JPH0677454B2 - Non-sintered nickel electrode for alkaline storage battery - Google Patents

Non-sintered nickel electrode for alkaline storage battery

Info

Publication number
JPH0677454B2
JPH0677454B2 JP61270731A JP27073186A JPH0677454B2 JP H0677454 B2 JPH0677454 B2 JP H0677454B2 JP 61270731 A JP61270731 A JP 61270731A JP 27073186 A JP27073186 A JP 27073186A JP H0677454 B2 JPH0677454 B2 JP H0677454B2
Authority
JP
Japan
Prior art keywords
active material
cobalt hydroxide
alkaline storage
storage battery
nickel electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61270731A
Other languages
Japanese (ja)
Other versions
JPS63124370A (en
Inventor
和昭 尾崎
謙助 中谷
誠 神林
正仁 富田
太計男 浜松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP61270731A priority Critical patent/JPH0677454B2/en
Publication of JPS63124370A publication Critical patent/JPS63124370A/en
Publication of JPH0677454B2 publication Critical patent/JPH0677454B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、活物質の充填率と利用率を向上した非焼結式
ニッケル電極に関し、特にニッケル・カドミウム電池等
のアルカリ蓄電池に使用して好適なものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a non-sintered nickel electrode having an improved filling rate and utilization rate of an active material, and particularly to an alkaline storage battery such as a nickel-cadmium battery. Is suitable.

(ロ)従来の技術 アルカリ蓄電池の陽極となるニッケル電極には、特公昭
50−35215号公報に記載されているような焼結式電極が
広く採用されている。これは長寿命で高率放電特性に優
れているが、製造工程が煩雑で経済性の面では劣ってい
た。
(B) Conventional technology The nickel electrode that serves as the anode of the alkaline storage battery is
Sintered electrodes as described in 50-35215 are widely used. Although this has a long life and is excellent in high rate discharge characteristics, it is inferior in terms of economy due to complicated manufacturing process.

この点を改良するため、特開昭58−161252号公報のよう
に、発泡金属等の多孔性基板に活物質をペースト状にし
て充填するいわゆる非焼結式電極も開発されているが、
基板の孔径が数10〜数100ミクロンと大きいことと、基
板と活物質とが単に接触しているだけであるために、集
電能力が小さくて活物質の利用率が焼結式に比べ20〜30
%低いという欠点がある。
In order to improve this point, as in JP-A-58-161252, a so-called non-sintered electrode in which a porous substrate such as foam metal is filled with an active material in a paste form has been developed,
Since the substrate has a large hole diameter of several tens to several hundreds of microns and the substrate and the active material are simply in contact with each other, the current collecting ability is small and the utilization rate of the active material is 20% smaller than that of the sintering type. ~ 30
It has the drawback of being low.

この点を解決するため、特開昭61−124068号公報に記載
されているように、活物質に水酸化コバルトを添加する
事が提案されている。水酸化コバルトを添加することに
より、ニッケルとコバルトの合金が形成されて導電性が
良くなり、活物質の利用率の向上を図ることができるの
である。
In order to solve this point, it has been proposed to add cobalt hydroxide to the active material, as described in JP-A-61-124068. By adding cobalt hydroxide, an alloy of nickel and cobalt is formed, conductivity is improved, and utilization rate of the active material can be improved.

しかしながら、一般に使用されている水酸化コバルト
は、第2図の写真に示す如く小さい粒子が塊状になって
いるために、その径が(約15.7μm程度)大きくて基板
の孔の中に充填されにくく、これを混合した活物質は基
板への充填量が低下して、水酸化コバルトを混合したに
もかかわらず活物質の利用率が上がらないばかりか、電
池の容量を下げる欠点がある。この欠点を解消するため
に、活物質の充填後基板をプレスして活物質の充填密度
を上げているが、活物質の充填量が少い極板では、所定
の充填密度を得るためには大きなプレス圧を必要とし、
設備が大がかりになるばかりか、極板が歪んでその後の
電池缶への組込みが困難になる場合がある。又塊状の水
酸化コバルトは比表面積が大きいので酸化され易く、そ
の程度が進むと活物質の利用率向上に寄与しなくなる欠
点がある。
However, the commonly used cobalt hydroxide is large in size (about 15.7 μm) and is filled in the holes of the substrate because the small particles are agglomerated as shown in the photograph of FIG. However, the active material mixed with this has a drawback that the filling amount in the substrate is reduced, the utilization rate of the active material is not increased even though cobalt hydroxide is mixed, and the capacity of the battery is reduced. In order to eliminate this drawback, the substrate is pressed after the active material is filled to increase the packing density of the active material. Requires a large press pressure,
Not only the equipment becomes large-scale, but also the electrode plate may be distorted and it may be difficult to assemble it into the battery can thereafter. In addition, bulk cobalt hydroxide has a large specific surface area and is therefore easily oxidized, and if the extent thereof increases, it will not contribute to the improvement of the utilization rate of the active material.

(ハ)発明が解決しようとする問題点 本発明は、活物質に水酸化コバルトを混入しても、多孔
性基板への活物質の充填量が減少することのないように
して、活物質の利用率向上、電池の容量増大を図り、併
せてプレス設備が大型化することのないようにせんとす
るものである。
(C) Problems to be Solved by the Invention The present invention aims to prevent the active material from filling the porous substrate with a reduced amount of the active material even if cobalt hydroxide is mixed into the active material. It is intended to improve the utilization rate and the capacity of the battery, and at the same time prevent the press equipment from increasing in size.

(ニ)問題点を解決するための手段 本発明は、第1図の写真に示すように粒子形状が板状の
水酸化コバルトを使用することによって上記問題点を解
決したものである。
(D) Means for Solving the Problems The present invention solves the above problems by using cobalt hydroxide having a plate-like particle shape as shown in the photograph of FIG.

塊状の水酸化コバルトを板状の水酸化コバルトとを比較
すると下表のようになる。
The table below shows a comparison of massive cobalt hydroxide with plate cobalt hydroxide.

ここで比表面積はBET法によって測定した。又沈降密度
とは、水中に試量を入れて脱気した後、一昼夜静置して
沈澱したCo(OH)2の体質密度である。この結果から、板
状の水酸化コバルトの方が比表面積が小さくて酸化され
にくく、且つ嵩が小さくて多孔性基板へ充填し易い事が
うかがわれる。
Here, the specific surface area was measured by the BET method. Further, the sedimentation density is the constitutional density of Co (OH) 2 precipitated by placing a test sample in water, degassing and then leaving it to stand overnight. From this result, it can be seen that the plate-shaped cobalt hydroxide has a smaller specific surface area, is less likely to be oxidized, and has a smaller bulk, so that it is easier to fill the porous substrate.

(ホ)作用 本発明に使用する水酸化コバルトは、粒子形状が板状で
且つその差し渡し長さが小さいために、粒子間の隙間が
小さく嵩が低いものとなる。従って活物質にこの水酸化
コバルトを混入したものは、従来の水酸化コバルトを混
入したものよりも多孔性基板への充填量を高めることが
できる。その結果多孔性基板内には活物質が十分に充填
されるので、その後基板をプレスして所定の充填密度に
する際に、それ程のプレス圧を必要としない。従ってプ
レス設備を小型にすることができると共に、充填量の増
大によって電池の容量増大を図ることができる。
(E) Action The cobalt hydroxide used in the present invention has a plate shape and a short bridging length, and therefore has a small gap between particles and a low bulk. Therefore, when the active material is mixed with cobalt hydroxide, the filling amount in the porous substrate can be increased as compared with the conventional mixture containing cobalt hydroxide. As a result, the active material is sufficiently filled in the porous substrate, so that when pressing the substrate to a predetermined packing density thereafter, such a pressing pressure is not required. Therefore, the press equipment can be downsized, and the capacity of the battery can be increased by increasing the filling amount.

