JP3030146B2 - Electrode - Google Patents

Electrode

Info

Publication number
JP3030146B2
JP3030146B2 JP3314724A JP31472491A JP3030146B2 JP 3030146 B2 JP3030146 B2 JP 3030146B2 JP 3314724 A JP3314724 A JP 3314724A JP 31472491 A JP31472491 A JP 31472491A JP 3030146 B2 JP3030146 B2 JP 3030146B2
Authority
JP
Japan
Prior art keywords
electrode
binder
hydrogen storage
storage alloy
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3314724A
Other languages
Japanese (ja)
Other versions
JPH0660874A (en
Inventor
衛 木本
義人 近野
正夫 武江
房吾 水瀧
義典 松浦
晃治 西尾
修弘 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP3314724A priority Critical patent/JP3030146B2/en
Publication of JPH0660874A publication Critical patent/JPH0660874A/en
Application granted granted Critical
Publication of JP3030146B2 publication Critical patent/JP3030146B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電極に係わり、詳しく
は粉末状電極材料と基材とを結着剤を介して結着する際
の結着手段の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode, and more particularly to an improvement in a binding means for binding a powdery electrode material and a base material via a binder.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】電極に
は、結着剤を介して粉末状の電極材料と基材とを一体化
させてなるものがあり、最近注目を集めている水素吸蔵
合金電極も、その一つである。この水素吸蔵合金電極
は、水素吸蔵合金粉末と多孔性の芯体(基材)とを結着
剤を介して結着させた可逆性電極であり、容積当たりの
エネルギー密度が高いため高容量化の可能性があるこ
と、環境汚染の心配がないことなどの理由から、ニッケ
ル/水素吸蔵合金電極電池の負極への適用が提唱されて
いるものである。
2. Description of the Related Art Some electrodes have a structure in which a powdery electrode material and a base material are integrated through a binder through a binder. Alloy electrodes are one of them. This hydrogen storage alloy electrode is a reversible electrode obtained by binding a hydrogen storage alloy powder and a porous core (substrate) via a binder, and has a high energy density per volume and therefore has a high capacity. It has been proposed that a nickel / hydrogen storage alloy electrode battery be applied to a negative electrode because of the possibility of occurrence of environmental pollution and the like.

【0003】このニッケル/水素吸蔵合金電極電池にお
ける水素吸蔵合金電極の作製方法としては、次の(1)
〜(3)に示す方法が提案されている。 (1)水素吸蔵合金粉末と、結着剤粉末を溶媒に溶かし
た溶液とを混合してスラリーとし、これをニッケル製の
パンチングメタル又は発泡メタルからなる芯体(基材)
に塗布した後、乾燥して溶媒を蒸散除去する方法。 (2)水素吸蔵合金粉末と結着剤粉末との混合物を芯体
に充填した後、シート状に加圧成形し、次いで360°
C程度の温度で焼成する方法。 (3)水素吸蔵合金粉末を芯体に充填した後、シート状
に加圧成形し、次いで900°C程度の温度で焼結する
方法。
The following method (1) is used to fabricate a hydrogen storage alloy electrode in this nickel / hydrogen storage alloy electrode battery.
Methods (3) to (3) have been proposed. (1) A mixture of a hydrogen storage alloy powder and a solution obtained by dissolving a binder powder in a solvent to form a slurry, which is made of a nickel-made punched metal or foamed metal core (base material)
After drying, the solvent is removed by evaporation. (2) After filling a mixture of a hydrogen storage alloy powder and a binder powder into a core, the mixture is pressed into a sheet and then 360 °
A method of firing at a temperature of about C. (3) A method in which a hydrogen absorbing alloy powder is filled in a core body, then pressed into a sheet, and then sintered at a temperature of about 900 ° C.

