JP3462563B2 - Hydrogen storage alloy electrode - Google Patents

Hydrogen storage alloy electrode

Info

Publication number
JP3462563B2
JP3462563B2 JP07946694A JP7946694A JP3462563B2 JP 3462563 B2 JP3462563 B2 JP 3462563B2 JP 07946694 A JP07946694 A JP 07946694A JP 7946694 A JP7946694 A JP 7946694A JP 3462563 B2 JP3462563 B2 JP 3462563B2
Authority
JP
Japan
Prior art keywords
electrode
base sheet
hydrogen storage
storage alloy
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07946694A
Other languages
Japanese (ja)
Other versions
JPH07262987A (en
Inventor
礼造 前田
近野義人
光造 野上
晃治 西尾
俊彦 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP07946694A priority Critical patent/JP3462563B2/en
Publication of JPH07262987A publication Critical patent/JPH07262987A/en
Application granted granted Critical
Publication of JP3462563B2 publication Critical patent/JP3462563B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は金属−水素化物二次電池
の負極として用いられる水素吸蔵合金電極に関する。
FIELD OF THE INVENTION The present invention relates to a hydrogen storage alloy electrode used as a negative electrode of a metal-hydride secondary battery.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
水素を可逆的に吸蔵及び放出することが可能な水素吸蔵
合金を負極に用いた金属−水素化物二次電池が、エネル
ギー密度が大きい、クリーンである、などの利点を有す
ることから、ニッケル−カドミウム蓄電池に代わる次世
代のアルカリ蓄電池として注目されている。
2. Description of the Related Art In recent years,
A metal-hydride secondary battery using a hydrogen storage alloy capable of reversibly storing and releasing hydrogen in a negative electrode has advantages such as high energy density and cleanness, and thus nickel-cadmium. It is attracting attention as a next-generation alkaline storage battery that replaces the storage battery.

【0003】而して、現在実用化されている金属−水素
化物二次電池の正負各極板の基体(支持体)シートとし
ては、ニッケル−カドミウム二次電池に用いられている
パンチングメタル、発泡メタル、金属製ラス板など、導
電性の高い金属部材が使用されている。このように金属
部材が用いられている理由は、その集電作用により極板
の導電性を高め、もって活物質の利用率の大きい電極を
得るためである。
As a base (support) sheet for the positive and negative electrode plates of a metal-hydride secondary battery that is currently in practical use, punching metal or foam used in a nickel-cadmium secondary battery is used. Highly conductive metal members such as metal and metal lath plate are used. The reason why the metal member is used in this way is to increase the conductivity of the electrode plate by its current collecting action and thereby obtain an electrode having a high utilization rate of the active material.

【0004】しかしながら、本発明者らが鋭意研究した
ところ、水素吸蔵合金電極においては、水素吸蔵合金自
体が比較的高い導電性を有するので、基体に金属部材を
用いる必要は無く、むしろ電池の重量が重くなるので好
ましくないことが分かった。
However, as a result of diligent research by the present inventors, in the hydrogen storage alloy electrode, since the hydrogen storage alloy itself has relatively high conductivity, it is not necessary to use a metal member for the base body, but rather the weight of the battery. It was found to be unfavorable because it becomes heavy.

