmium battery
JPS612272A (en) Positive plate for sealed cylindrical nickel-cadmium battery
JPH05121074A (en) Nickel electrode for alkaline storage battery