【0004】しかしながら、上記(1)の方法には、水
素吸蔵合金粉末の表面の大部分が結着剤で被覆されてし
まい、その結果、充電時に正極で発生する酸素と水素吸
蔵合金により吸蔵されていた水素との反応速度が鈍化し
て電池の内圧が上昇するので、安全性に欠けるのみなら
ず、ひいては電池特性の劣化に至るなどの問題がある。
この問題は、急速充電や過充電の場合に、特に顕著に現
れる問題である。また、電極としての実効表面積が小さ
くなるため、活物質たる水素の利用率が低下するととも
に、大電流が取り出せなくなる。
However, according to the above method (1), most of the surface of the hydrogen storage alloy powder is covered with the binder, and as a result, the hydrogen and the hydrogen storage alloy are occluded by oxygen generated at the positive electrode during charging. Since the reaction speed with hydrogen slows down and the internal pressure of the battery rises, there are problems such as not only lack of safety but also deterioration of battery characteristics.
This problem is particularly noticeable in the case of quick charging or overcharging. Further, since the effective surface area of the electrode is reduced, the utilization rate of hydrogen as an active material is reduced, and a large current cannot be obtained.

【0005】水素吸蔵合金表面のかかる過剰被覆の問題
を熱処理により解消せんとしたのが、上記(2)及び
(3)の方法であるが、これらの方法にも次に示す問題
がある。すなわち、上記(2)の方法では、水素吸蔵合
金の表面が酸化されてしまうため、電極としての本来の
特性が発現され難くなり、また上記(3)の方法では、
この表面酸化の問題に加えて、所謂アニーリング効果に
より物性自体の変化が起こるため、水素吸蔵合金の本来
発現すべき特性が発現され難くなる。
[0005] The above-mentioned methods (2) and (3) have solved the problem of the excessive coating on the surface of the hydrogen storage alloy by heat treatment. These methods also have the following problems. That is, in the method (2), the surface of the hydrogen storage alloy is oxidized, so that it becomes difficult to exhibit the original characteristics as an electrode. In the method (3),
In addition to this problem of surface oxidation, the physical properties themselves change due to the so-called annealing effect, so that it is difficult for the hydrogen storage alloy to exhibit the characteristics that should be originally exhibited.

【0006】以上の如き電極材料の過剰被覆や表面酸化
などの問題は、先に述べた水素吸蔵合金電極に限られた
問題ではなく、粉末状物質を電極材料とする電極に共通
した問題である。本発明は、以上の事情に鑑みなされた
ものであって、その目的とするところは、電極材料の表
面が過剰に被覆されておらず、しかもその表面酸化など
が殆どない、たとえば電池用電極として用いて好適な電
極を提供するにある。
[0006] The problems such as the excessive coating of the electrode material and the surface oxidation as described above are not limited to the above-described hydrogen storage alloy electrodes, but are common to the electrodes using a powdery substance as the electrode material. . The present invention has been made in view of the above circumstances, and it is intended that the surface of the electrode material is not excessively coated, and that the surface is hardly oxidized, for example, as a battery electrode. It is intended to provide an electrode suitable for use.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る電極は、粉末状電極材料と基材とが結着
剤により一体化されてなる電極であって、前記粉末状電
極材料と前記基材とは、超音波で前記粉末状電極材料の
表面が過剰に被覆されることのない程度に結着剤を溶融
させたのち、当該結着剤を乾燥固化させることにより一
体化されていることを特徴とする。
According to the present invention, there is provided an electrode comprising a powdery electrode material and a base material integrated with a binder, wherein the powdery electrode is The material and the base material are integrated by melting the binder with an ultrasonic wave to such an extent that the surface of the powdery electrode material is not excessively coated, and then drying and solidifying the binder. It is characterized by having been done.

【0008】上記粉末状電極材料としては、TiFe、
TiCo、ZrMn2 、ZrV2 、CaNi5 、LaN
5 、MmNi5 (Mm:ミッシュメタル)、Mg2
i、Mg2 Cuなどが代表例として挙げられるが、これ
らに限定されるものではなく、二酸化マンガン粉末(正
極材料)、亜鉛粉末(負極材料)、炭素粉末(正極又は
負極材料)など、結着剤(要すればさらに導電剤も)と
混練して基材に結着される材料であって、材料表面が結
着剤により過剰に被覆されることが電池特性上問題視さ
れる材料であるならば、本発明における電極材料に含ま
れる。
[0008] As the powdered electrode material, TiFe,
TiCo, ZrMn 2 , ZrV 2 , CaNi 5 , LaN
i 5, MmNi 5 (Mm: misch metal), Mg 2 N
i, Mg 2 Cu and the like are typical examples, but not limited to these, binding such as manganese dioxide powder (positive electrode material), zinc powder (negative electrode material), carbon powder (positive electrode or negative electrode material), etc. A material which is kneaded with an agent (and, if necessary, a conductive agent) and then bound to the substrate, and which has a problem in terms of battery characteristics that the material surface is excessively covered with the binder. Then, it is included in the electrode material of the present invention.

