JPH04286864A - Secondary battery - Google Patents

Secondary battery

Info

Publication number
JPH04286864A
JPH04286864A JP3051081A JP5108191A JPH04286864A JP H04286864 A JPH04286864 A JP H04286864A JP 3051081 A JP3051081 A JP 3051081A JP 5108191 A JP5108191 A JP 5108191A JP H04286864 A JPH04286864 A JP H04286864A
Authority
JP
Japan
Prior art keywords
metal
alloy
electrode
active
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3051081A
Other languages
Japanese (ja)
Inventor
Tatsuo Horiba
達雄 堀場
Kiyouko Igawa
井川 亨子
Mamoru Mizumoto
守 水本
Noboru Ebato
江波戸 昇
Jinichi Imahashi
甚一 今橋
Shigeoki Nishimura
西村 成興
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3051081A priority Critical patent/JPH04286864A/en
Publication of JPH04286864A publication Critical patent/JPH04286864A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a nonaqueous secondary battery of a high-performance high-energy density, and provide practical and good-workability techniques which are applicable to mass-production by composing alkaline metal electrodes of lithium, sodium, etc., to be long-life electrodes capable of discharging a large current. CONSTITUTION:Adouble-structure electrode is composed of an active metal to be negative pole active material, and a metal capable of forming an alloy with the active metal wherein both metals serve as a combination to form the alloy electrochemcally. The metal capable of electrochemically forming the alloy with the active metal for the negative material is of a structure of grid, mesh, expanded metal, bored plate, etc., or a porous body such as sintered plate, foam metal, powder-painted plate, mat, or felt.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は二次電池に係り、特に、
リチウムなどのアルカリ金属を負極の活性成分とする二
次電池に関する。
[Industrial Application Field] The present invention relates to secondary batteries, and in particular,
This invention relates to a secondary battery that uses an alkali metal such as lithium as the active component of the negative electrode.

【0002】0002

【従来の技術】各種の小形コードレス機器の急速な普及
とともに電源となる電池の需要も急増している。使用さ
れる小形電池には一次電池と二次電池があるが、一般に
、可動部をもち、重負荷で使用頻度の高い用途の電源に
は主として経済性の理由により、二次電池が使用される
2. Description of the Related Art With the rapid spread of various small cordless devices, the demand for batteries as power sources is also rapidly increasing. There are two types of small batteries used: primary batteries and secondary batteries, but secondary batteries are generally used as power sources for applications that have moving parts, heavy loads, and are frequently used, mainly for economical reasons. .

【0003】これらの二次電池は需要増加とともに、使
い易さの点から高容量化、急速充放電化などの要求が高
まっている。中でも一回の充電による機器使用時間が長
くできる高容量化に対する消費者の要求は根強いものが
あり、その点での技術の開発がたゆまなく続けられて来
た。
[0003] As demand for these secondary batteries increases, demands for higher capacity, rapid charging and discharging, etc. are increasing from the viewpoint of ease of use. Among these, there is a deep-rooted consumer demand for higher capacity devices that can be used for a longer time with a single charge, and technological development in this regard has continued unremittingly.

【0004】既存の電池の高容量化とともに新型電池の
開発も活発に行なわれてきた。それらの中でもリチウム
などのアルカリ金属を負極活物質とする非水電解液系二
次電池は電池電圧が2〜3Vと高く、しかも100Wh
/kg以上の高いエネルギ密度が可能なため、将来の高
性能電池としての評価が高く、広範な研究の対象となっ
てきた。
[0004] Along with increasing the capacity of existing batteries, new types of batteries have been actively developed. Among them, non-aqueous electrolyte secondary batteries that use alkali metals such as lithium as negative electrode active materials have a high battery voltage of 2 to 3 V, and have a power consumption of 100 Wh.
Since it is possible to achieve a high energy density of more than /kg, it has been highly evaluated as a future high-performance battery and has been the subject of extensive research.

【0005】しかし、これらの電池は非水電解液を用い
るために、電池の内部抵抗が高く、また、リチウムなど
のアルカリ金属負極活物質の充放電の反応速度が低く、
しかもデンドライト析出、電解液との反応による不活性
化などのため、大電流の充放電および寿命に問題が残さ
れており、既存の二次電池に比して十分なものとはいえ
なかった。そのため、電極を薄くし電極面積を大きくし
て電流密度を増加させることなく大電流の充放電を可能
にする、あるいは、リチウムなどの負極活物質を他の金
属と合金化しその性質を改質することなどが試みられて
きた。(たとえば特開昭48−33812号,特開昭5
3−75437号,特開昭59−228370号公報な
どがその例である。)しかし、前者については負極活物
質の金属の性質自体は変化していないのでデンドライト
析出、不活性化の問題は解決されていない。後者では合
金化によるリチウムの硬質化のため、大面積の薄型電極
を均一に作製するのが困難になり、実用的な工業技術と
するには困難が大きかった。そのため、この技術はコイ
ン型のリチウム二次電池に適用されているのみであり、
大電流を取り出すための構造である円筒型二次電池には
適用できなかった。
However, since these batteries use a non-aqueous electrolyte, the internal resistance of the battery is high, and the charging and discharging reaction rate of the alkali metal negative electrode active material such as lithium is slow.
Furthermore, due to dendrite precipitation and inactivation due to reaction with the electrolyte, there remained problems in charging and discharging large currents and lifespan, and it could not be said to be sufficient compared to existing secondary batteries. Therefore, it is possible to make the electrode thinner and increase the electrode area to enable charging and discharging of large currents without increasing the current density, or to modify the properties of negative electrode active materials such as lithium by alloying them with other metals. Things have been tried. (For example, JP-A-48-33812, JP-A-5
Examples include No. 3-75437 and Japanese Unexamined Patent Publication No. 59-228370. ) However, regarding the former, the properties of the metal of the negative electrode active material itself have not changed, so the problems of dendrite precipitation and inactivation have not been solved. In the latter case, the hardening of lithium due to alloying made it difficult to uniformly produce thin electrodes with a large area, making it extremely difficult to turn this into a practical industrial technology. Therefore, this technology is only applied to coin-shaped lithium secondary batteries.
It could not be applied to cylindrical secondary batteries, which have a structure for extracting large currents.

【0006】[0006]

【発明が解決しようとする課題】このため、リチウム,
ナトリウムなどのアルカリ金属単体の可塑性を維持して
電極を薄くし電極面積を大きくするとともに、リチウム
などを他の金属と合金化して性質を改質しデンドライト
析出、電解液との反応による不活性化などを抑制すると
いう相反する条件を満たす技術を開発しなければならな
い。
[Problem to be solved by the invention] For this reason, lithium,
Maintaining the plasticity of single alkali metals such as sodium to make electrodes thinner and larger in area, as well as alloying lithium and other metals with other metals to modify their properties, resulting in dendrite precipitation and inactivation through reaction with electrolytes. We must develop technology that satisfies the contradictory conditions of suppressing such problems.

【0007】本発明の目的は、リチウム,ナトリウムな
どのアルカリ金属電極を大電流充放電が可能で、かつ、
長寿命であり、しかも、量産に適した実用的で作業性の
よい技術を提供し、高性能高エネルギ密度の非水系二次
電池を得ることにある。
An object of the present invention is to enable high current charging and discharging of alkali metal electrodes such as lithium and sodium, and
The object of the present invention is to provide a long-life, practical and workable technology suitable for mass production, and to obtain a high-performance, high-energy-density non-aqueous secondary battery.

【0008】[0008]

【課題を解決するための手段】本発明の特徴は、上記従
来技術の問題点を解決するために、電極活物質となりう
る活性金属およびその活性金属と合金を形成しうる金属
とからなる二重構造の電極を用いたことにあり、しかも
、前記電極活物質となりうる活性金属およびその活性金
属と合金を形成しうる金属が電気化学的に合金を形成し
うる組合せであることにある。ここで、上述の二重構造
とは、単に平板状の二種類の金属板の積層された形状を
意味するものではなく、不活性な金属の構造体の上に活
性金属を分布させることであり、両者の境界は複雑な形
状を呈していることが重要である。この組合せによれば
、リチウム,ナトリウムなどのアルカリ金属単体の可塑
性を維持して電極を薄くし電極面積を大きくして捲回な
どの技術により電池を形成することが可能であり、しか
も合金化により性質を改質しデンドライト析出、電解液
との反応による不活性化などを抑制することが可能であ
る。さらに合金化反応の反応表面積が大きく、その界面
が複雑な形状となっているため、充放電による体積変化
によっても崩壊脱落のような機械的な劣化をおこすこと
が防止できる。
[Means for Solving the Problems] In order to solve the above-mentioned problems of the prior art, the present invention is characterized by providing a dual-layer structure consisting of an active metal that can be an electrode active material and a metal that can form an alloy with the active metal. In addition, the active metal that can serve as the electrode active material and the metal that can form an alloy with the active metal are in a combination that can electrochemically form an alloy. Here, the above-mentioned double structure does not simply mean that two types of flat metal plates are laminated, but it refers to the distribution of active metals on an inert metal structure. It is important that the boundary between the two has a complex shape. With this combination, it is possible to maintain the plasticity of single alkali metals such as lithium and sodium, make the electrode thinner, increase the electrode area, and form a battery using techniques such as winding. By modifying the properties, it is possible to suppress dendrite precipitation, inactivation due to reaction with electrolyte, etc. Furthermore, since the reaction surface area for the alloying reaction is large and the interface thereof has a complicated shape, mechanical deterioration such as collapse and falling off due to volume changes due to charging and discharging can be prevented.

【0009】二重構造の電極を形成するには、二種類の
金属構造体を重ね合わせ圧着する方法、二種類の金属構
造体を重ね合わせてからホットプレスする方法、融点の
高い方の金属の構造体の上に融点の低い方の金属の溶融
体を析出させる方法、不活性金属の構造体の上に活性金
属の粉末から成る層を形成する方法などがある。上記の
方法において、二種類の金属板の形成する二重構造の接
合の強度を十分にし、電極の活物質を有効に反応させる
ために構造上の工夫が重要である。たとえば、電極活物
質金属と合金を形成しうる金属が格子状,金網状,エキ
スパンドメタル状,穿孔板状などの平面型構造であり、
その上に活性金属層を形成する、電極活物質金属と合金
を形成しうる金属が焼結版,発泡金属,粉末塗布板,マ
ット,フェルトなどの多孔質体でありその上に活性金属
層を形成するなどがその例である。なお、本発明では、
活性金属と合金を形成しうる金属は充放電過程で溶解消
失しない部分であるので、この部分を電極集電側に配置
する構造が好ましい。
[0009] To form a double-structured electrode, two types of metal structures can be stacked and pressed together, two types of metal structures can be stacked and then hot pressed, or a metal with a higher melting point can be formed. Methods include depositing a melt of a metal with a lower melting point on the structure, and forming a layer of active metal powder on an inert metal structure. In the above method, it is important to take structural measures to ensure sufficient strength of the double-structure bond formed by the two types of metal plates and to cause the active materials of the electrodes to react effectively. For example, if the metal that can form an alloy with the electrode active material metal has a planar structure such as a lattice shape, a wire mesh shape, an expanded metal shape, or a perforated plate shape,
The metal that can form an alloy with the electrode active material metal on which the active metal layer is formed is a porous body such as a sintered plate, foamed metal, powder coated plate, mat, or felt. An example is forming. In addition, in the present invention,
Since the metal that can form an alloy with the active metal is a portion that does not dissolve and disappear during the charging and discharging process, a structure in which this portion is disposed on the electrode current collection side is preferable.

【0010】電極活物質となりうる活性金属にはリチウ
ム,ナトリウムなどのアルカリ金属、更には亜鉛,鉛,
カドミウム,マグネシウムなどがある。電極活物質金属
と合金を形成しうる金属にはマグネシウム,アルミニウ
ム,ガリウム,インジウム,スズ,鉛,ビスマス,亜鉛
,カドミウムなどがある。
Active metals that can be used as electrode active materials include alkali metals such as lithium and sodium, as well as zinc, lead,
These include cadmium and magnesium. Metals that can form an alloy with the electrode active material metal include magnesium, aluminum, gallium, indium, tin, lead, bismuth, zinc, and cadmium.

【0011】電極活物質金属と、活性金属と合金を形成
しうる金属の配合比は、それぞれの合金の組合せがどの
ような金属間化合物を形成するか、あるいは、固溶体を
形成するかによって変化する。また、二重の配置がどの
ような形に成っているかによっても当然変化する。しか
し、活性金属と合金を形成しうる金属は放電容量に、直
接、関与することのない不活性部分であるので、その効
果が低減しない範囲で少ない方が好ましい。
[0011] The compounding ratio of the electrode active material metal and the metal that can form an alloy with the active metal changes depending on what kind of intermetallic compound or solid solution is formed by each alloy combination. . Naturally, it also changes depending on the shape of the double arrangement. However, since the metal that can form an alloy with the active metal is an inactive portion that does not directly contribute to the discharge capacity, it is preferable to have a smaller amount as long as the effect is not reduced.

【0012】0012

【作用】本発明の要点は、電気化学的合金の析出にある
。二重構造の電極が電気化学的に合金を形成しうる組合
わせであるため、最初の放電で放出された活性金属成分
がその次の充電で析出するときに合金を形成する。以後
の充放電サイクルでもこのことが繰り返される。従って
、電極を電池に組み込むときは、合金を形成していなく
ても、電池内で充放電に関与しているときは合金を形成
しているものと同じように作用している。そのため活性
金属の可塑性を維持して電極を薄くし電極面積を大きく
し、捲回などの技術により電池を形成することと、合金
化により活性金属の性質を改質しデンドライト析出、電
解液との反応による不活性化などを抑制することの並立
が可能となる。
[Operation] The gist of the present invention is the electrochemical deposition of the alloy. Since the dual structure electrodes are an electrochemically alloyable combination, the active metal components released during the first discharge will form an alloy when deposited during the subsequent charge. This is repeated in subsequent charge/discharge cycles. Therefore, when an electrode is incorporated into a battery, even if it does not form an alloy, when it is involved in charging and discharging within the battery, it functions in the same way as an electrode that forms an alloy. Therefore, it is necessary to maintain the plasticity of the active metal, make the electrode thinner, increase the electrode area, and form a battery using techniques such as winding, and modify the properties of the active metal through alloying to cause dendrite precipitation and interaction with the electrolyte. This makes it possible to simultaneously suppress inactivation caused by reactions.

【0013】合金の形成を円滑に進めるには、放電で放
出された活性金属成分が次の充電で析出するときの析出
表面積が十分確保されていることが必要である。そのた
めに電極活物質金属と合金を形成しうる金属が格子状,
金網状,エキスパンドメタル状,穿孔板状などの形状、
あるいは焼結版,発泡金属,粉末塗布板,マット,フェ
ルトなどの多孔質体として表面積を大きくすることが有
効である。また、活性金属ともう一種類の金属からなる
二重構造の接合の強度を十分にすることが、活性金属(
活物質)を有効に反応させるために必要である。そのた
めには、二種類の金属板を重ね合わせ圧着する、二種類
の金属板を重ね合わせてからホットプレスする、融点の
高い方の金属の成型体の上に融点の低い方の金属の溶融
体を析出させる、活性金属と合金を形成しうる金属の成
型体の上に活性金属の粉末から成る層を形成するなどの
方法が適用される。
[0013] In order to smoothly proceed with the formation of the alloy, it is necessary that a sufficient surface area be secured for the deposition of the active metal component released during discharge upon subsequent charging. Therefore, the metal that can form an alloy with the electrode active material metal is arranged in a lattice shape.
Shapes such as wire mesh, expanded metal, perforated plate, etc.
Alternatively, it is effective to increase the surface area by using a porous material such as a sintered plate, foamed metal, powder coated plate, mat, or felt. In addition, it is important to ensure that the bonding strength of the double structure consisting of the active metal and another metal is sufficient.
active material) to react effectively. To do this, two types of metal plates are stacked and pressed together, two types of metal plates are stacked and then hot pressed, and a molten metal with a lower melting point is placed on top of a molded body of the metal with a higher melting point. Methods such as depositing active metal powder or forming a layer of active metal powder on a molded body of metal capable of forming an alloy with the active metal are applied.

【0014】[0014]

【実施例】本発明を円筒型リチウム二次電池の負極に適
用した実施例により更に具体的に説明する。
[Example] The present invention will be explained in more detail with reference to an example in which the present invention is applied to a negative electrode of a cylindrical lithium secondary battery.

【0015】〈実施例1〉本発明を実施するために用い
たリチウム二次電池用負極は、リチウムとアルミニウム
からなる。厚さ0.5mmの金属リチウム箔を気孔率9
5%、厚さ1.5mmの発泡アルミニウムに圧着し、さ
らにローラプレスにより厚さ0.3mm に成形し、負
極とした。正極は二酸化マンガンと水酸化リチウムの混
合物を400℃で焼成して得られた粉末を活物質とし、
これに導電剤としてのカーボンブラック粉末を混合しポ
リテトラフルオロエチレンにより結着し作製した。これ
らの電極をセパレータを介して捲回し、電池容器内に電
解液とともに充填し、単三型の密閉式リチウム二次電池
を組み立てた。セパレータは厚さ0.025mm の微
孔性ポリテトラフルオロエチレンフィルムと厚さ0.2
mm のポリプロピレン不織布とで構成され、電解液は
プロピレンカーボネートを主体とする混合溶媒にヘキサ
フルオロリン酸リチウムを1mol/l溶解したもので
ある。すべての操作はアルゴン雰囲気中でおこなった。 電解液中の水分は10ppm 以下にした。得られた電
池の容量は600mAhであった。この電池を室温下で
充放電サイクル評価をした。充電電流100mAで上限
電圧4.0V として六時間まで充電した。放電は放電
電流200mAで終止電圧2.0V まで放電した。こ
のようにして得られた結果を図1のAに示す。
Example 1 The negative electrode for a lithium secondary battery used to carry out the present invention was made of lithium and aluminum. Metal lithium foil with a thickness of 0.5 mm has a porosity of 9
5%, was pressed onto foamed aluminum with a thickness of 1.5 mm, and further molded with a roller press to a thickness of 0.3 mm to obtain a negative electrode. The positive electrode uses a powder obtained by firing a mixture of manganese dioxide and lithium hydroxide at 400°C as an active material,
Carbon black powder as a conductive agent was mixed with this, and the mixture was bound with polytetrafluoroethylene. These electrodes were wound together with a separator interposed in between, and filled with an electrolyte into a battery container to assemble an AA-sized sealed lithium secondary battery. The separator consists of a 0.025 mm thick microporous polytetrafluoroethylene film and a 0.2 mm thick microporous polytetrafluoroethylene film.
mm 2 polypropylene nonwoven fabric, and the electrolytic solution is one in which 1 mol/l of lithium hexafluorophosphate is dissolved in a mixed solvent mainly composed of propylene carbonate. All operations were performed in an argon atmosphere. The water content in the electrolyte was kept at 10 ppm or less. The capacity of the obtained battery was 600mAh. This battery was subjected to charge/discharge cycle evaluation at room temperature. Charging was carried out for up to 6 hours at a charging current of 100 mA and an upper limit voltage of 4.0 V. Discharge was carried out to a final voltage of 2.0 V at a discharge current of 200 mA. The results thus obtained are shown in FIG. 1A.

【0016】比較のために、金属リチウム箔を負極とし
て、同様に作製した電池を同様に評価した結果を図1の
Bに示す。さらに、金属リチウム箔と金属アルミニウム
箔を積層圧着して作製した負極を用いて、同様に作製し
た電池を同様に評価した結果を図1のCに示す。
For comparison, FIG. 1B shows the results of a similar evaluation of a battery manufactured in the same manner using a metal lithium foil as the negative electrode. Furthermore, C in FIG. 1 shows the results of similarly evaluating a battery prepared in the same manner using a negative electrode prepared by laminating and press-bonding a metal lithium foil and a metal aluminum foil.

【0017】図1より本発明の電池Aの方が従来技術に
なる比較例B、Cよりも大きな放電容量を長いサイクル
にわたって維持できる高性能長寿命電池であることがわ
かる。
From FIG. 1, it can be seen that the battery A of the present invention is a high-performance, long-life battery that can maintain a larger discharge capacity over a longer cycle than the conventional comparative examples B and C.

【0018】〈実施例2〉多孔質鉛板に溶融金属リチウ
ムを含浸させて形成した負極を用いて、単三型の密閉式
リチウム二次電池を組み立てた。多孔質鉛板は、平均粒
径0.008mm の微細鉛粉末を3wt%ポリテトラ
フルオロエチレン微粉末により結着したものをニッケル
のエキスパンドメタル上に塗布して形成した。これを5
0kg/cm2 の圧力で加圧したのち金属リチウムの
溶融浴に浸漬し、負極とした。得られた電池を実施例1
と同様に評価した。その結果を図2のDに示す。
Example 2 A sealed AA-type lithium secondary battery was assembled using a negative electrode formed by impregnating a porous lead plate with molten metal lithium. The porous lead plate was formed by coating fine lead powder with an average particle size of 0.008 mm bound with 3 wt % polytetrafluoroethylene fine powder on expanded nickel metal. This is 5
After pressurizing it at a pressure of 0 kg/cm2, it was immersed in a molten bath of metallic lithium to form a negative electrode. The obtained battery was used in Example 1.
It was evaluated in the same way. The results are shown in FIG. 2D.

【0019】比較のために、リチウム−鉛合金(Li7
Pb2)粉末を活物質として、3wt%ポリテトラフル
オロエチレン微粉末により結着して同様に作製した負極
を用い、同様に電池を作製評価した結果を図1のEに示
す。
For comparison, lithium-lead alloy (Li7
A battery was prepared and evaluated in the same manner using a negative electrode prepared in the same manner using Pb2) powder as the active material and bound by 3 wt % polytetrafluoroethylene fine powder, and the results are shown in FIG. 1E.

【0020】図1により本発明の電池Dの方が従来技術
の比較例Eよりも大きな放電容量を長いサイクルにわた
って維持できる高性能長寿命電池であることがわかる。
It can be seen from FIG. 1 that the battery D of the present invention is a high-performance, long-life battery that can maintain a larger discharge capacity over a longer cycle than the comparative example E of the prior art.

【0021】[0021]

【発明の効果】本発明によれば、リチウム,ナトリウム
などのアルカリ金属電極を大電流充放電が可能で、かつ
、長寿命である電極とすることができ、高性能高エネル
ギ密度の非水系二次電池を得ることができた。その上、
負極は捲回容易な柔軟性をもち、量産に適した実用的で
作業性のよい技術である。さらに、負極合金は電池内で
電気化学的に形成されるため、通常の合金作製のような
高温の熱処理過程を要しない。
[Effects of the Invention] According to the present invention, an alkali metal electrode such as lithium or sodium can be made into an electrode that can be charged and discharged at a large current and has a long life. I was able to get the next battery. On top of that,
The negative electrode is flexible and easy to wind, making it a practical and workable technology suitable for mass production. Furthermore, since the negative electrode alloy is formed electrochemically within the battery, it does not require a high-temperature heat treatment process that is required for normal alloy production.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例の単三型の密閉式リチウム二
次電池の室温下での充放電サイクル試験結果を示す特性
図。
FIG. 1 is a characteristic diagram showing the results of a charge/discharge cycle test at room temperature of an AA-type sealed lithium secondary battery according to an embodiment of the present invention.

【図2】本発明の第二の実施例の単三型の密閉式リチウ
ム二次電池の室温下での試験結果を示す特性図。
FIG. 2 is a characteristic diagram showing test results at room temperature of an AA-type sealed lithium secondary battery according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

A…本発明の単三型の密閉式リチウム二次電池の充放電
サイクル特性、B…従来技術の単三型の密閉式リチウム
二次電池の充放電サイクル特性、C…従来技術の単三型
の密閉式リチウム二次電池の充放電サイクル特性、D…
本発明の単三型の密閉式リチウム二次電池の充放電サイ
クル特性、E…従来技術の単三型の密閉式リチウム二次
電池の充放電サイクル特性。
A...Charge/discharge cycle characteristics of the AA sealed lithium secondary battery of the present invention, B...Charge/discharge cycle characteristics of the AA sealed lithium secondary battery of the prior art, C...Charge/discharge cycle characteristics of the AA sealed lithium secondary battery of the prior art Charge/discharge cycle characteristics of sealed lithium secondary battery, D...
Charge/discharge cycle characteristics of the AA sealed lithium secondary battery of the present invention, E...Charge/discharge cycle characteristics of the AA sealed lithium secondary battery of the prior art.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】再充電可能な正極、電解液、および電極活
物質となりうる活性金属および前記活性金属と合金を形
成しうる金属の組合せからなる二重構造の電極であって
、前記活性金属と前記合金を形成しうる金属の形成する
構造体に前記活性金属を充填した負極からなることを特
徴とする二次電池。
1. A double-structured electrode comprising a rechargeable positive electrode, an electrolyte, and a combination of an active metal that can be an electrode active material and a metal that can form an alloy with the active metal, the electrode comprising: A secondary battery comprising a negative electrode in which a structure formed of a metal capable of forming the alloy is filled with the active metal.
【請求項2】請求項1において、前記電極活物質となり
うる前記活性金属と前記合金を形成しうる金属が格子状
,金網状,エキスパンドメタル状,穿孔板状などの平面
型構造をもつ二次電池。
2. According to claim 1, the active metal that can become the electrode active material and the metal that can form an alloy have a planar structure such as a lattice shape, a wire mesh shape, an expanded metal shape, or a perforated plate shape. battery.
【請求項3】請求項1において、前記電極活物質となり
うる前記活性金属と前記合金を形成しうる金属が焼結版
,発泡金属,粉末塗布板,マットまたはフェルトなどの
多孔質体である二次電池。
3. In claim 1, the metal capable of forming an alloy with the active metal capable of becoming the electrode active material is a porous body such as a sintered plate, foamed metal, powder coated plate, mat, or felt. Next battery.
【請求項4】請求項1,2または3において、前記電極
活物質となりうる前記活性金属がリチウム,ナトリウム
などのアルカリ金属である二次電池。
4. The secondary battery according to claim 1, wherein the active metal that can serve as the electrode active material is an alkali metal such as lithium or sodium.
【請求項5】請求項1,2,3または4において、前記
電極活物質となりうる前記活性金属と前記合金を形成し
うる金属がマグネシウム,アルミニウム,ガリウム,イ
ンジウム,スズ,鉛,ビスマス,亜鉛,カドミウム,銀
などの金属の単体、あるいはそれらを含む合金である二
次電池。
5. In claim 1, 2, 3 or 4, the metal capable of forming an alloy with the active metal capable of becoming the electrode active material is magnesium, aluminum, gallium, indium, tin, lead, bismuth, zinc, Secondary batteries are single metals such as cadmium and silver, or alloys containing them.
JP3051081A 1991-03-15 1991-03-15 Secondary battery Pending JPH04286864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3051081A JPH04286864A (en) 1991-03-15 1991-03-15 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3051081A JPH04286864A (en) 1991-03-15 1991-03-15 Secondary battery

Publications (1)

Publication Number Publication Date
JPH04286864A true JPH04286864A (en) 1992-10-12

Family

ID=12876867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3051081A Pending JPH04286864A (en) 1991-03-15 1991-03-15 Secondary battery

Country Status (1)

Country Link
JP (1) JPH04286864A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005294013A (en) * 2004-03-31 2005-10-20 Sanyo Electric Co Ltd Precursor battery and nonaqueous electrolyte secondary battery
WO2007040114A1 (en) * 2005-09-30 2007-04-12 Sanyo Electric Co., Ltd. Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2012022972A (en) * 2010-07-16 2012-02-02 Kobelco Kaken:Kk Material for negative electrode active material, and secondary battery and capacitor using negative electrode active material formed by alloying the same
JP2016527680A (en) * 2013-09-11 2016-09-08 エルジー・ケム・リミテッド Lithium electrode and lithium secondary battery including the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005294013A (en) * 2004-03-31 2005-10-20 Sanyo Electric Co Ltd Precursor battery and nonaqueous electrolyte secondary battery
WO2007040114A1 (en) * 2005-09-30 2007-04-12 Sanyo Electric Co., Ltd. Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2012022972A (en) * 2010-07-16 2012-02-02 Kobelco Kaken:Kk Material for negative electrode active material, and secondary battery and capacitor using negative electrode active material formed by alloying the same
JP2016527680A (en) * 2013-09-11 2016-09-08 エルジー・ケム・リミテッド Lithium electrode and lithium secondary battery including the same
JP2018026365A (en) * 2013-09-11 2018-02-15 エルジー・ケム・リミテッド Lithium electrode and lithium secondary battery including the same

Similar Documents

Publication Publication Date Title
JPH08170126A (en) Porous metallic body, its production and plate for battery using the same
US20140220434A1 (en) Nickel iron battery employing a coated iron electrode
US9368788B2 (en) Layered iron electrode
US20140220256A1 (en) Process for manufacturing a continuous coated iron electrode
JP2023133607A (en) Electrolyte solution for zinc battery and zinc battery
JP6385368B2 (en) Coated iron electrode and method for producing the iron electrode
JP2012238565A (en) Alkaline storage battery
JPH04286864A (en) Secondary battery
JPH08124579A (en) Manufacture of metallic porous material and electrode for storage battery
JP2017016904A (en) Lithium secondary battery
JP2019175568A (en) Lithium ion secondary battery
JP6818300B2 (en) Lithium secondary battery charging / discharging method
JP2009187700A (en) Secondary battery and its manufacturing method
JP2926732B2 (en) Alkaline secondary battery
JP3263603B2 (en) Alkaline storage battery
US20230126166A1 (en) Nickel iron battery employing a coated iron electrode
JP7376409B2 (en) Lithium ion batteries and lithium ion battery manufacturing methods
WO2023195233A1 (en) Negative electrode for zinc battery, and zinc battery
JP3462563B2 (en) Hydrogen storage alloy electrode
JP3004241B2 (en) Hydrogen battery
JPS62283571A (en) Nonaqueous solvent secondary cell
JP2021158028A (en) Zinc secondary battery
JP4703154B2 (en) Alkaline storage battery and method of manufacturing the same
JP6071407B2 (en) Al-Si alloy current collector used for positive electrode for nonaqueous electrolyte secondary battery and method for producing the same, positive electrode for nonaqueous electrolyte secondary battery using the current collector and method for producing the same, and non-electrode using the positive electrode Water electrolyte secondary battery
JP2005183339A (en) Nickel electrode for alkaline storage battery and alkaline storage battery