(ヘ)実施例 水酸化ニッケルと粒子形状が板状の水酸化コバルトとを
重量比92.5:7.5の割合で混合した後、水と糊料を加えて
ペースト状にし、多孔性のニッケル繊維焼結基板に充填
した。その時の充填率は1.63g/ccvoidであり、それを2.
40g/ccvoidまで高めるのに必要なプレス圧は290kg/cm2
であった。なおこの時使用した極板寸法は30×40×1mm
であった。
(F) Example Nickel hydroxide and cobalt hydroxide having a plate-like particle shape were mixed at a weight ratio of 92.5: 7.5, and water and a sizing agent were added to form a paste, and the porous nickel fiber was sintered. The substrate was filled. The filling rate at that time is 1.63 g / cc void, and it is 2.
Press pressure required to increase to 40g / cc void is 290kg / cm 2
Met. The size of the electrode plate used at this time is 30 x 40 x 1 mm.
Met.

一方水酸化ニッケルと粒子形状が塊状の水酸化コバルト
とを重量比92.5:7.5の割合で混合した後、水と糊料を加
えてペースト状にした活物質をニッケル繊維焼結基板に
充填した。この時の充填率は1.20g/ccvoidであり、又2.
40g/ccvoidまで充填率を高めるのに必要なプレス圧は42
0kg/cm2であった。なお極板は前記と同一寸法のものを
使用した。
On the other hand, nickel hydroxide and cobalt hydroxide having a lumpy particle shape were mixed at a weight ratio of 92.5: 7.5, and water and a sizing agent were added to form a paste-like active material, which was filled into a nickel fiber sintered substrate. The filling rate at this time is 1.20 g / cc void, and 2.
The press pressure required to increase the filling rate to 40 g / cc void is 42
It was 0 kg / cm 2 . The electrode plate used had the same dimensions as above.

両者を比較すると、粒子形状が板状の水酸化コバルトを
使用した場合の方が、充填率が36%向上すると共に、プ
レス圧は約70%ですむことが確認された。この場合、活
物質の利用率は両者とも約90%であり、又水酸化コバル
トを混入しない場合の利用率は60%程度であった。
Comparing the two, it was confirmed that when using cobalt hydroxide having a plate-like particle shape, the filling rate was improved by 36% and the pressing pressure was about 70%. In this case, the utilization rates of the active materials were both about 90%, and the utilization rate without cobalt hydroxide was about 60%.

(ト)発明の効果 本発明は、水酸化ニッケルに水酸化コバルトを添加して
活物質の利用率を向上させた非焼結式ニッケル電極に於
て、粒子形状が板状の水酸化コバルトを使用しているの
で、多孔性基板への活物質の充填率が上がって電池の容
量増大を図ることができ、又活物質充填後のプレス圧を
小さくすることができるので、生産性が向上すると共
に、基板の歪みを防止して電池缶への組込みを容易にす
ることができる。
(G) Effect of the Invention The present invention relates to a non-sintered nickel electrode in which cobalt hydroxide is added to nickel hydroxide to improve the utilization rate of the active material. Since it is used, the filling rate of the active material in the porous substrate can be increased to increase the capacity of the battery, and the pressing pressure after filling the active material can be reduced, thus improving the productivity. At the same time, it is possible to prevent the substrate from being distorted and facilitate the incorporation into the battery can.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に使用した水酸化コバルトの粒子構造を
表す電子顕微鏡写真(7500倍)、第2図は従来使用され
ている水酸化コバルトの粒子構造を表す電子顕微鏡写真
(5000倍)である。
FIG. 1 is an electron micrograph (7500 times) showing the particle structure of cobalt hydroxide used in the present invention, and FIG. 2 is an electron microscope photograph (5000 times) showing the particle structure of conventionally used cobalt hydroxide. is there.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 富田 正仁 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 (72)発明者 浜松 太計男 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Masahito Tomita, 2-18 Keihan Hon-dori, Moriguchi City, Osaka Prefecture Sanyo Electric Co., Ltd. (72) Takeio Hamamatsu 2--18, Keihan Hon-dori, Moriguchi City, Osaka Sanyo Electric Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】多孔性基板に水酸化ニッケルの活物質混練
物を充填した後、該多孔性基板をプレスするものにおい
て、前記水酸化ニッケルに粒子形状が板状の水酸化コバ
ルトを添加したことを特徴とするアルカリ蓄電池用非焼
結式ニッケル電極。
1. A method in which a porous substrate is filled with a kneaded material of an active material of nickel hydroxide and then the porous substrate is pressed, wherein cobalt hydroxide having a plate-like particle shape is added to the nickel hydroxide. A non-sintered nickel electrode for alkaline storage batteries.
JP61270731A 1986-11-13 1986-11-13 Non-sintered nickel electrode for alkaline storage battery Expired - Lifetime JPH0677454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61270731A JPH0677454B2 (en) 1986-11-13 1986-11-13 Non-sintered nickel electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61270731A JPH0677454B2 (en) 1986-11-13 1986-11-13 Non-sintered nickel electrode for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS63124370A JPS63124370A (en) 1988-05-27
JPH0677454B2 true JPH0677454B2 (en) 1994-09-28

Family

ID=17490172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61270731A Expired - Lifetime JPH0677454B2 (en) 1986-11-13 1986-11-13 Non-sintered nickel electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH0677454B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3232990B2 (en) * 1994-12-19 2001-11-26 松下電器産業株式会社 Alkaline storage battery and method for manufacturing the same
JP2001332257A (en) * 1999-10-08 2001-11-30 Hitachi Maxell Ltd Non-baking type positive electrode for alkaline battery, its manufacturing method and the alkaline battery using the non-baking type positive electrode

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61124061A (en) * 1984-11-20 1986-06-11 Yuasa Battery Co Ltd Nickel positive pole plate for alkaline storage battery
JPS62256366A (en) * 1986-04-30 1987-11-09 Yuasa Battery Co Ltd Nickel electrode for alkaline battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61124061A (en) * 1984-11-20 1986-06-11 Yuasa Battery Co Ltd Nickel positive pole plate for alkaline storage battery
JPS62256366A (en) * 1986-04-30 1987-11-09 Yuasa Battery Co Ltd Nickel electrode for alkaline battery

Also Published As

Publication number Publication date
JPS63124370A (en) 1988-05-27

Similar Documents

Publication Publication Date Title
CA2484458C (en) Zinc powder or zinc alloy powder for alkaline batteries
JP2708452B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH0677454B2 (en) Non-sintered nickel electrode for alkaline storage battery
JP4610146B2 (en) Mixture of metal particles and / or alloy particles and liquid electrolytic solvent, and production method thereof
JP2975625B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP2615538B2 (en) Nickel positive electrode for alkaline storage batteries
JPH07114919A (en) Manufacture of paste type nickel electrode
JPH11135112A (en) Positive electrode for alkaline storage battery
JP3514491B2 (en) Metal oxide / hydrogen secondary batteries
JPH11288710A (en) Foam-less nickel positive electrode and its manufacture
JP2581362B2 (en) Electrodes for alkaline storage batteries
JP5135579B2 (en) Flat alkaline battery
JP2708088B2 (en) Nickel electrode for battery, method for producing the same, and alkaline storage battery
JP3500031B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP3114160B2 (en) Nickel electrode for alkaline storage battery and alkaline storage battery using the same
JP3464717B2 (en) Manufacturing method of metal oxide / hydrogen secondary battery
JPH0745282A (en) Nickel electrode for alkaline storage battery
JPS6231951A (en) Alkaline battery
JPH05166506A (en) Hydrogen storage electrode and its manufacture and metal oxide-hydrogen storage battery provided with same
JPS622453A (en) Hydrogen-occlusion alloy electrode
JP3015419B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH08255612A (en) Positive plate for alkaline storage battery
JPS63110552A (en) Hydrogen absorbing alloy electrode
JPH0513078A (en) Nickel positive electrode for alkaline battery
JPS59114767A (en) Manufacture of hydrogen electrode

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term