【0009】上記基材としては、アルミニウム板、銅
板、発泡ニッケル、ニッケル製のパンチングメタルな
ど、電池用電極の芯材として従来使用されている導電性
に優れた種々の金属材料が例示される。
Examples of the substrate include various metal materials having excellent conductivity, such as an aluminum plate, a copper plate, nickel foam, and a punched metal made of nickel, which are conventionally used as a core material of a battery electrode.

【0010】上記結着剤としては、PEO(ポリエチレ
ンオキシド)や、PTFE(ポリテトラフルオロエチレ
ン)、PVF(ポリビニリデンフルオライド)等のフッ
素樹脂など、常温で固形の樹脂粉末が例示される。粉末
状電極材料として水素吸蔵合金粉末を用いる場合は、そ
の合金表面の酸化を防止するために、融点500°C以
下、より好ましくは300°C以下の結着剤を用いるこ
とが好ましい。
Examples of the binder include resin powders which are solid at room temperature, such as PEO (polyethylene oxide), fluororesin such as PTFE (polytetrafluoroethylene) and PVF (polyvinylidene fluoride). When a hydrogen storage alloy powder is used as the powdered electrode material, it is preferable to use a binder having a melting point of 500 ° C. or lower, more preferably 300 ° C. or lower, in order to prevent oxidation of the alloy surface.

【0011】本発明においては、結着剤を溶融させるた
めの手段として、超音波による振動エネルギーが利用さ
れるが、上述した本発明の目的を達成するためには、結
着剤に与えられる振動エネルギー量すなわち周波数を、
使用する結着剤の種類に応じて適宜選択する必要があ
る。すなわち、高分子化合物たる結着剤の分子量、溶融
時の流動性、融点、要すればガラス転移点などを考慮し
て、電極材料が基材から脱落しない程度に結着し得て、
しかも電極材料の表面が電極特性に悪影響を与える程に
過剰に被覆されることがないように、超音波の周波数及
びその使用時間を選択する必要がある。
In the present invention, vibration energy by ultrasonic waves is used as a means for melting the binder, but in order to achieve the above-mentioned object of the present invention, the vibration applied to the binder is required. The amount of energy, or frequency,
It is necessary to appropriately select the type according to the type of the binder used. That is, in consideration of the molecular weight of the binder, which is a polymer compound, the fluidity at the time of melting, the melting point, and, if necessary, the glass transition point, the electrode material can be bound to such an extent that the electrode material does not fall off the substrate,
In addition, it is necessary to select the frequency of the ultrasonic waves and the time for using them so that the surface of the electrode material is not excessively coated so as to adversely affect the electrode characteristics.

【0012】次に、本発明に係る電極の具体的な作製方
法を、水素吸蔵合金電極をバッチ式で作製する場合を例
にして説明する。 先ず、発泡ニッケル、ニッケル製のパンチングメタ
ルなどからなる多孔性の基材に、水素吸蔵合金粉末とP
EO、PTFE、PVF等の結着剤粉末との混合物を適
宜の量充填する。 次いで、上記基材に超音波発振器の両端子を接触さ
せて、適宜の周波数の超音波を所定時間かけて、含有せ
る結着剤に微振動を与えて溶融させる。 この溶融した結着剤を乾燥させた後、圧延ロールに
て所定の厚みに加工して電極とする。
Next, a specific method for manufacturing an electrode according to the present invention will be described by taking as an example a case where a hydrogen storage alloy electrode is manufactured by a batch method. First, a hydrogen storage alloy powder and P were added to a porous base material such as foamed nickel or nickel punched metal.
An appropriate amount of a mixture with a binder powder such as EO, PTFE, or PVF is filled. Next, both terminals of an ultrasonic oscillator are brought into contact with the above-mentioned base material, and ultrasonic waves of an appropriate frequency are applied over a predetermined period of time to give a fine vibration to the binder to be contained, thereby melting the binder. After drying the melted binder, it is processed into a predetermined thickness by a rolling roll to form an electrode.

【0013】なお、実際の電極製造においては、エンド
レスの芯材を圧延ロールに送給して電極を作製する連続
生産方式が採られている。このように、生産ラインを休
止させることなく連続的に稼働させて本発明に係る電極
を作製する方法としては、圧延ロールのロール軸に超音
波発振器の端子を接続してこれに超音波振動を与えるこ
とにより、間接的に芯材に微振動を与える方法などが挙
げられる。
In the actual production of electrodes, a continuous production system is adopted in which an endless core material is fed to a rolling roll to produce electrodes. As described above, as a method of manufacturing the electrode according to the present invention by continuously operating the production line without stopping, the terminal of the ultrasonic oscillator is connected to the roll shaft of the rolling roll, and the ultrasonic vibration is applied thereto. For example, a method of indirectly applying micro-vibration to the core material by giving the same may be used.

【0014】本発明に係る電極のうち、粉末状電極材料
として水素吸蔵合金を用いた電極は、ニッケル/水素吸
蔵合金電極電池の負極として好適に用い得るものであ
る。なお、この場合の正極、電解質、セパレータとして
は、従来既に実用化されているニッケル/水素電池にお
いて使用されているものと同様の材料を使用することが
できる。
Among the electrodes according to the present invention, an electrode using a hydrogen storage alloy as a powdery electrode material can be suitably used as a negative electrode of a nickel / hydrogen storage alloy electrode battery. In this case, as the positive electrode, the electrolyte, and the separator, the same materials as those used in nickel / hydrogen batteries which have been already practically used can be used.

【0015】[0015]

【作用】本発明に係る電極においては、結着剤の溶融時
に、電極材料の表面が過剰に被覆されることがないよう
に超音波条件が適宜設定されて、電極材料と基材とが一
体化されているので、電極としての実効表面積が大き
い。また、製造段階において、焼成、焼結等の熱処理を
行わないので、電極材料の表面酸化や物性変化が少な
い。
In the electrode according to the present invention, ultrasonic conditions are appropriately set so that the surface of the electrode material is not excessively coated when the binder is melted, and the electrode material and the base material are integrated. Because of this, the effective surface area as an electrode is large. Further, since no heat treatment such as sintering or sintering is performed in the manufacturing stage, the surface oxidation and the change in physical properties of the electrode material are small.

【0016】[0016]

【発明の効果】本発明に係る電極は、その製造段階にお
いて、焼成、焼結等の熱処理が行われていないので、電
極材料に表面酸化や物性変化が殆どなく、電池用電極な
どに用いて好適である。また、電極表面が結着剤により
過剰に被覆されていないので、電極としての実効表面積
が大きく、このため水素の利用率が高く、また大電流を
取り出し得る。特に、本発明に係る水素吸蔵合金電極
は、ニッケル/水素吸蔵合金電極の負極に使用した場合
において、充電時に正極で発生する酸素と水素吸蔵合金
により吸蔵されていた水素との反応が効率良く行われる
ので、内圧の上昇がなくなり安全である。以上詳述した
如く、本発明は優れた特有の効果を奏するものである。
The electrode according to the present invention has not been subjected to heat treatment such as sintering and sintering in the manufacturing stage, so that the electrode material has almost no surface oxidation or change in physical properties, and can be used for a battery electrode or the like. It is suitable. In addition, since the electrode surface is not excessively covered with the binder, the effective surface area of the electrode is large, so that the utilization rate of hydrogen is high and a large current can be taken out. In particular, when the hydrogen storage alloy electrode according to the present invention is used as a negative electrode of a nickel / hydrogen storage alloy electrode, the reaction between oxygen generated at the positive electrode during charging and hydrogen stored by the hydrogen storage alloy can be efficiently performed. It is safe because there is no increase in internal pressure. As described in detail above, the present invention has excellent unique effects.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 水瀧 房吾 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (72)発明者 松浦 義典 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (72)発明者 古川 修弘 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (56)参考文献 特開 昭53−112433(JP,A) 特開 昭58−73966(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/02 - 4/08 H01M 4/16 - 4/34 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Fugo Mizutaki, 2-18-18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Yoshinori Matsuura 2--18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Koji Nishio 2-18-18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Nobuhiro Furukawa 2--18 Keihanhondori, Moriguchi-shi, Osaka (56) References JP-A-53-112433 (JP, A) JP-A-58-73966 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4 / 02-4/08 H01M 4/16-4/34

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】粉末状電極材料と基材とが結着剤により一
体化されてなる電極であって、前記粉末状電極材料と前
記基材とは、超音波で前記粉末状電極材料の表面が過剰
に被覆されることのない程度に結着剤を溶融させたの
ち、当該結着剤を乾燥固化させることにより一体化され
ていることを特徴とする電極。
1. An electrode in which a powdered electrode material and a base material are integrated with a binder, wherein the powdered electrode material and the base material are superposed on the surface of the powdered electrode material by ultrasonic waves. An electrode, wherein the electrode is integrated by melting the binder to such an extent that it is not excessively coated, and then drying and solidifying the binder.
【請求項2】前記粉末状電極材料が水素吸蔵合金である
請求項1記載の電極。
2. The electrode according to claim 1, wherein said powdery electrode material is a hydrogen storage alloy.
【請求項3】前記結着剤が、ポリエチレンオキシド又は
フッ素樹脂である請求項1記載の電極。
3. The electrode according to claim 1, wherein said binder is a polyethylene oxide or a fluororesin.
JP3314724A 1991-11-28 1991-11-28 Electrode Expired - Fee Related JP3030146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3314724A JP3030146B2 (en) 1991-11-28 1991-11-28 Electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3314724A JP3030146B2 (en) 1991-11-28 1991-11-28 Electrode

Publications (2)

Publication Number Publication Date
JPH0660874A JPH0660874A (en) 1994-03-04
JP3030146B2 true JP3030146B2 (en) 2000-04-10

Family

ID=18056811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3314724A Expired - Fee Related JP3030146B2 (en) 1991-11-28 1991-11-28 Electrode

Country Status (1)

Country Link
JP (1) JP3030146B2 (en)

Also Published As

Publication number Publication date
JPH0660874A (en) 1994-03-04

Similar Documents

Publication Publication Date Title
TW567633B (en) Electrode material for rechargeable lithium battery, electrode structural body comprising said electrode material, rechargeable lithium battery having said electrode structural body, process for the production of said electrode structural body
EP0317351B1 (en) Secondary battery
JPH08170126A (en) Porous metallic body, its production and plate for battery using the same
US5529857A (en) Hydrogen-absorbing alloy electrode and process for producing the same
JP2708452B2 (en) Hydrogen storage alloy electrode and method for producing the same
EP0757396A1 (en) Porous, nickel coated, sintered iron substrate for electrodes in alkaline secondary batteries
JP3499924B2 (en) Hydrogen storage alloy electrodes for metal-hydride alkaline storage batteries
JPH05205746A (en) Collector for electrode, and manufacture thereof hydrogen occlusion electrode using this collector, and nickel-hydrogen storage battery
JP3030146B2 (en) Electrode
JPH01197964A (en) Secondary battery
JP2603188B2 (en) Hydrogen storage alloy electrode
JP4061048B2 (en) Positive electrode for alkaline storage battery and alkaline storage battery using the same
JPH1173955A (en) Metal-hydride alkaline storage battery and its manufacture
JP3141141B2 (en) Sealed nickel-metal hydride storage battery
JP2733231B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH02197059A (en) Solid type hydrogen battery and manufacture thereof
JP2689473B2 (en) Hydrogen storage alloy electrode and its manufacturing method
JPH08287906A (en) Hydrogen storage alloy electrode
JPH04286864A (en) Secondary battery
JPH06279980A (en) Production of powdery hydrogen occluding alloy for negative electrode of nickel-hydrogen secondary battery and production of negative electrode for nickel-hydrogen secondary battery
JP3136688B2 (en) Nickel-hydrogen storage battery
JPH04507171A (en) Porous lithium electrode and battery equipped with the same
JPH05258750A (en) Manufacture of hydrogen storage alloy electrode
JP2000077064A (en) Hydrogen storage electrode and its manufacture
JP2929716B2 (en) Hydrogen storage alloy electrode

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees