JPS59139556A - Manufacturing method of positive electrode black mix for solid electrolyte battery - Google Patents

Manufacturing method of positive electrode black mix for solid electrolyte battery

Info

Publication number
JPS59139556A
JPS59139556A JP58012308A JP1230883A JPS59139556A JP S59139556 A JPS59139556 A JP S59139556A JP 58012308 A JP58012308 A JP 58012308A JP 1230883 A JP1230883 A JP 1230883A JP S59139556 A JPS59139556 A JP S59139556A
Authority
JP
Japan
Prior art keywords
positive electrode
mixing
carbonyl nickel
solid electrolyte
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58012308A
Other languages
Japanese (ja)
Inventor
Shuichi Wada
秀一 和田
Tatsu Nagai
龍 長井
Akira Kawakami
章 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP58012308A priority Critical patent/JPS59139556A/en
Publication of JPS59139556A publication Critical patent/JPS59139556A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • H01M4/08Processes of manufacture

Abstract

PURPOSE:To obtain a positive electrode black mix with good discharge characteristics by mixing lead iodide powder and carbonyl nickel powder within the specified time. CONSTITUTION:Lead iodide powder and carbonyl nickel powder are mixed within 10hr, i.e. for 0.5 to 10hr, desirably 2 to 5hr. For example, mixing is performed by using ball mills. It is desirable that the mixing ratio between lead iodide and carbonyl nickel should be 4:1 to 4:0.25 (4:0.75 to 4:0.25 is optimal) in the theoretical volume ratio. When carbonyl nickel is used as an electric conduction agent, discharge performance is more reduced if the mixing time is prolonged unlike normal metal powder. Since this tendency becomes more remarkable when the loadings of carbonyl is reduced, a positive electrode black mix with good discharge characteristics can be obtained by doing the said item.

Description

【発明の詳細な説明】 木発明はヨク化鉛を正極活物質とする固体電解質電池用
正極合剤の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a positive electrode mixture for solid electrolyte batteries using lead iocide as a positive electrode active material.

一般忙固体電解質電池では、正極に電子伝導性を付与す
るために、金属粉末を電子伝導剤さして正極活物質に添
加している。そして、この正極活物質と金属粉末との混
合は長時間かけるほど混合状態がよくなるため、従来は
20時間程度かけて混合することが採用されていた。そ
して現実に、鉛粉末を電子伝導剤として用いた場合など
には短時間で混合したものより長時間かけて混合したも
のの方が放電特性がすぐれている場合が多かった。
In general solid electrolyte batteries, metal powder is added to the positive electrode active material as an electron conductive agent in order to impart electronic conductivity to the positive electrode. The longer the time required to mix the positive electrode active material and the metal powder, the better the mixing state will be, so conventionally it has been adopted to mix the cathode active material and metal powder for about 20 hours. In reality, when lead powder is used as an electron conductive agent, discharge characteristics are often better when mixed for a long time than when mixed for a short time.

ところで、木発明者らはヨク化鉛を正極活物質とする固
体電解質電池において、カルボニルニッケルが構造が発
達していて高電子伝導性でかつ耐酸化能が鉛より大きく
、しかも均一な微粒子のものが容易に入手しうろことか
ら、電子伝導剤として用いることを計画して(/−する
が、このカルボニルニッケルの場合、通常の金属粉−、
lは異なり、混合時間を長くするとかえって放電性能が
低下する現象が認められる。この傾向は、放電、容量の
向上ヲu カるためカルボニルニッケルの添加量を少な
くする七一層顕著になる。
By the way, the inventors have developed a solid electrolyte battery using lead iodide as a positive electrode active material, in which carbonyl nickel has a well-developed structure, high electronic conductivity, greater oxidation resistance than lead, and uniform fine particles. Since carbonyl nickel is easily available, we plan to use it as an electron conductive agent.However, in the case of this carbonyl nickel, ordinary metal powder
1 is different, and it is observed that when the mixing time is lengthened, the discharge performance deteriorates on the contrary. This tendency becomes even more pronounced when the amount of carbonyl nickel added is reduced in order to improve discharge and capacity.

そのため、本発明者らはヨウ化鉛とカルボニルニッケル
との適正な混合時間を見出すべく種々研究を重ねた結果
、混合時間を長時間かけるよりも10時間以内にする方
がかえって放電特性の良好な正極合剤が得られることを
見出し、本発明を完成するにいたった。
Therefore, the inventors of the present invention conducted various studies to find the appropriate mixing time for lead iodide and carbonyl nickel, and found that it is better to keep the mixing time within 10 hours rather than taking a long time to achieve better discharge characteristics. It was discovered that a positive electrode mixture could be obtained, and the present invention was completed.

すなわち、ヨウ化鉛粉末は比較的サラサラとした粉末で
あり、またカルボニルニッケルはきわめて他のものと混
ざりやすいことから、鉛粉末を電子伝導剤として用いる
場合に比べて、混合に長時間を要さず、30分程度から
良好な混合状態の正極合剤が得られる。そして、このよ
うに、、長時間混合よりも比較的短時間での混合の方が
放電特性の良好な正極合剤が得られるとbう現象は、放
電容量の向上をはかるため、カルボニルニッケルの添加
量を少なくした場合に一層顕著になる。特に好ましい混
合時間け2〜5時間である。
In other words, lead iodide powder is a relatively smooth powder, and carbonyl nickel is extremely easy to mix with other substances, so it takes a long time to mix compared to when lead powder is used as an electron conductive agent. First, a well-mixed positive electrode mixture can be obtained from about 30 minutes. The phenomenon that a positive electrode mixture with better discharge characteristics can be obtained by mixing for a relatively short time than by mixing for a long time is due to the fact that carbonyl nickel is used to improve discharge capacity. This becomes more noticeable when the amount added is reduced. A particularly preferred mixing time is 2 to 5 hours.

本発明において混合は通常ボールミルで行なわれる。し
かし、これに限られるものではない。ヨウ化鉛とカルボ
ニルニッケルの混合比は理論体積比で4:1〜4:0.
25、持に4 : 0.75〜4 : 0.25の範囲
が放電容量が大きく、かつ必要な電子伝導性が確保され
ることより、好ましい。
In the present invention, mixing is usually carried out in a ball mill. However, it is not limited to this. The mixing ratio of lead iodide and carbonyl nickel is 4:1 to 4:0 in theoretical volume ratio.
25, a range of 4:0.75 to 4:0.25 is preferable because the discharge capacity is large and the necessary electronic conductivity is ensured.

つぎに実施例をあげて本発明を説明する。Next, the present invention will be explained with reference to Examples.

実施例 ヨウ化鉛粉末とカルボニルニッケル粉末とを混合比が理
論体積比で4:1および4 : 0.5で、かつ各々混
合時に30yになるように秤量した。それをボールミル
に入れ所定時間混合したのち、取り出した。
EXAMPLE Lead iodide powder and carbonyl nickel powder were weighed so that the mixing ratios were 4:1 and 4:0.5 in terms of theoretical volume ratio, and each was 30y when mixed. After putting it in a ball mill and mixing it for a predetermined time, it was taken out.

得られた正極合剤の混合状態を調べる念めに、その80
09を内径10ffの金型に入れ7 j /cM2で加
圧成形し、モデルセルを設装置し、その抵抗を測定した
。その結果を第1図に示す。
In order to check the mixed state of the obtained positive electrode mixture,
09 was placed in a mold with an inner diameter of 10 ff and pressure-molded at 7 j /cM2, a model cell was installed, and its resistance was measured. The results are shown in FIG.

第1図に示すように、ヨウ化鉛とカルボニルニッケルと
の混合比が理論体積比で4=1のときけ20時n]程度
まであまり変化が々いが、カルボニルニッケルの量が理
論体積比で4:0.5に減少すると、混合時間が4時間
までほぼ一定であるがそれ以後は抵抗が高くなり、10
時間を過ぎると10Ωを越え、固体電解質電池の正極と
して実用に供しがたくなる。
As shown in Figure 1, the mixing ratio of lead iodide and carbonyl nickel does not change much until the theoretical volume ratio of 4 = 1 and the amount of carbonyl nickel changes to about 20 hours n]. When the mixing time is reduced to 4:0.5, the mixing time remains almost constant until 4 hours, but after that, the resistance increases and
After a certain period of time, the resistance exceeds 10Ω, making it difficult to put it to practical use as a positive electrode for solid electrolyte batteries.

つぎに上記の正極合剤を用いて第2図に示すような固体
電解質電池を°作製し、20°C130μAの定電流で
終止電圧1.4vまで放電させ、正極の利用率を検討し
た。その結果を第8図に示す。なお上記電池は、0.8
8 Li3N−0,12Li■からなる固体電解質50
ダを内径1(ltmの金型内で] t/as2で仮成形
したのち、その上に前記の正極合剤200 Wを充填し
、7t/CIIg2で加圧成形し、この2層ベレットの
固体電解質側に厚さo、2t MM、 lI!径8FI
!Nのリチウムホイルを押し付けて圧着し、以下常法に
準じて作製し友。
Next, a solid electrolyte battery as shown in FIG. 2 was prepared using the above positive electrode mixture, and the battery was discharged at a constant current of 130 μA at 20° C. to a final voltage of 1.4 V, and the utilization rate of the positive electrode was examined. The results are shown in FIG. The above battery is 0.8
8 Solid electrolyte 50 consisting of Li3N-0,12Li■
After temporarily forming a pellet with an inner diameter of 1 (in a mold of ltm) at t/as2, the above-mentioned positive electrode mixture 200 W was filled thereon and pressure-formed at 7t/CIIg2 to form the solid of this two-layer pellet. Thickness o, 2t MM, lI! diameter 8FI on electrolyte side
! N lithium foil was pressed and crimped, and the following was fabricated according to the usual method.

第2図中、(1)はリチウム負極、(2)は前記正極合
剤の加圧成形体よりなる正極、(3)は固体電解質層、
(4)は負極板、(5)は正極板、(6)はセラミック
製リングよりなる絶縁体で、ロク材(7)によって負極
板(4)と正極板(5)に固着されている。
In FIG. 2, (1) is a lithium negative electrode, (2) is a positive electrode made of a press-molded body of the positive electrode mixture, (3) is a solid electrolyte layer,
(4) is a negative electrode plate, (5) is a positive electrode plate, and (6) is an insulator made of a ceramic ring, which is fixed to the negative electrode plate (4) and the positive electrode plate (5) by a locking material (7).

第3図に示すように、ヨウ化鉛とカルボニルニッケルと
の混合比がm陶体積比で4:1の場合は20時間程度の
混合時間で正極の放電利用率の減少は釣10係程度であ
るが、混合時間が100時間になると約40係はど正1
黴の放電利用率が減少する。
As shown in Figure 3, when the mixing ratio of lead iodide and carbonyl nickel is 4:1 in volume ratio, the discharge utilization rate of the positive electrode decreases by a factor of 10 after about 20 hours of mixing time. However, if the mixing time is 100 hours, about 40 sections will be 1 hour.
The discharge utilization rate of mold decreases.

ヨウ化鉛とカルボニルニッケルとの混合比が理論体積比
で4:0.5の場合は混合時間が約10時間で正極の放
電利用率が約3割減少する。このような放電利用率の低
下は正極の抵抗早切と類似しており、両者の密接な関係
が示唆される。長時間のボールミル混合がかえって正極
の抵抗を高め放電利用率を低下させるのは、混合により
カルボニルニッケルの良く発達した構造が破壊されるた
めであると考えられる。また部分的なカルボニルニッケ
ルの凝集も生起するもの上意われ、それも前記の一因を
なすものと考えられる。
When the mixing ratio of lead iodide and carbonyl nickel is a theoretical volume ratio of 4:0.5, the discharge utilization rate of the positive electrode decreases by about 30% when the mixing time is about 10 hours. Such a decrease in the discharge utilization rate is similar to early disconnection of the positive electrode resistance, suggesting a close relationship between the two. The reason why long-term ball mill mixing actually increases the resistance of the positive electrode and reduces the discharge utilization rate is thought to be because the well-developed structure of carbonyl nickel is destroyed by mixing. It is also noteworthy that partial aggregation of carbonyl nickel also occurs, which is considered to be one of the causes of the above.

なお、混合比が4:0.5で早く抵抗が大きくなり、4
;1ではそれより多く時間がかかるのは、一部のカルボ
ニルニッケルが破壊、凝集してもまだ残りのもので電子
伝導性が確保されるからであると考えられる。従ってカ
ルボニルニッケルの添加−tを少なくした場合は混合時
間を短かくする必要があり、混合時間は長くても10時
間以内にするのが好ましい。ただし、あ捷り短かすぎる
と混合状態が不充分となることも考えられるので混合時
間の下限としては30分程度が好ましく、混合状態の安
定性、正極の内部抵抗、放電利用率を考えると混合時間
としては2〜5時間が特に好捷しいと考えられる。
Note that the resistance increases quickly when the mixing ratio is 4:0.5;
; The reason why it takes longer in case 1 is considered to be that even if some of the carbonyl nickel is destroyed and aggregated, the remaining carbonyl nickel still ensures electronic conductivity. Therefore, when the addition of carbonyl nickel -t is reduced, it is necessary to shorten the mixing time, and the mixing time is preferably within 10 hours at the longest. However, if the stirring time is too short, the mixing state may be insufficient, so the lower limit of the mixing time is preferably about 30 minutes, considering the stability of the mixing state, the internal resistance of the positive electrode, and the discharge utilization rate. A mixing time of 2 to 5 hours is considered particularly favorable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はヨウ化鉛とカルボニルニッケルの混合時間と正
極の内部抵抗との関“係を示す図、第2図は本発明に係
る固体電解質電池の一例を示す断面図、第8図はヨウ化
鉛とカルボニルニッケルの混合時間と正極の放電利用率
との関係を示す図である。 (2)・・・正極、 (3)・・・固体電解質層特許出
願人 日立マクセル株式会社 井1図 72閏 芳6図 温合特+t+(h)
Fig. 1 is a diagram showing the relationship between the mixing time of lead iodide and carbonyl nickel and the internal resistance of the positive electrode, Fig. 2 is a cross-sectional view showing an example of a solid electrolyte battery according to the present invention, and Fig. It is a diagram showing the relationship between the mixing time of lead chloride and carbonyl nickel and the discharge utilization rate of the positive electrode. (2)...Positive electrode, (3)...Solid electrolyte layer Patent applicant Hitachi Maxell Co., Ltd. 72 Leefang 6 figure warm special +t+(h)

Claims (1)

【特許請求の範囲】 ■. ヨク化鉛粉末とカルボニルニッケル粉末とを10
時間以内で混合することを特徴とする固体電解質准池用
正極合剤の製造法。 2.混合時間が0.5〜10時間である特許請求の範囲
第1項記載の固体電解質電池用正極合剤の製造法。 3.混合時間が2〜5時間である特許請求の範囲第1項
記載の固体電解質電池用正極合剤の製造法。 4. ボールミルで混合する特許請求の範囲第1項、第
2項またIi第8項記載の固体電解質電池用正極合剤の
製造法。 5. ヨク化鉛とカルボニルニッケルとの混合比が理論
体積比で4:1〜4 : 0.25である特許請求の範
囲第1項、第2項、第3項または第4項記載の固体電解
質電池用正極合剤の製造法。 6. ヨウ化鉛とカルポニルニッケルとの混合比が理論
体積比で4: 0.75〜4 : 0.25である特許
請求の範囲第1項、第2項、第3項または第4項記載の
固体電解質電池用正極合剤の製造法。
[Claims] ■. 10 lead iocide powder and carbonyl nickel powder
A method for producing a positive electrode mixture for a solid electrolyte cell, which is characterized by being mixed within hours. 2. The method for producing a positive electrode mixture for a solid electrolyte battery according to claim 1, wherein the mixing time is 0.5 to 10 hours. 3. The method for producing a positive electrode mixture for a solid electrolyte battery according to claim 1, wherein the mixing time is 2 to 5 hours. 4. A method for producing a positive electrode mixture for a solid electrolyte battery according to claim 1, claim 2, or claim Ii, wherein the mixture is mixed in a ball mill. 5. The solid electrolyte battery according to claim 1, 2, 3, or 4, wherein the mixing ratio of lead iocide and carbonyl nickel is 4:1 to 4:0.25 in theoretical volume ratio. Method for producing positive electrode mixture for use. 6. The solid according to claim 1, 2, 3, or 4, wherein the mixing ratio of lead iodide and carbonyl nickel is 4: 0.75 to 4: 0.25 in theoretical volume ratio. A method for producing a positive electrode mixture for electrolyte batteries.
JP58012308A 1983-01-28 1983-01-28 Manufacturing method of positive electrode black mix for solid electrolyte battery Pending JPS59139556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58012308A JPS59139556A (en) 1983-01-28 1983-01-28 Manufacturing method of positive electrode black mix for solid electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58012308A JPS59139556A (en) 1983-01-28 1983-01-28 Manufacturing method of positive electrode black mix for solid electrolyte battery

Publications (1)

Publication Number Publication Date
JPS59139556A true JPS59139556A (en) 1984-08-10

Family

ID=11801682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58012308A Pending JPS59139556A (en) 1983-01-28 1983-01-28 Manufacturing method of positive electrode black mix for solid electrolyte battery

Country Status (1)

Country Link
JP (1) JPS59139556A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106057929A (en) * 2016-05-31 2016-10-26 西安工程大学 Silicon carbide-based PIN-structure near infrared photodiode and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106057929A (en) * 2016-05-31 2016-10-26 西安工程大学 Silicon carbide-based PIN-structure near infrared photodiode and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JPH07272715A (en) Alkaline manganese battery
JP3468492B2 (en) Plate for lead-acid battery
JPS6269463A (en) Alkaline battery
JPS59139556A (en) Manufacturing method of positive electrode black mix for solid electrolyte battery
JP2000133253A (en) Lead-acid battery and manufacture of same
JPH0212762A (en) Silver oxide battery
JPH11162456A (en) Lead-acid battery
JPH0474833B2 (en)
JPS6091562A (en) Cylindrical alkali battery
JP2004055309A (en) Manufacturing method of pasty active material for positive electrodes, and lead storage battery using it
JPS5978451A (en) Battery
JP2530281B2 (en) Alkaline storage battery
JP4501246B2 (en) Control valve type stationary lead acid battery manufacturing method
JPS60140661A (en) Negative electrode plate for nickel cadmium storage battery
JPS6231951A (en) Alkaline battery
JPH11238507A (en) Alkaline storage battery
JPS61104563A (en) Silver oxide battery
JPH04262367A (en) Hydrogen storage electrode
JPS60117548A (en) Manufacture of divalent silver oxide battery
JPH06187982A (en) Manufacture of paste type nickel electrode plate for alkaline storage battery
JP2001068170A (en) Zinc air battery
JPH05205732A (en) Manufacture of anode plate for lead-acid battery
JPH0546057B2 (en)
JPH10154509A (en) Silver oxide battery
JPS63257182A (en) Manufacture of cathode for molten carbonate fuel cell