JPH06187982A - Manufacture of paste type nickel electrode plate for alkaline storage battery - Google Patents
Manufacture of paste type nickel electrode plate for alkaline storage batteryInfo
- Publication number
- JPH06187982A JPH06187982A JP43A JP35408592A JPH06187982A JP H06187982 A JPH06187982 A JP H06187982A JP 43 A JP43 A JP 43A JP 35408592 A JP35408592 A JP 35408592A JP H06187982 A JPH06187982 A JP H06187982A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- electrode plate
- mixed
- nickel
- paste
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/24—Electrodes for alkaline accumulators
- H01M4/32—Nickel oxide or hydroxide electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、アルカリ蓄電池用ペー
スト式ニッケル極板の製造法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a paste type nickel electrode plate for alkaline storage batteries.
【0002】[0002]
【従来の技術】従来、ニッケル−水素電池、ニッケル−
カドミウム電池等のアルカリ蓄電池に正極として用いる
ニッケル極板の代表的な製造法は、ニッケル焼結基板に
ニッケル塩水溶液を含浸し、これをアルカリ水溶液中で
水酸化ニッケルに変化させる焼結式と、発泡ニッケル基
板、ニッケル繊維フェルトなどの多孔性金属基板に活物
質である水酸化ニッケル粉末をペースト状にして充填す
るペースト式がある。特にペースト式は電池の高容量化
が可能なために注目されている。2. Description of the Related Art Conventionally, nickel-hydrogen batteries, nickel-
A typical manufacturing method of a nickel electrode plate used as a positive electrode in an alkaline storage battery such as a cadmium battery is a sintering formula in which a nickel sintered substrate is impregnated with a nickel salt aqueous solution and is changed into nickel hydroxide in the alkaline aqueous solution. There is a paste type in which nickel hydroxide powder as an active material is made into a paste and filled in a porous metal substrate such as a foamed nickel substrate or a nickel fiber felt. In particular, the paste type is attracting attention because it can increase the battery capacity.
【0003】[0003]
【発明が解決しようとする課題】該ペースト式ニッケル
極板は、充電時、その活物質は酸化ニッケルとなるた
め、集電性が低下し利用率や急放電性能が低下するの
で、導電性を高め、分極を小さくする目的で、水酸化ニ
ッケル粉に水酸化コバルトを少量含有せしめたり、更に
は、これに、導電材粉としてNi粉、Co粉、CoO粉などの
1種又は複数種を混合したものをペースト状として該基
板に充填せしめて製造することが試みられているが、未
だ、導電材粉と活物質粉の混合が充分でなく、正極の利
用率、急放電性能の向上が充分でない。従って、更にこ
れらの特性を向上せしめることが望ましい。In the pasted nickel electrode plate, since the active material becomes nickel oxide during charging, the current collecting property is lowered, the utilization factor and the rapid discharge performance are lowered, and therefore the conductivity is reduced. Nickel hydroxide powder may contain a small amount of cobalt hydroxide for the purpose of increasing the polarization and decreasing polarization, and further mixed with one or more of Ni powder, Co powder, CoO powder, etc. as conductive material powder. It has been attempted to fill the substrate into a paste form to manufacture the product, but the mixture of the conductive material powder and the active material powder is still insufficient, and the utilization factor of the positive electrode and the rapid discharge performance are sufficiently improved. Not. Therefore, it is desirable to further improve these characteristics.
【0004】[0004]
【課題を解決するための手段】本発明は、上記従来の課
題を解決し、上記の要望を満足したアルカリ蓄電池用ペ
ースト式ニッケル極板の製造法を提供するもので、導電
材の混合粉に磨砕処理を施したものと磨砕処理を施した
或いは施さない水酸化ニッケル活物質粉との混合粉をペ
ースト状で多孔性金属基板に充填し、次でこれを乾燥、
圧延したことを特徴とする。The present invention solves the above-mentioned conventional problems and provides a method for producing a paste-type nickel electrode plate for an alkaline storage battery which satisfies the above-mentioned needs. A mixed powder of milled and unmilled nickel hydroxide active material powder is filled into a porous metal substrate in a paste form, which is then dried,
Characterized by being rolled.
【0005】[0005]
【作用】前記の磨砕処理により、粒子相互が互いに圧着
接合し物理的又は化学的な接点を有するようになるの
で、導電性が向上し、従って、活物質粉との混合が良好
に行われ、活物質の利用率が高まり、電池の急放電性能
を向上せしめることができる。この場合、導電材粉とし
て、Ni粉とCo粉又は及びCoO粉との混合粉を使用するこ
とが好ましい。Ni粉とCo粉は、三次元鎖状構造である
が、該磨砕処理により、該三次元鎖状構造が破壊され、
二次凝集が防止され、活物質粉中の分散性が向上する。
CoO粉の場合は、微細な粉子であるため、二次凝集を起
こし易いが、該磨砕処理により、その凝集を破壊して分
散させ、活物質との均一な混合を向上させる。一方、そ
の粒子表面に微細なNi粉などが圧着されることにより、
充電前に空気中の酸素や電解液中の溶存酸素との反応し
て導電性に劣るCo3 O4 の生成を防止することができる
と同時に、導電性、利用率の向上したニッケル正極をも
たらす。また、Ni粉は、Co粉粒子の表面に付着した場合
は、充電の際に起こるCo→CoOへの酸化を促進し、その
結果生ずるCoOのHCoO2 - イオンとしての溶解と導電
性酸化物としての析出によるミクロな領域での導電性向
上効果を補助する。以上から、本発明の上記処理により
製造されたニッケル極板は、後記に明らかにするよう
に、利用率が高く、急放電性能に優れ、長寿命の電池を
もたらす。By the above-mentioned grinding treatment, the particles are pressure-bonded to each other and have physical or chemical contact points, so that the conductivity is improved and, therefore, the mixing with the active material powder is performed well. Further, the utilization rate of the active material is increased, and the rapid discharge performance of the battery can be improved. In this case, it is preferable to use a mixed powder of Ni powder and Co powder or CoO powder as the conductive material powder. Ni powder and Co powder have a three-dimensional chain structure, but by the grinding treatment, the three-dimensional chain structure is destroyed,
Secondary aggregation is prevented and dispersibility in the active material powder is improved.
In the case of CoO powder, since it is a fine powder, secondary agglomeration is likely to occur, but the grinding treatment breaks and agglomerates the agglomerates and improves uniform mixing with the active material. On the other hand, by pressing fine Ni powder etc. on the particle surface,
It is possible to prevent the formation of Co 3 O 4 having poor conductivity by reacting with oxygen in the air or dissolved oxygen in the electrolyte before charging, and at the same time, to provide a nickel positive electrode with improved conductivity and utilization rate. . Further, when Ni powder adheres to the surface of Co powder particles, it accelerates the oxidation of Co to CoO that occurs during charging, resulting in the dissolution of CoO as HCoO 2 − ions and as a conductive oxide. It assists the effect of improving the conductivity in the micro area due to the precipitation of. From the above, the nickel electrode plate produced by the above treatment of the present invention provides a battery having a high utilization rate, excellent rapid discharge performance, and a long life, as will be made clear later.
【0006】[0006]
【実施例】次に、本発明の実施例を説明する。活物質で
ある水酸化ニッケル粉としては、球状の粒子から成るニ
ッケル粉が一般に好ましく使用される。また水酸化コバ
ルト粉を少量含有する水酸化ニッケル粉の使用が一般で
あり、好ましい。導電材粉としては、一般に、Ni粉が好
ましく使用されるが、その他の耐アルカリ性の良導電性
の金属粉も勿論使用できる。一般には、Ni粉にCo粉又は
CoO粉又はその両方を混ぜて使用することが好ましく、
これらはまた、アルカリ電解液に溶解し、HCoO2 - イ
オンとなり、安定したCoOOHの形態となり電池作動に有
効に働く。EXAMPLES Next, examples of the present invention will be described. As the nickel hydroxide powder as the active material, nickel powder composed of spherical particles is generally preferably used. Further, it is general and preferable to use nickel hydroxide powder containing a small amount of cobalt hydroxide powder. Generally, Ni powder is preferably used as the conductive material powder, but of course other metal powders having good alkali resistance and good conductivity can also be used. Generally, Ni powder to Co powder or
It is preferable to use CoO powder or a mixture of both,
These are also dissolved in the alkaline electrolyte to become HCoO 2 − ions and become a stable form of CoOOH, which works effectively for battery operation.
【0007】従来の代表的なニッケル極板の製造法によ
れば、球状の水酸化ニッケル粉に水酸化コバルトを少量
含有させ、更にこれら導電材粉としてNi粉(ニッケル
粉)とCo粉(コバルト粉)又はCoO粉(酸化コバルト
粉)を混合し、或いはCo粉とCoO粉との両者をV−ブレ
ンダー等を用いて混合するとき、Co粉やNi粉は三次元鎖
状構造のまゝ活物質粉と混合され、CoO粉は二次凝集し
易いためなどにより、活物質に均一に分散混合したもの
が得にくい。従って、かゝる混合物にCMC などの増粘剤
の水溶液で混練してペースト状とし、これを発泡ニッケ
ル基板、ニッケル繊維フェルトなどの三次元の網状構造
の多孔性基板に充填し、これを乾燥、圧延したものが最
良のニッケル極板であったが、上記したように混合粉が
均一に分散したものが得られ難いと同時に、活物質粉と
導電材粉の相互、導電材粉同志の接合が悪く、従ってそ
の導電性、利用率が比較的低い。According to the conventional typical nickel electrode plate manufacturing method, a small amount of cobalt hydroxide is added to spherical nickel hydroxide powder, and further Ni powder (nickel powder) and Co powder (cobalt cobalt) are used as the conductive material powder. Powder) or CoO powder (cobalt oxide powder), or both Co powder and CoO powder using a V-blender or the like, Co powder and Ni powder have a three-dimensional chain-like structure. It is difficult to obtain the one obtained by uniformly dispersing and mixing with the active material because the CoO powder, which is mixed with the material powder, easily secondary-aggregates. Therefore, such a mixture is kneaded with an aqueous solution of a thickener such as CMC to form a paste, which is filled in a foamed nickel substrate, a nickel fiber felt or other porous substrate having a three-dimensional network structure, and dried. Although the rolled nickel was the best nickel electrode plate, it was difficult to obtain the one in which the mixed powder was uniformly dispersed as described above, and at the same time, the active material powder and the conductive material powder were joined together, and the conductive material powder was joined together. Is poor, and therefore its conductivity and utilization are relatively low.
【0008】本発明によれば、これを改善するべく、2
種以上の導電材混合粉を磨砕処理したものを活物質粉
と混合すること、更にこれらの混合粉を磨砕処理する
こと、或いは導電材混合粉と活物質粉とを混合したも
のを一挙に磨砕処理することのいずれかの工程で磨砕処
理したものに増粘剤の水溶液により混合してペースト状
としたものを、該多孔性金属基板に充填、乾燥、圧延す
ることにより、導電性、利用率の向上したニッケル極板
が得られる。According to the present invention, in order to improve this,
Mixing one or more kinds of conductive material mixed powder by grinding, mixing with active material powder, further grinding these mixed powders, or mixing conductive material mixed powder and active material powder at once The porous metal substrate is filled with a paste that is mixed with an aqueous solution of a thickening agent, which is ground in any one of the steps of A nickel electrode plate having improved properties and utilization rate can be obtained.
【0009】これを更に代表的な実施例により詳述す
る。即ち、導電材粉として、Ni粉とCo粉又はCoO粉との
2種を混合して導電材混合粉を作成し、或いはNi粉とCo
粉とCoO粉との3種を混合して導電材混合粉を作成し、
これに磨砕処理を施した後、これに活物質粉を混合して
磨砕処理を施す。磨砕処理は、乳鉢を用いたり、ステン
レス製のボールミルを用いて行う。かくすることによ
り、三次元の鎖状構造をもつNi粉やCo粉は、その鎖状が
分断されるので、活物質粉に均一に分散し易い良好にば
らされた導電材混合粉が得られる。また、導電材混合粉
粒相互の圧着、更には、これら導電材粉粒子と活物質粉
粒子との相互圧着が得られ、その結果、導電性、並びに
活物質の利用率が向上する。CoOの場合は、その表面に
良好に圧着したNi粉により保護されるので、空気中の酸
素や電解液中の溶存酸素によるCo3 O4 に酸化されるこ
とが防止されるなどの良結果が得られる。かくして、こ
のように処理されたものをCMC などの増粘材の水溶液で
ペースト状とし、該多孔性金属基板へ充填することによ
り、従来に比し導電性、利用率などが向上したニッケル
極板が得られる。This will be described in more detail with reference to a representative embodiment. That is, as the conductive material powder, two kinds of Ni powder and Co powder or CoO powder are mixed to prepare a conductive material mixed powder, or Ni powder and Co powder.
3 kinds of powder and CoO powder are mixed to prepare conductive material mixed powder,
After this is ground, the active material powder is mixed with it and ground. The grinding treatment is performed using a mortar or a stainless steel ball mill. By doing so, the Ni powder and the Co powder having a three-dimensional chain-like structure have their chains separated, so that a well-distributed conductive material mixed powder that is easy to uniformly disperse in the active material powder can be obtained. . Further, the conductive material mixed powder particles can be pressed against each other, and further the conductive material powder particles and the active material powder particles can be pressed against each other. As a result, the conductivity and the utilization rate of the active material are improved. In the case of CoO, since it is protected by Ni powder that is well pressed onto its surface, good results such as being prevented from being oxidized to Co 3 O 4 by oxygen in the air or dissolved oxygen in the electrolytic solution can be obtained. can get. Thus, the thus treated product is made into a paste with an aqueous solution of a thickening agent such as CMC, and the porous metal substrate is filled with the resulting product to improve the conductivity, the utilization rate, etc. of the nickel electrode plate. Is obtained.
【0010】次に本発明の更に具体的な実施例を説明す
る。 実施例1 市販のNi(INCO社製#255)10gとCo粉末(UN,Extra Fin
e Co製Powder)5gを乳鉢で15分間磨砕処理を施した。
得られた混合粉末に球状の水酸化ニッケル粉末(Coを約
1%含有)85gを加え、更に15分間磨砕処理を施した。
このようにして得られた混合粉末に、2%のカルボキシ
メチルセルロース(CMC )水溶液35gを加えてペースト
状とし、多孔性金属基板として発泡ニッケル基板を用
い、これに充填し、乾燥した。次で更に、これに5%の
PTFE分散液を含浸・乾燥し、所定の厚みに圧延し、本発
明のペースト式ニッケル極板を作製した。これを極板A
と称する。Next, a more specific embodiment of the present invention will be described. Example 1 10 g of commercially available Ni (# 255 manufactured by INCO) and Co powder (UN, Extra Fin
5 g of e Co Powder) was ground in a mortar for 15 minutes.
To the obtained mixed powder, 85 g of spherical nickel hydroxide powder (containing about 1% of Co) was added, and further ground for 15 minutes.
35 g of a 2% carboxymethylcellulose (CMC) aqueous solution was added to the mixed powder thus obtained to form a paste, and a foamed nickel substrate was used as a porous metal substrate, which was filled and dried. And then 5% of this
The paste dispersion was impregnated with the PTFE dispersion, dried, and rolled to a predetermined thickness to prepare a paste-type nickel electrode plate of the present invention. This is electrode plate A
Called.
【0011】実施例2 市販のNi(INCO製#255)10gとCoO粉末(住友金属鉱山
(株)製 FCO-178)5gを乳鉢で15分間磨砕処理を施し
た。得られた混合粉末に球状の水酸化ニッケル粉末(Co
を約1%含有)85gを加え、更に15分間磨砕処理を施し
た。以降の操作は実施例1と同様にして本発明のペース
ト式ニッケル極板を作製した。これを極板Bと称する。Example 2 10 g of commercially available Ni (# 255 manufactured by INCO) and 5 g of CoO powder (FCO-178 manufactured by Sumitomo Metal Mining Co., Ltd.) were ground in a mortar for 15 minutes. Spherical nickel hydroxide powder (Co
Of about 1%) was added, and the mixture was further ground for 15 minutes. Subsequent operations were performed in the same manner as in Example 1 to produce the paste-type nickel electrode plate of the present invention. This is called an electrode plate B.
【0012】実施例3 市販のNi(INCO製#255)10gとCoO粉末(住友金属鉱山
(株)製 FCO-178) 2.5g及びCo粉末(UN,Extra Fine
Co製Powder) 2.5gを乳鉢で15分間磨砕処理を施した。
得られた混合粉末に球状の水酸化ニッケル粉末(Coを約
1%含有)85gを加え、更に15分間磨砕処理を施した。
以降の操作は実施例1と同様にして本発明のペースト式
ニッケル極板を作製した。これを極板Cと称する。Example 3 10 g of commercially available Ni (# 255 manufactured by INCO), 2.5 g of CoO powder (FCO-178 manufactured by Sumitomo Metal Mining Co., Ltd.) and Co powder (UN, Extra Fine)
2.5 g of Co powder) was ground in a mortar for 15 minutes.
To the obtained mixed powder, 85 g of spherical nickel hydroxide powder (containing about 1% of Co) was added, and further ground for 15 minutes.
Subsequent operations were performed in the same manner as in Example 1 to produce the paste-type nickel electrode plate of the present invention. This is called an electrode plate C.
【0013】実施例4 市販のNi(INCO製#255)10gとCoO粉末(住友金属鉱山
(株)製 FCO-178) 2.5gを乳鉢で15分間磨砕処理を施
した。得られた混合粉末に球状の水酸化ニッケル粉末
(Coを約1%含有)85gを加え、V−ブレンダーにて混
合した。以下の操作は実施例1と同様にして本発明のペ
ースト式ニッケル極板を作製した。これを極板Dと称す
る。Example 4 10 g of commercially available Ni (# 255 manufactured by INCO) and 2.5 g of CoO powder (FCO-178 manufactured by Sumitomo Metal Mining Co., Ltd.) were ground in a mortar for 15 minutes. To the obtained mixed powder, 85 g of spherical nickel hydroxide powder (containing about 1% of Co) was added and mixed with a V-blender. The following operations were performed in the same manner as in Example 1 to produce the paste-type nickel electrode plate of the present invention. This is called an electrode plate D.
【0014】比較例1 市販のNi(INCO社製#255)10gとCo粉末(UN,Extra Fin
e Co製Powder)5g及び球状の水酸化ニッケル粉末(Co
を約1%含有)85gをV−ブレンダーに入れ30分間混合
した。得られた混合粉末に、2%のカルボキシメチルセ
ルロース水溶液35gを加えてペースト状とし、発泡ニッ
ケル基板に充填し、乾燥した。これに5%のPTFE分散液
を含浸・乾燥し、所定の厚みに圧延し、従来用のペース
ト式ニッケル極板を作製した。これを極板Eと称する。Comparative Example 1 10 g of commercially available Ni (# 255 manufactured by INCO) and Co powder (UN, Extra Fin
e Co Powder) 5 g and spherical nickel hydroxide powder (Co
Of about 1%) was placed in a V-blender and mixed for 30 minutes. 35 g of a 2% carboxymethyl cellulose aqueous solution was added to the obtained mixed powder to form a paste, which was filled in a nickel foam substrate and dried. This was impregnated with a 5% PTFE dispersion, dried, and rolled to a predetermined thickness to prepare a conventional paste-type nickel electrode plate. This is called an electrode plate E.
【0015】比較例2 市販のNi(INCO製#255)10gとCoO粉末(住友金属鉱山
(株)製 FCO-178)5g及び球状の水酸化ニッケル粉末
(Coを約1%含有)85gをV−ブレンダーに入れ30分間
混合した。以降の操作は比較例1と同様にして従来用の
ペースト式ニッケル極板を作製した。これを極板Fと称
する。Comparative Example 2 10 g of commercially available Ni (# 255 manufactured by INCO), 5 g of CoO powder (FCO-178 manufactured by Sumitomo Metal Mining Co., Ltd.) and 85 g of spherical nickel hydroxide powder (containing about 1% of Co) were added as V. Place in blender and mix for 30 minutes. Subsequent operations were performed in the same manner as in Comparative Example 1 to produce a conventional paste-type nickel electrode plate. This is called an electrode plate F.
【0016】これらの本発明の極板A〜D及び従来の極
板E、Fを夫々正極とし、セパレータを介し水素吸蔵合
金負極と積層捲回し、捲回極板群とし、これを円筒缶内
に挿入した後、比重1.36のアルカリ電解液を注入し、直
ちに封口して単3サイズで定格容量1100mAh の密閉型ニ
ッケル−水素電池を夫々多数作製した。These electrode plates A to D of the present invention and conventional electrode plates E and F are used as positive electrodes, respectively, and are laminated and wound with a hydrogen storage alloy negative electrode via a separator to form a wound electrode plate group, which is placed in a cylindrical can. Then, an alkaline electrolyte having a specific gravity of 1.36 was injected and immediately sealed to prepare a number of AA size sealed nickel-hydrogen batteries each having a rated capacity of 1100 mAh.
【0017】これらの電池は20℃の環境下で 0.2Cの電
流で 7.5時間充電し、同じ電流で電池電圧が 1.0Vにな
るまで放電する操作を2回繰り返し、その後40℃で24時
間放置して初期活性化を行った。初期活性化の後、以下
の電池試験を行った。 容量試験 20℃、 0.2Cの電流で 7.5時間充電した
後、 0.2Cで電池電圧が 1.0Vになるまで放電して容量
を測定し、利用率を調べた。 急放電試験 20℃、 0.2Cの電流で 7.5時間充電した
後、3Cで電池電圧が 1.0Vになるまで放電して容量を
測定し、利用率を調べた。 寿命試験 25℃、1C、−ΔV方式で充電を行い、3
Cで電池電圧が 1.0Vになるまで放電することを繰り返
す。電池容量が700mAhになるまでの充放電サイクル数を
調べた。 上記試験の結果を下記表1にまとめて示す。These batteries were charged under a 20 ° C. environment at a current of 0.2 C for 7.5 hours, and discharged at the same current until the battery voltage became 1.0 V, repeated twice, and then left at 40 ° C. for 24 hours. Initial activation was performed. After the initial activation, the following battery test was conducted. Capacity test After charging for 7.5 hours at 20 ° C and a current of 0.2C, the battery was discharged at 0.2C until the battery voltage became 1.0V, the capacity was measured, and the utilization rate was investigated. Rapid Discharge Test After charging at 20 ° C. and 0.2 C current for 7.5 hours, the battery was discharged at 3 C until the battery voltage became 1.0 V, the capacity was measured, and the utilization factor was examined. Life test 25 ° C, 1C, charging by -ΔV method, 3
At C, discharging is repeated until the battery voltage becomes 1.0V. The number of charge / discharge cycles until the battery capacity reached 700 mAh was examined. The results of the above tests are summarized in Table 1 below.
【0018】[0018]
【表1】[Table 1]
【0019】上記表1から明らかなように、少なくとも
導電材の混合粉について予め磨砕処理を施したものを活
物質粉と混ぜた混合粉を用いて、製造した本発明のニッ
ケル極板A、B、C、Dは、かゝる磨砕処理を施さない
導電材混合粉を活物質粉と混ぜた混合粉を用いて製造し
た従来のニッケル極板E、Fに比し、電池容量の利用
率、急放電容量の利用率及び充放電サイクル寿命の全て
において優れたものが得られることが分かる。As is apparent from Table 1 above, at least the nickel electrode plate A of the present invention produced by using a mixed powder in which at least a mixed powder of the conductive material is subjected to grinding treatment in advance and mixed with the active material powder, B, C, and D use the battery capacity more than the conventional nickel electrode plates E and F manufactured by using the mixed powder in which the conductive material mixed powder without such grinding treatment is mixed with the active material powder. It can be seen that excellent rate, rapid discharge capacity utilization rate, and charge / discharge cycle life are all obtained.
【0020】[0020]
【発明の効果】このように本発明によるときは、導電材
の混合粉に磨砕処理を施したものと、磨砕処理を施した
或いは施さない水酸化ニッケル活物質粉との混合粉を予
め調製し、これを用いてペースト式ニッケル極板を製造
したので、導電材の混合粉と活物質粉とを単に混合して
成る混合粉を用いて製造した従来のペースト式ニッケル
極板に比し、利用率が高く、優れた急放電性能をもたら
し、長寿命のペースト式ニッケル極板が得られ、アルカ
リ蓄電池の正極として用い、有利である効果を有する。
この場合、導電材の混合粉として、Ni粉とCo粉又はCoO
粉との混合粉又はNi粉とCo粉及びCo粉との混合物に本法
に適用し特に有効である。As described above, according to the present invention, the mixed powder of the mixed powder of the conductive material, which has been subjected to the grinding treatment, and the powder of the nickel hydroxide active material, which has or has not been ground, is previously prepared. Since it was prepared and a paste-type nickel electrode plate was manufactured using this, compared to a conventional paste-type nickel electrode plate manufactured by using a mixed powder formed by simply mixing a mixed powder of a conductive material and an active material powder. The paste type nickel plate having a high utilization rate and excellent rapid discharge performance and a long life is obtained, and it has an advantageous effect of being used as a positive electrode of an alkaline storage battery.
In this case, as the mixed powder of the conductive material, Ni powder and Co powder or CoO
It is particularly effective when applied to the present method for a mixed powder with powder or a mixture of Ni powder with Co powder and Co powder.
【表1】 [Table 1]
Claims (2)
と磨砕処理を施した或いは施さない水酸化ニッケル活物
質粉との混合粉をペースト状で多孔性金属基板に充填
し、次でこれを乾燥、圧延したことを特徴とするアルカ
リ蓄電池用ペースト式ニッケル極板の製造法。1. A porous metal substrate is filled in a paste form with a mixed powder of a mixed powder of a conductive material, which has been subjected to a grinding treatment, and a powder of nickel hydroxide active material which has or has not been ground. Next, a method for producing a paste-type nickel electrode plate for an alkaline storage battery, which is characterized by being dried and rolled.
及びCoOとを混合したものである請求項1記載のアルカ
リ蓄電池用ペースト式ニッケル極板の製造法。2. A mixture of conductive material powder is Ni powder and Co powder or /
The method for producing a paste-type nickel electrode plate for an alkaline storage battery according to claim 1, which is a mixture of CoO and CoO.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP43A JPH06187982A (en) | 1992-12-15 | 1992-12-15 | Manufacture of paste type nickel electrode plate for alkaline storage battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP43A JPH06187982A (en) | 1992-12-15 | 1992-12-15 | Manufacture of paste type nickel electrode plate for alkaline storage battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06187982A true JPH06187982A (en) | 1994-07-08 |
Family
ID=18435195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP43A Pending JPH06187982A (en) | 1992-12-15 | 1992-12-15 | Manufacture of paste type nickel electrode plate for alkaline storage battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06187982A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112604689A (en) * | 2020-11-25 | 2021-04-06 | 电子科技大学 | Preparation of porous copper oxide skeleton catalyst for catalyzing formaldehyde decomposition |
-
1992
- 1992-12-15 JP JP43A patent/JPH06187982A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112604689A (en) * | 2020-11-25 | 2021-04-06 | 电子科技大学 | Preparation of porous copper oxide skeleton catalyst for catalyzing formaldehyde decomposition |
CN112604689B (en) * | 2020-11-25 | 2022-03-15 | 电子科技大学 | Preparation of porous copper oxide skeleton catalyst for catalyzing formaldehyde decomposition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3191751B2 (en) | Alkaline storage battery and surface treatment method for positive electrode active material thereof | |
JPH08227712A (en) | Alkaline storage battery and manufacture thereof | |
JPH07122271A (en) | Manufacture of nickel hydroxide for nickel pole, manufacture of nickel pole using the nickel hydroxide and alkaline secondary battery incorporating the nickel pole | |
JP5142428B2 (en) | Method for producing hydrogen storage alloy electrode for nickel metal hydride storage battery | |
JP2006040887A (en) | Alkaline battery | |
JP3553750B2 (en) | Method for producing hydrogen storage alloy for alkaline storage battery | |
JP3606065B2 (en) | Manufacturing method of lead acid battery | |
JP3114402B2 (en) | Manufacturing method of alkaline storage battery | |
JPH06187982A (en) | Manufacture of paste type nickel electrode plate for alkaline storage battery | |
JP3433008B2 (en) | Method for producing hydrogen storage alloy for alkaline storage battery | |
JP2530281B2 (en) | Alkaline storage battery | |
JP3550838B2 (en) | Alkaline storage battery | |
JP2610565B2 (en) | Manufacturing method of sealed alkaline storage battery using paste-type nickel positive electrode | |
JPH09320583A (en) | Nickel electrode | |
JPS6188453A (en) | Nickel positive electrode for alkaline storage battery | |
JPH113703A (en) | Manufacture of alkaline storage battery positive electrode | |
JP2000123832A (en) | Manufacture of paste type electrode for storage battery | |
JP4536209B2 (en) | Method for producing hydrogen storage alloy electrode | |
JPH01241755A (en) | Manufacture of hydrogen storage alloy electrode | |
JP3685643B2 (en) | Hydrogen storage alloy electrode and nickel metal hydride storage battery using the electrode | |
JPH10172550A (en) | Alkaline battery with nickel positive electrode and its activating method | |
CA1263437A (en) | Cadmium negative electrode | |
JP2001338647A (en) | Lithium secondary battery | |
JPH06283172A (en) | Positive electrode plate for lead-acid battery | |
JP2005235436A (en) | Hydrogen storage alloy electrode, its manufacturing method and nickel-hydrogen storage battery |