【0005】本発明は、かかる知見に基づきなされたも
のであって、その目的とするところは、軽量な金属−水
素化物二次電池を得ることを可能にする水素吸蔵合金電
極を提供するにある。また、本発明の今一つの目的は、
軽量で、しかも単位体積当たりの電池容量の大きい金属
−水素化物二次電池を得ることを可能にする水素吸蔵合
金電極を提供するにある。
The present invention has been made on the basis of such findings, and an object of the present invention is to provide a hydrogen storage alloy electrode which makes it possible to obtain a lightweight metal-hydride secondary battery. . Another object of the present invention is to
Another object of the present invention is to provide a hydrogen storage alloy electrode which makes it possible to obtain a metal-hydride secondary battery that is lightweight and has a large battery capacity per unit volume.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
の請求項1記載の発明に係る水素吸蔵合金電極(以下、
「第1電極」と称する。)は、水素吸蔵合金層を基体シ
ートの両面に形成してなる水素吸蔵合金電極であって、
前記基体シートがポリエチレン、ポリプロピレン、塩化
ビニル、ポリアミド又はポリテトラフルオロエチレン
らなるものであり、また請求項2記載の発明に係る水素
吸蔵合金電極(以下、「第2電極」と称する。)は、水
素吸蔵合金層を基体シートの両面に形成してなる厚み
0.2〜0.7mmの水素吸蔵合金電極であって、前記
基体シートがポリエチレン、ポリプロピレン、塩化ビニ
ル、ポリアミド又はポリテトラフルオロエチレンからな
り、且つ前記基体シートの下式で定義される電極占有率
が、3〜9%のものである。
A hydrogen storage alloy electrode according to the invention of claim 1 for achieving the above object (hereinafter,
It is referred to as the "first electrode". ) Is a hydrogen storage alloy electrode formed by forming hydrogen storage alloy layers on both sides of a base sheet,
The base sheet is polyethylene, polypropylene, chloride
The hydrogen storage alloy electrode (hereinafter, referred to as “second electrode”), which is made of vinyl, polyamide, or polytetrafluoroethylene, according to the second aspect of the invention, is a hydrogen storage alloy layer. A hydrogen storage alloy electrode having a thickness of 0.2 to 0.7 mm formed on both sides of a base sheet, wherein the base sheet is polyethylene, polypropylene, or vinyl chloride.
And the electrode occupancy rate defined by the following formula of the base sheet is 3 to 9%.

【0007】基体シートの電極占有率(%)={〔基体
シートの厚み×(1−空孔率)〕/水素吸蔵合金電極の
厚み}×100
Electrode occupancy rate (%) of substrate sheet = {[thickness of substrate sheet × (1-porosity)] / thickness of hydrogen storage alloy electrode} × 100

【0008】〔式中の空孔率は、基体シートが無孔性フ
ィルムの場合は0(零)であり、基体シートが多孔体で
ある場合は、全空孔の総体積/基体シートの体積で定義
され、また基体シートがパンチング板又はメッシュシー
トである場合は、(基体シートの表面に存在する断面積
が320μm2 以上の空孔の断面積の総和×基体シート
の厚み)/基体シートの体積で定義される。〕
[The porosity in the formula is 0 (zero) when the substrate sheet is a non-porous film, and when the substrate sheet is a porous body, the total volume of all pores / the volume of the substrate sheet] When the base sheet is a punching plate or a mesh sheet, (total cross-sectional area of pores having a cross-sectional area of 320 μm 2 or more existing on the surface of the base sheet × thickness of the base sheet) / base sheet Defined by volume. ]

【0009】因みに、断面積が320μm2 の空孔は、
空孔の断面が円の場合は直径が約20μmの円孔に相当
し、また空孔の断面が正方形の場合は一辺が約18μm
の角孔に相当する。空孔率の定義において、断面積が3
20μm2 未満の空孔が除外されているのは、一般にか
かる微小な空孔には水素吸蔵合金を充填することができ
ないので、基体シートの実質的な体積に含める方が妥当
と考えたからである。
Incidentally, the holes having a cross-sectional area of 320 μm 2 are
If the cross section of the hole is circular, it corresponds to a circular hole with a diameter of about 20 μm, and if the cross section of the hole is square, one side is about 18 μm.
Corresponds to the square hole. In the definition of porosity, the cross-sectional area is 3
The reason for excluding pores having a size of less than 20 μm 2 is that it is generally considered appropriate to include them in the substantial volume of the base sheet because such minute pores cannot be filled with a hydrogen storage alloy. .

【0010】本発明電極において、電極の厚みに対する
基体シートの実質的な厚みの比率を示す電極占有率が、
3〜9%の範囲内に規制されるのは、電極占有率が3%
未満であると、電極の強度が低下して内部短絡し易くな
り、一方電極占有率が9%を越えると、基体シートの電
極中に占める割合が大き過ぎるために電極容量が低下す
るからである。電極厚みは0.2〜0.7mmとするこ
とが好ましい。電極厚みが0.2mm未満の場合、強度
不足のため電極巻き取り時に破断し易くなり、一方電極
厚みが0.7mmを越えると巻き取りが困難となる。
In the electrode of the present invention, the electrode occupancy, which represents the ratio of the substantial thickness of the base sheet to the thickness of the electrode, is
The electrode occupancy rate is 3% that is regulated within the range of 3 to 9%.
If it is less than the above range, the strength of the electrode tends to decrease and an internal short circuit is likely to occur. On the other hand, if the electrode occupancy exceeds 9%, the ratio of the substrate sheet to the electrode is too large, resulting in a decrease in the electrode capacity. . The electrode thickness is preferably 0.2 to 0.7 mm. When the electrode thickness is less than 0.2 mm, the strength is insufficient and the electrode is easily broken at the time of winding the electrode. On the other hand, when the electrode thickness exceeds 0.7 mm, the winding becomes difficult.

【0011】[0011]

【作用】第1電極においては、基体シートとして、同じ
厚みの金属部材に比べて軽いポリエチレン、ポリプロピ
レン、塩化ビニル、ポリアミド又はポリテトラフルオロ
エチレンからなる基体シートが用いられているので、電
極が軽くなる。それゆえこの電極を負極に用いることに
より金属−水素化物二次電池の軽量化が可能となる。
In the first electrode, the base sheet is made of polyethylene or polypropylene, which is lighter than a metal member having the same thickness.
Len, vinyl chloride, polyamide or polytetrafluoro
Since the base sheet made of ethylene is used, the electrode becomes light. Therefore, by using this electrode for the negative electrode, the weight of the metal-hydride secondary battery can be reduced.

【0012】また、第2電極においては、さらに電極の
厚み及び基体シートの電極占有率が特定の範囲内に規制
されているので、極板の強度が向上して内部短絡が起こ
りにくくなるとともに、水素吸蔵合金の充填量を多くす
ることが可能となり、電極容量が増大する。それゆえ、
第2電極を負極に用いることにより金属−水素化物二次
電池の高容量化が可能となる。
Further, in the second electrode, since the thickness of the electrode and the electrode occupancy rate of the base sheet are further regulated within a specific range, the strength of the electrode plate is improved and an internal short circuit is less likely to occur. It is possible to increase the filling amount of the hydrogen storage alloy and increase the electrode capacity. therefore,
By using the second electrode as the negative electrode, it is possible to increase the capacity of the metal-hydride secondary battery.

【0013】[0013]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例により何ら限定され
るものではなく、その要旨を変更しない範囲において適
宜変更して実施することが可能なものである。
EXAMPLES The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited by the examples described below, and various modifications may be made without departing from the scope of the invention. Is possible.

【0014】〔水素吸蔵合金電極の作製〕市販のミッシ
ュメタル(Mm)、ニッケル、コバルト、アルミニウム
及びマンガンを所定の割合で秤量して混合し、アーク溶
解炉を用いて溶融させた後、冷却して、組成式:MmN
3.2 Co1.0 Al0.6 Mn0.2 で表される水素吸蔵合
金塊を得、この合金塊を機械的に粉砕して平均粒径50
μmの水素吸蔵合金粉末を作製した。
[Preparation of Hydrogen Storage Alloy Electrode] Commercially available misch metal (Mm), nickel, cobalt, aluminum and manganese are weighed and mixed at a predetermined ratio, melted in an arc melting furnace, and then cooled. And composition formula: MmN
i 3.2 Co 1.0 Al 0.6 Mn 0.2 A hydrogen storage alloy ingot was obtained, and this alloy ingot was mechanically pulverized to obtain an average particle size of 50.
A hydrogen storage alloy powder of μm was produced.

【0015】次いで、この水素吸蔵合金粉末100重量
部に、0.5重量部のポリエチレンオキシドと分散媒と
しての水を加えて混練し、スラリーを調製した。
Next, to 100 parts by weight of this hydrogen storage alloy powder, 0.5 parts by weight of polyethylene oxide and water as a dispersion medium were added and kneaded to prepare a slurry.

【0016】このスラリーを容器に流し込み、そのスラ
リー中に表1〜表6に示す種々の基体シートを通過させ
て該基体シートの両面にスラリーを塗布した後、乾燥
し、加圧成形して、水素吸蔵合金電極を作製した。
The slurry was poured into a container, and various substrate sheets shown in Tables 1 to 6 were passed through the slurry to coat the slurry on both sides of the substrate sheet, followed by drying and pressure molding. A hydrogen storage alloy electrode was produced.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【表3】 [Table 3]

【0020】[0020]

【表4】 [Table 4]

【0021】[0021]

【表5】 [Table 5]

【0022】[0022]

【表6】 [Table 6]

【0023】各表中の基体シート及び負極の各厚みはマ
イクロメータで、また基体シートの幅及び長さはノギス
で、それぞれ測定したものである。基体シートの体積
は、基体シートの幅×長さ×厚みより算出したものであ
る。また、表1中のパンチング板、メッシュシート及び
微多孔膜中の各空孔の体積は、それぞれ次のようにして
求めたものである。
The thicknesses of the base sheet and the negative electrode in each table are measured with a micrometer, and the width and length of the base sheet are measured with a caliper. The volume of the base sheet is calculated from the width × length × thickness of the base sheet. Further, the volume of each hole in the punching plate, the mesh sheet and the microporous film in Table 1 is obtained as follows.

【0024】(パンチング板及びメッシュシート中の空
孔の体積)断面積が0.785mm2 以上の空孔はノギ
スで測定し、また断面積が0.785mm2 未満であっ
て320μm2 以上の空孔は水銀圧入法で測定した。
(Volume of Voids in Punching Plate and Mesh Sheet) Voids having a cross-sectional area of 0.785 mm 2 or more are measured with a caliper, and voids having a cross-sectional area of less than 0.785 mm 2 and 320 μm 2 or more. The holes were measured by the mercury penetration method.

【0025】(微多孔膜中の空孔の体積)微多孔膜を水
中に浸漬し、300mmHgの減圧下で1時間放置した
後、水中から静かに引き上げて、室温にて微多孔膜の重
量Wを計った。次いで、この水に濡れた微多孔膜を真空
中にて60°Cで24時間乾燥した後、直ちに室温にて
微多孔膜の重量Dを計り、空孔の総体積を下式より算出
した。なお、誤差を小さくするために、同じサンプルに
ついて空孔の総体積を10個求め、それらの平均値をそ
のサンプルの空孔の総体積とした。 空孔の総体積=(W−D)/25°Cにおける水の比重
(Volume of Voids in Microporous Membrane) The microporous membrane was immersed in water and left under a reduced pressure of 300 mmHg for 1 hour, then gently pulled up from the water and the weight W of the microporous membrane at room temperature. I measured. Next, this microporous membrane wet with water was dried in vacuum at 60 ° C. for 24 hours, and immediately after that, the weight D of the microporous membrane was measured at room temperature, and the total volume of pores was calculated by the following formula. In addition, in order to reduce the error, ten total pore volumes were obtained for the same sample, and the average value thereof was taken as the total pore volume of the sample. Total volume of holes = (WD) / specific gravity of water at 25 ° C

【0026】〔ニッケル−水素化物二次電池の作製〕負
極としての上記各水素吸蔵合金電極と、正極としての公
知の焼結式ニッケル極とを、ポリアミド樹脂製の不織布
からなるセパレータを介して渦巻き状に巻回して電極体
とした後、この電極体を円筒状の負極缶内に収納してA
Aサイズの種々の円筒密閉型のニッケル−水素化物二次
電池を組み立てた。電解液としては、KOHを25重量
%、NaOHを2重量%及びLiOHを1重量%含有す
る水溶液を用いた。また、全ての電池について、正極の
理論容量と負極の理論容量との容量比を1:1.5とし
た。
[Production of Nickel-Hydride Rechargeable Battery] Each of the above hydrogen storage alloy electrodes as a negative electrode and a known sintered nickel electrode as a positive electrode are spirally wound with a separator made of polyamide resin non-woven fabric interposed therebetween. After being wound into a shape to form an electrode body, the electrode body is housed in a cylindrical negative electrode can, and
Various A-sized cylindrical sealed nickel-hydride secondary batteries were assembled. As the electrolytic solution, an aqueous solution containing 25% by weight of KOH, 2% by weight of NaOH and 1% by weight of LiOH was used. In addition, the capacity ratio between the theoretical capacity of the positive electrode and the theoretical capacity of the negative electrode was set to 1: 1.5 for all the batteries.

【0027】作製した各電池について、電池容量、電池
重量及び内部短絡の有無を調べた。電池容量は、0.1
Cで12時間充電した後、0.1Cで1Vまで放電して
調べたものであり、また内部短絡は各5個の電池を作製
し、そのうち何個が内部短絡するかを調べたものであ
る。これらの結果を先の各表に示すとともに、電極占有
率と電池容量との関係を図1に、また電極占有率と電池
重量との関係を図2に示す。なお、各表中の電池容量、
電池重量及び内部短絡についての各評価基準は次のとお
りである。
For each of the produced batteries, the battery capacity, the battery weight, and the presence / absence of an internal short circuit were examined. Battery capacity is 0.1
The battery was charged with C for 12 hours and then discharged to 0.1 V at 0.1 C, and the internal short circuit was made by preparing 5 batteries each and checking how many of them were internally short-circuited. . The results are shown in the above tables, the relationship between the electrode occupancy rate and the battery capacity is shown in FIG. 1, and the relationship between the electrode occupancy rate and the battery weight is shown in FIG. In addition, the battery capacity in each table,
The evaluation criteria for battery weight and internal short circuit are as follows.

【0028】(電池容量についての評価基準) ○:1100mAhを越える電池 ×:1100mAh以下の電池(Evaluation criteria for battery capacity) B: Battery exceeding 1100 mAh ×: Battery of 1100 mAh or less

【0029】(電池重量についての評価基準) ○:23.5g未満の電池 ×:23.5g以上の電池(Evaluation criteria for battery weight) ◯: Battery less than 23.5 g ×: 23.5 g or more battery

【0030】(内部短絡についての評価基準) ○:5個のうち全てが内部短絡を起こさなかった電池 ×:5個のうち少なくとも1個が内部短絡を起こした電
(Evaluation Criteria for Internal Short-Circuit) A: Batteries in which all of the 5 did not cause an internal short-circuit X: Batteries in which at least 1 of 5 did an internal short-circuit

【0031】図1より、電極占有率が9%以下で、電極
の厚みが0.2〜0.7mmである水素吸蔵合金電極を
用いると、電池容量が1120mAh以上の高容量の電
池(電池番号:2,3,4,5,7,9,11,13,
14,15,16,17,18,19)が得られること
が分かる。
From FIG. 1, when a hydrogen storage alloy electrode having an electrode occupancy rate of 9% or less and an electrode thickness of 0.2 to 0.7 mm is used, a high capacity battery having a battery capacity of 1120 mAh or more (Battery No. : 2, 3, 4, 5, 7, 9, 11, 13,
14, 15, 16, 17, 18, 19) is obtained.

【0032】図2より、基体シートがポリエチレン(P
E)、ポリプロピレン(PP)、塩化ビニル、ポリアミ
ド又はポリテトラフルオロエチレンからなるメッシュシ
ート、微多孔膜又は無孔性フィルムである水素吸蔵合金
電極を用いると、基体シートがニッケルめっきした鉄製
のパンチングメタルである従来の水素吸蔵合金電極を用
いた場合(電池番号:1,8,14)に比し、電池が軽
くなることが分かる。
From FIG. 2, the base sheet is polyethylene (P
E), polypropylene (PP), vinyl chloride, polyamid
When using a hydrogen storage alloy electrode that is a mesh sheet, a microporous film or a non-porous film made of copper or polytetrafluoroethylene , a conventional hydrogen storage alloy electrode that is a nickel-plated iron punching metal is used as the base sheet. It can be seen that the battery becomes lighter than the case (battery number: 1, 8, 14).

【0033】また、表1〜表6より、電極占有率が3%
未満の水素吸蔵合金電極を用いた場合(電池番号:7,
13,15,17,19)、内部短絡を起こし易くなる
ことが分かる。
From Tables 1 to 6, the electrode occupation rate is 3%.
When using hydrogen storage alloy electrode of less than (battery number: 7,
13, 15, 17, 19), it can be seen that an internal short circuit easily occurs.

【0034】[0034]

【発明の効果】ポリエチレン、ポリプロピレン、塩化ビ
ニル、ポリアミド又はポリテトラフルオロエチレンから
なる基体シートが用いられている第1電極によれば、軽
量な金属−水素化物二次電池を得ることが可能となる。
EFFECT OF THE INVENTION Polyethylene, polypropylene, vinyl chloride
From nyl, polyamide or polytetrafluoroethylene
According to a first electrode comprising a substrate sheet is used, a lightweight metal - it is possible to obtain a hydride secondary battery.

【0035】また、第1電極の電極の厚み及び基体シー
トの電極占有率を特定の範囲に規制した第2電極によれ
ば、軽量で、しかも単位体積当たりの電池容量が大きい
金属−水素化物二次電池を得ることが可能となる。
Further, according to the second electrode in which the thickness of the electrode of the first electrode and the electrode occupancy of the base sheet are regulated within a specific range, the second electrode is lightweight and has a large battery capacity per unit volume. It is possible to obtain the next battery.

【図面の簡単な説明】[Brief description of drawings]

【図1】基体シートの電極占有率と電池容量との関係を
示すグラフである。
FIG. 1 is a graph showing a relationship between an electrode occupation rate of a base sheet and a battery capacity.

【図2】基体シートの電極占有率と電池重量との関係を
示すグラフである。
FIG. 2 is a graph showing the relationship between the electrode occupancy of the base sheet and the battery weight.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 斎藤 俊彦 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (56)参考文献 特開 平5−205746(JP,A) 特開 平3−62456(JP,A) 特開 平4−249855(JP,A) 実開 昭56−14471(JP,U) (58)調査した分野(Int.Cl.7,DB名) H01M 4/66 H01M 4/24 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Koji Nishio 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Denki Co., Ltd. (72) Toshihiko Saito 2-5-5 Keihanhondori, Moriguchi-shi, Osaka No. 5 within Sanyo Electric Co., Ltd. (56) Reference JP 5-205746 (JP, A) JP 3-62456 (JP, A) JP 4-249855 (JP, A) Actual development Sho 56- 14471 (JP, U) (58) Fields surveyed (Int.Cl. 7 , DB name) H01M 4/66 H01M 4/24

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】水素吸蔵合金層を基体シートの両面に形成
してなる水素吸蔵合金電極であって、前記基体シートが
ポリエチレン、ポリプロピレン、塩化ビニル、ポリアミ
ド又はポリテトラフルオロエチレンからなることを特徴
とする水素吸蔵合金電極。
1. A hydrogen storage alloy electrode comprising a hydrogen storage alloy layer formed on both sides of a base sheet, the base sheet comprising:
Polyethylene, polypropylene, vinyl chloride, polyamid
A hydrogen storage alloy electrode, characterized in that it is made of copper or polytetrafluoroethylene .
【請求項2】水素吸蔵合金層を基体シートの両面に形成
してなる水素吸蔵合金電極であって、前記基体シートが
ポリエチレン、ポリプロピレン、塩化ビニル、ポリアミ
ド又はポリテトラフルオロエチレンからなり、且つ前記
基体シートの下式で定義される電極占有率が、3〜9%
であることを特徴とする水素吸蔵合金電極。 基体シートの電極占有率(%)={〔基体シートの厚み
×(1−空孔率)〕/水素吸蔵合金電極の厚み}×10
0 〔式中の空孔率は、基体シートが無孔性フィルムの場合
は0(零)であり、基体シートが多孔体である場合は、
全空孔の総体積/基体シートの体積で定義され、また基
体シートがパンチング板又はメッシュシートである場合
は、(基体シートの表面に存在する断面積が320μm
2 以上の空孔の断面積の総和×基体シートの厚み)/基
体シートの体積で定義される。〕
2. A hydrogen storage alloy electrode comprising a hydrogen storage alloy layer formed on both sides of a base sheet, the base sheet comprising:
Polyethylene, polypropylene, vinyl chloride, polyamid
Consists de or polytetrafluoroethylene, and the electrode occupancy ratio defined by the following formula of the base sheet, 3-9%
A hydrogen storage alloy electrode. Electrode occupancy rate (%) of base sheet = {[thickness of base sheet × (1-porosity)] / thickness of hydrogen storage alloy electrode} × 10
0 [The porosity in the formula is 0 (zero) when the base sheet is a non-porous film, and when the base sheet is a porous body,
It is defined as the total volume of all pores / the volume of the base sheet, and when the base sheet is a punching plate or a mesh sheet, (the cross-sectional area existing on the surface of the base sheet is 320 μm.
It is defined by the sum of the cross-sectional areas of two or more pores × the thickness of the base sheet) / the volume of the base sheet. ]
JP07946694A 1994-03-25 1994-03-25 Hydrogen storage alloy electrode Expired - Fee Related JP3462563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07946694A JP3462563B2 (en) 1994-03-25 1994-03-25 Hydrogen storage alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07946694A JP3462563B2 (en) 1994-03-25 1994-03-25 Hydrogen storage alloy electrode

Publications (2)

Publication Number Publication Date
JPH07262987A JPH07262987A (en) 1995-10-13
JP3462563B2 true JP3462563B2 (en) 2003-11-05

Family

ID=13690668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07946694A Expired - Fee Related JP3462563B2 (en) 1994-03-25 1994-03-25 Hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JP3462563B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4972854B2 (en) * 2004-06-18 2012-07-11 株式会社Ihi Electrode and electrode manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5614471U (en) * 1979-07-13 1981-02-07
JPH0362456A (en) * 1989-07-28 1991-03-18 Yuasa Battery Co Ltd Battery
JPH04249855A (en) * 1990-12-28 1992-09-04 Sanyo Electric Co Ltd Manufacture of organic electrolyte battery
JPH05205746A (en) * 1992-01-24 1993-08-13 Matsushita Electric Ind Co Ltd Collector for electrode, and manufacture thereof hydrogen occlusion electrode using this collector, and nickel-hydrogen storage battery

Also Published As

Publication number Publication date
JPH07262987A (en) 1995-10-13

Similar Documents

Publication Publication Date Title
JP3805876B2 (en) Nickel metal hydride battery
JP2023133607A (en) Electrolyte solution for zinc battery and zinc battery
JP3527586B2 (en) Manufacturing method of nickel electrode for alkaline storage battery
JP4429569B2 (en) Nickel metal hydride storage battery
JP3462563B2 (en) Hydrogen storage alloy electrode
JP2002025604A (en) Alkaline secondary battery
JP3557063B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3049854B2 (en) Sealed battery
JPH11162468A (en) Alkaline secondary battery
JP3102002B2 (en) Hydrogen storage electrode and method for producing the same
JP3209071B2 (en) Alkaline storage battery
JP2001118597A (en) Alkaline secondary cell
JP2000012011A (en) Manufacture of nickel-hydrogen storage battery
JP3156485B2 (en) Nickel electrode for alkaline storage battery
JP2019145446A (en) Nickel hydrogen battery
JP3263603B2 (en) Alkaline storage battery
JP3332139B2 (en) Sealed alkaline storage battery
KR102111288B1 (en) Positive electrode and alkaline secondary battery including the same
WO2023195233A1 (en) Negative electrode for zinc battery, and zinc battery
JP3182790B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP3393978B2 (en) Alkaline secondary battery
JPH04286864A (en) Secondary battery
JP2001307764A (en) Alkaline secondary battery and its production
JP2002100396A (en) Cylindrical alkaline secondary cell
JP3410340B2 (en) Prismatic alkaline secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees