JP4536209B2 - Method for producing hydrogen storage alloy electrode - Google Patents

Method for producing hydrogen storage alloy electrode Download PDF

Info

Publication number
JP4536209B2
JP4536209B2 JP2000137296A JP2000137296A JP4536209B2 JP 4536209 B2 JP4536209 B2 JP 4536209B2 JP 2000137296 A JP2000137296 A JP 2000137296A JP 2000137296 A JP2000137296 A JP 2000137296A JP 4536209 B2 JP4536209 B2 JP 4536209B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
paste
conductive agent
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000137296A
Other languages
Japanese (ja)
Other versions
JP2001319645A (en
Inventor
肇 世利
剛平 鈴木
徳之 藤岡
宗久 生駒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Toyota Motor Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Toyota Motor Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Toyota Motor Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000137296A priority Critical patent/JP4536209B2/en
Publication of JP2001319645A publication Critical patent/JP2001319645A/en
Application granted granted Critical
Publication of JP4536209B2 publication Critical patent/JP4536209B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ニッケル水素蓄電池の負極として用いられる水素吸蔵合金電極の製造方法に関する。
【0002】
【従来の技術】
近年、アルカリ蓄電池は、ポータブル機器や携帯機器などの電源として、また電気自動車などの電源として注目されている。アルカリ蓄電池の中でも、ニッケル水素蓄電池は、エネルギー密度が高く信頼性に優れた二次電池として特に注目されている。ニッケル水素蓄電池では、負極として、水素吸蔵合金を含むペーストをパンチングメタルなどの集電体に塗布した水素吸蔵合金電極が用いられている。
【0003】
上記水素吸蔵合金電極は、水素吸蔵合金の他に様々な添加剤を含む。具体的には、水素吸蔵合金間の導電性を高めるための導電剤や、活物質の剥落を防止するための結着剤、塗布を容易にするための増粘剤などである。このような水素吸蔵合金電極を製造する際に、従来の製造方法では、分散媒となる水に、水素吸蔵合金と上記添加剤とを一度に加えて混練し活物質ペースをを作製していた。そしてこの活物質ペーストをパンチングメタルなどに塗布し、乾燥および圧延することによって、水素吸蔵合金電極を作製していた。
【0004】
しかし、水素吸蔵合金の比重と導電剤の比重とが大きく異なる場合、上記従来の製造方法では、導電剤が均一に混練されず、負極の導電性が十分でないという問題があった。このため、上記従来の製造方法によって製造された負極を用いたニッケル水素蓄電池は、十分な出力特性が得られないという問題があった。
【0005】
そこで、比重が異なる複数の粉末を均一に混練する方法として、たとえば、特開平10−12231号公報に記載の方法が開示されている。同公報には、増粘剤を溶媒に添加して粘性を高めた練り液を作製し、その練り液に活物質や増粘剤を添加してペーストとし、そのペーストを集電体に塗布することからなるペースト式電極の製造方法が開示されている。この方法によれば、比重が異なる複数の粉末を混練したペーストでも均一に混合することができるとされている。
【0006】
【発明が解決しようとする課題】
しかしながら、導電剤の比重が非常に小さい場合、導電剤を均一に混合することが難しいため、導電剤が均一に分散しているようにみえても十分な出力特性が得られないという問題があった。
【0007】
上記問題を解決するため、本発明は、比重の小さい導電剤が略均一に分散され、導電性が高い水素吸蔵合金電極を製造できる水素吸蔵合金電極の製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するため、本発明の水素吸蔵合金電極の製造方法は、水素吸蔵合金を主成分として含む水素吸蔵合金電極の製造方法であって、比重が水素吸蔵合金よりも小さい導電剤と増粘剤とを含む添加剤と、分散媒とを混練することによって、導電剤と増粘剤とを含む第1のペーストを作製する第1の工程後に、第1のペーストに水素吸蔵合金を加えて混練することによって第2のペーストを作製する第2の工程を行い、その後さらに、第2のペーストに結着剤を加えて混練する第3の工程を行うことにより負極合剤ペーストを作製することを特徴とする。上記製造方法によれば、導電剤が略均一に分散するため、導電性が高い水素吸蔵合金電極を製造できる。さらに、得られた水素吸蔵合金電極を用いることによって、出力特性が特に良好なニッケル水素蓄電池を製造できる。
【0010】
上記製造方法では、導電剤はカーボンであることが好ましい。上記構成によれば、カーボンは粒径が非常に小さいため、合金間に均一に入り込ませることができ、高い導電性が得られる。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照しながら一例を説明する。
【0012】
本発明の水素吸蔵合金電極の製造方法について、製造工程を図1に模式的に示す。
【0013】
本発明の製造方法では、まず、図1(a)に示すように、比重が小さい導電剤と増粘剤とを含む添加剤と、分散媒とを、ミキサ11によって混練し、導電剤と増粘剤とを少なくとも含む第1のペースト12を作製する(第1の工程)。
【0014】
上記第1の工程に用いられる増粘剤には、たとえば、カルボキシルメチルセルロース、メチルセルロース、ポリビニルアルコールなどを用いることができる。
【0015】
また、上記比重が小さい導電剤の比重は、以下の工程で用いる水素吸蔵合金の比重よりも小さく、たとえば水素吸蔵合金の比重の4分の1以下である。このような導電剤としては、たとえば、カーボンを用いることができ、具体的には、カーボンブラック、ケッチェンブラック、アセチレンブラックなどを用いることができる。
【0016】
また、上記分散媒としては、たとえば、水を用いることができる。
【0017】
なお、上記増粘剤と導電剤とを含む添加剤は、さらに他の物質を含んでもよい。具体的には、たとえば、希土類酸化物、希土類水酸化物、遷移金属酸化物、遷移金属水酸化物を含んでもよい。水素吸蔵合金に比べて比重が小さい添加剤を第1の工程で混練することによって、このような添加剤を略均一に分散させることができる。
【0018】
上記第1の工程ののち、図1(b)に示すように、第1のペースト12に水素吸蔵合金を加えてミキサ11で混練することによって、上記添加剤と水素吸蔵合金とを少なくとも含む第2のペースト13を作製する(第2の工程)。
【0019】
上記水素吸蔵合金には、ニッケル水素蓄電池に一般に用いられる水素吸蔵合金を用いることができる。具体的には、たとえば、Mm(ミッシュメタル)とNiとAlとMnとCoとを含む合金などを用いることができる。
【0020】
なお、上記第2の工程では、水素吸蔵合金の他に、他の添加剤を加えてもよい。第2の工程で加える添加剤としては、たとえば、結着剤、希土類酸化物、希土類水酸化物、遷移金属酸化物、遷移金属水酸化物などが挙げられる。上記結着剤には、たとえば、スチレンブタジエン共重合体、ポリテトラフルオロエチレン、ポリエチレンオキサイドなどを用いることができる。
【0021】
このようにして第2のペースト(負極合剤ペースト)13を得たのち、第2のペースト13を導電性の支持体に塗布し、乾燥および圧延したのち、必要に応じて所定の大きさに切断することによって水素吸蔵合金電極を製造できる。導電性の支持体としては、たとえばニッケルからなるパンチングメタルを用いることができる。
【0022】
なお、上記第2の工程ののちであって第2のペースト13を支持体に塗布する前に、第2のペースト13に結着剤を加えて混練する第3の工程を含んでもよい。すなわち、結着剤は、第2の工程で加えてもよいし、第2の工程では加えずに第3の工程で初めて加えてもよいし、第2および第3の工程の両方で加えてもよい。結着剤には、上述した結着剤を用いることができる。また、このとき、結着剤の他に他の添加剤を加えてもよい。具体的には、たとえば、希土類酸化物、希土類水酸化物、遷移金属酸化物、遷移金属水酸化物を加えてもよい。
【0023】
【実施例】
以下、実施例を用いて本発明をさらに詳細に説明する。
【0024】
参考例
参考例では、まず、導電剤であるカーボンブラック100重量部に対して、増粘剤であるカルボキシメチルセルロース50重量部を加え、さらに水を添加して混練し、第1のペーストを作製した。
【0025】
次に、水素吸蔵合金を作製した。具体的には、Mm(ミッシュメタル。希土類元素の混合物である。)、Ni、AlおよびCoを所定の割合で混合し、高周波溶解炉で、組成がMmNi4.1Mn0.4Al0.3Co0.4で表される水素吸蔵合金のインゴットを作製した。そして、このインゴットをAr雰囲気下、1100℃で10時間熱処理した。さらに、熱処理したインゴットを粗粉砕したのち、湿式ボールミルでさらに粉砕して、平均粒径が75μm以下の合金粉末を作製した。この合金粉末を、比重が1.3で温度が95℃のKOH水溶液中に1時間浸漬・撹拌し、その後、水洗、脱水および乾燥した。このようにして、水素吸蔵合金電極用の合金粉末を得た。
【0026】
次に、上記合金粉末100重量部に対して、上記第1のペースト0.3重量部と、結着剤であるスチレンブタジエン共重合体0.7重量部とを加え、これにさらに水を添加して混練することによって、第2のペーストを得た。この第2のペーストを、鉄にニッケルメッキを施したパンチングメタルに塗着し乾燥させた。その後、ロールプレス機を用いて所定の厚みにプレスしたのち、所定の大きさに切断することによって、水素吸蔵合金電極(負極)を得た。
【0027】
(実施例)
実施例では、参考例と同様の方法で第1のペーストを得た。また、参考例と同様の方法で合金粉末を得た。
【0028】
そして、上記合金粉末100重量部に対して、上記第1のペースト0.3重量部を加え、さらに水を添加して混練することによって、第2のペーストを得た。実施例では、さらに、この第2のペーストにスチレンブタジエン共重合体0.7重量部と水とを添加して混練することによって、負極合剤ペーストを作製した。この負極合剤ペーストをパンチングメタルに塗着し乾燥させた。その後、ロールプレス機を用いて所定の厚みにプレスしたのち、所定の大きさに切断することによって水素吸蔵合金電極(負極)を得た。
【0029】
(比較例)
比較例では、参考例と同様の方法で合金粉末を得た。そして、上記合金粉末100重量部に対して、カルボキシルメチルセルロース0.15重量部と、カーボンブラック0.3重量部と、スチレンブタジエン共重合体0.7重量部とを加え、これにさらに水を添加して混練し負極合剤ペーストを作製した。この負極合剤ペーストをパンチングメタルに塗着し乾燥させた。その後、ロールプレス機を用いて所定の厚みにプレスしたのち、所定の大きさに切断することによって水素吸蔵合金電極(負極)を得た。
【0030】
(特性評価)
上記のようにして作製した3種類の負極(参考例、実施例、比較例)を用いてニッケル水素蓄電池を作製し、その特性を評価した。具体的には、まず、上記負極と公知の発泡ニッケル式正極とを、セパレータを介して渦巻状に構成し、金属ケースに挿入した。セパレータには、スルホン化処理を行ったポリプロピレン不織布からなるセパレータを用いた。正極には、水酸化ニッケルを主成分とする正極活物質が充填された発泡ニッケルを用いた。そして、上記金属ケースに、水酸化カリウムを主成分とする比重1.3のアルカリ水溶液(電解液)を注液し、封口した。このようにして、負極が異なる3種類の公知のAAサイズニッケル水素蓄電池を作製した。設計容量は、約1.2Ahとした。
【0031】
上記3種類のニッケル水素蓄電池について、25℃で120mA(10時間率)で15時間充電し、25℃で240mA(5時間率)で電池電圧が1Vになるまで放電する充放電サイクルを10回行った。その結果、いずれの電池においてもほぼ1.2Ahの容量(240mAで放電した時の容量)が得られた。その後、25℃で120mA(10時間率)で15時間充電し、0℃で3時間放置したのち、0℃で2400mA(0.5時間率)で放電した。その結果、比較例の負極を用いた電池では、放電容量が0.82Ahであった。これに対して、参考例の負極を用いた電池では、放電容量が0.91Ah(比較例に対して約11%向上)であった。また、実施例の負極を用いた電池では、放電容量が0.95Ah(比較例に対して約16%向上)であった。
【0032】
このように、本発明の水素吸蔵合金電極の製造方法を用いて製造した水素吸蔵合金電極を用いることによって、低温高率放電特性が高いニッケル水素蓄電池が得られることがわかった。これは、水素吸蔵合金電極中の導電剤が略均一に分散しているためであると考えられる。
【0033】
また、上記評価から、第1の工程および第2の工程では結着剤を加えず、第3の工程で初めて結着剤を加える製造方法を用いることによって、出力特性が特に良好な水素吸蔵合金電極およびニッケル水素蓄電池を製造できることがわかった。
【0034】
以上、本発明の実施の形態について例を挙げて説明したが、本発明は、上記実施の形態に限定されず本発明の技術的思想に基づき他の実施形態に適用することができる。
【0035】
【発明の効果】
以上説明したように、本発明の水素吸蔵合金電極の製造方法によれば、導電剤が略均一に分散され、導電性が高い水素吸蔵合金電極を製造できる。そして、本発明の製造方法によって製造された水素吸蔵合金電極を用いることによって、出力特性が高いニッケル水素蓄電池を製造できる。すなわち、本発明の製造方法で製造された水素吸蔵合金電極を含むニッケル水素蓄電池は、出力特性が高い。また、本発明の水素吸蔵合金の製造方法を含むニッケル水素蓄電池の製造方法によれば、出力特性が高いニッケル水素蓄電池を製造できる。
【図面の簡単な説明】
【図1】 本発明の水素吸蔵合金電極の製造方法について一例を示す工程図である。
【符号の説明】
11 ミキサ
12 第1のペースト
13 第2のペースト
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a hydrogen storage alloy electrode used as a negative electrode of a nickel metal hydride storage battery.
[0002]
[Prior art]
In recent years, alkaline storage batteries have attracted attention as power sources for portable devices and portable devices, and as power sources for electric vehicles. Among alkaline storage batteries, nickel metal hydride storage batteries are particularly attracting attention as secondary batteries with high energy density and excellent reliability. In a nickel metal hydride storage battery, a hydrogen storage alloy electrode in which a paste containing a hydrogen storage alloy is applied to a current collector such as a punching metal is used as a negative electrode.
[0003]
The hydrogen storage alloy electrode includes various additives in addition to the hydrogen storage alloy. Specifically, a conductive agent for enhancing conductivity between hydrogen storage alloys, a binder for preventing the active material from peeling off, a thickener for facilitating coating, and the like. When manufacturing such a hydrogen storage alloy electrode, in the conventional manufacturing method, the hydrogen storage alloy and the additive are added to water as a dispersion medium at a time and kneaded to prepare an active material pace. . And this active material paste was apply | coated to punching metal etc., and the hydrogen storage alloy electrode was produced by drying and rolling.
[0004]
However, when the specific gravity of the hydrogen storage alloy and the specific gravity of the conductive agent are greatly different, the conventional manufacturing method has a problem that the conductive agent is not uniformly kneaded and the conductivity of the negative electrode is not sufficient. For this reason, the nickel metal hydride storage battery using the negative electrode manufactured by the conventional manufacturing method has a problem that sufficient output characteristics cannot be obtained.
[0005]
Thus, as a method for uniformly kneading a plurality of powders having different specific gravities, for example, a method described in JP-A-10-12231 is disclosed. In this publication, a thickener is added to a solvent to produce a kneaded liquid with increased viscosity, an active material or a thickener is added to the kneaded liquid to form a paste, and the paste is applied to a current collector. A method for manufacturing a paste electrode is disclosed. According to this method, a paste obtained by kneading a plurality of powders having different specific gravities can be uniformly mixed.
[0006]
[Problems to be solved by the invention]
However, when the specific gravity of the conductive agent is very small, it is difficult to uniformly mix the conductive agent, and there is a problem that sufficient output characteristics cannot be obtained even if the conductive agent appears to be uniformly dispersed. It was.
[0007]
In order to solve the above problem, an object of the present invention is to provide a method for producing a hydrogen storage alloy electrode in which a conductive agent having a small specific gravity is dispersed substantially uniformly and a hydrogen storage alloy electrode having high conductivity can be manufactured.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a method for producing a hydrogen storage alloy electrode according to the present invention is a method for producing a hydrogen storage alloy electrode containing a hydrogen storage alloy as a main component, wherein the specific gravity is increased with a conductive agent having a specific gravity smaller than that of the hydrogen storage alloy. After the first step of preparing the first paste containing the conductive agent and the thickener by kneading the additive containing the adhesive and the dispersion medium, the hydrogen storage alloy is added to the first paste. And then kneading and kneading, a second step of producing a second paste is performed, and then a third step of adding a binder to the second paste and kneading is performed to produce a negative electrode mixture paste. It is characterized by that. According to the above manufacturing method, the conductive agent is dispersed substantially uniformly, so that a hydrogen storage alloy electrode having high conductivity can be manufactured. Furthermore, by using the obtained hydrogen storage alloy electrode, a nickel-metal hydride storage battery having particularly good output characteristics can be manufactured.
[0010]
In the manufacturing method, the conductive agent is preferably carbon. According to the above configuration, since carbon has a very small particle size, it can be uniformly introduced between the alloys, and high conductivity can be obtained.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0012]
About the manufacturing method of the hydrogen storage alloy electrode of this invention, a manufacturing process is typically shown in FIG.
[0013]
In the production method of the present invention, first, as shown in FIG. 1 (a), an additive containing a conductive agent having a small specific gravity and a thickener and a dispersion medium are kneaded by a mixer 11, and the conductive agent and the thickening agent are mixed. A first paste 12 containing at least a sticking agent is produced (first step).
[0014]
As the thickener used in the first step, for example, carboxymethyl cellulose, methyl cellulose, polyvinyl alcohol and the like can be used.
[0015]
The specific gravity of the conductive agent having a small specific gravity is smaller than the specific gravity of the hydrogen storage alloy used in the following steps, and is, for example, one quarter or less of the specific gravity of the hydrogen storage alloy. As such a conductive agent, for example, carbon can be used, and specifically, carbon black, ketjen black, acetylene black, and the like can be used.
[0016]
As the dispersion medium, for example, water can be used.
[0017]
The additive containing the thickener and the conductive agent may further contain other substances. Specifically, for example, a rare earth oxide, a rare earth hydroxide, a transition metal oxide, or a transition metal hydroxide may be included. By kneading an additive having a specific gravity smaller than that of the hydrogen storage alloy in the first step, such an additive can be dispersed substantially uniformly.
[0018]
After the first step, as shown in FIG. 1 (b), a hydrogen storage alloy is added to the first paste 12 and kneaded by the mixer 11, thereby including at least the additive and the hydrogen storage alloy. 2 paste 13 is produced (second step).
[0019]
As the hydrogen storage alloy, a hydrogen storage alloy generally used for nickel metal hydride storage batteries can be used. Specifically, for example, an alloy containing Mm (Misch metal), Ni, Al, Mn, and Co can be used.
[0020]
In the second step, other additives may be added in addition to the hydrogen storage alloy. Examples of the additive added in the second step include a binder, a rare earth oxide, a rare earth hydroxide, a transition metal oxide, and a transition metal hydroxide. For example, a styrene butadiene copolymer, polytetrafluoroethylene, polyethylene oxide, or the like can be used as the binder.
[0021]
After obtaining the second paste (negative electrode mixture paste) 13 in this way, the second paste 13 is applied to a conductive support, dried and rolled, and then given a predetermined size as necessary. The hydrogen storage alloy electrode can be manufactured by cutting. For example, a punching metal made of nickel can be used as the conductive support.
[0022]
In addition, after apply | coating the 2nd paste 13 to a support body after the said 2nd process, you may include the 3rd process which adds a binder to the 2nd paste 13 and knead | mixes it. That is, the binder may be added in the second step, may be added for the first time in the third step without being added in the second step, or may be added in both the second and third steps. Also good. The binder mentioned above can be used for a binder. At this time, other additives may be added in addition to the binder. Specifically, for example, a rare earth oxide, a rare earth hydroxide, a transition metal oxide, or a transition metal hydroxide may be added.
[0023]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
[0024]
( Reference example )
In the reference example, first, 50 parts by weight of carboxymethyl cellulose as a thickener was added to 100 parts by weight of carbon black as a conductive agent, and water was further added and kneaded to prepare a first paste.
[0025]
Next, a hydrogen storage alloy was produced. Specifically, Mm (Misch metal, which is a mixture of rare earth elements), Ni, Al, and Co are mixed at a predetermined ratio, and the composition is expressed as MmNi 4.1 Mn 0.4 Al 0.3 Co 0.4 in a high-frequency melting furnace. An ingot of a hydrogen storage alloy was prepared. The ingot was heat-treated at 1100 ° C. for 10 hours in an Ar atmosphere. Further, the heat-treated ingot was coarsely pulverized and then further pulverized by a wet ball mill to produce an alloy powder having an average particle size of 75 μm or less. This alloy powder was immersed and stirred in a KOH aqueous solution having a specific gravity of 1.3 and a temperature of 95 ° C. for 1 hour, and then washed with water, dehydrated and dried. In this way, an alloy powder for a hydrogen storage alloy electrode was obtained.
[0026]
Next, 0.3 parts by weight of the first paste and 0.7 parts by weight of a styrene butadiene copolymer as a binder are added to 100 parts by weight of the alloy powder, and water is further added thereto. Then, a second paste was obtained by kneading. This second paste was applied to a punching metal obtained by applying nickel plating to iron and dried. Then, after pressing to a predetermined thickness using a roll press machine, the hydrogen storage alloy electrode (negative electrode) was obtained by cut | disconnecting to a predetermined magnitude | size.
[0027]
( Example)
In the example, a first paste was obtained in the same manner as in the reference example . Also, an alloy powder was obtained in the same manner as in the reference example .
[0028]
Then, 0.3 parts by weight of the first paste was added to 100 parts by weight of the alloy powder, and water was further added and kneaded to obtain a second paste. In Examples, a negative electrode mixture paste was prepared by adding 0.7 parts by weight of styrene-butadiene copolymer and water to the second paste and kneading. This negative electrode mixture paste was applied to a punching metal and dried. Then, after pressing to a predetermined thickness using a roll press machine, a hydrogen storage alloy electrode (negative electrode) was obtained by cutting to a predetermined size.
[0029]
(Comparative example)
In the comparative example, an alloy powder was obtained by the same method as in the reference example . Then, 0.15 parts by weight of carboxymethyl cellulose, 0.3 parts by weight of carbon black and 0.7 parts by weight of styrene butadiene copolymer are added to 100 parts by weight of the alloy powder, and water is further added thereto. And kneaded to prepare a negative electrode mixture paste. This negative electrode mixture paste was applied to a punching metal and dried. Then, after pressing to a predetermined thickness using a roll press machine, a hydrogen storage alloy electrode (negative electrode) was obtained by cutting to a predetermined size.
[0030]
(Characteristic evaluation)
Nickel metal hydride storage batteries were prepared using the three types of negative electrodes ( reference examples, examples, and comparative examples) prepared as described above, and their characteristics were evaluated. Specifically, first, the negative electrode and a known nickel foam-type positive electrode were spirally arranged via a separator and inserted into a metal case. As the separator, a separator made of a polypropylene nonwoven fabric subjected to sulfonation treatment was used. For the positive electrode, foamed nickel filled with a positive electrode active material mainly composed of nickel hydroxide was used. Then, an alkaline aqueous solution (electrolytic solution) having a specific gravity of 1.3 containing potassium hydroxide as a main component was poured into the metal case and sealed. In this way, three types of known AA size nickel metal hydride storage batteries with different negative electrodes were produced. The design capacity was about 1.2 Ah.
[0031]
The above three kinds of nickel metal hydride storage batteries were charged 10 times at 25 ° C. at 120 mA (10 hour rate) for 15 hours and discharged at 25 ° C. at 240 mA (5 hour rate) until the battery voltage reached 1 V 10 times. It was. As a result, a capacity of approximately 1.2 Ah (capacity when discharged at 240 mA) was obtained in any of the batteries. Thereafter, the battery was charged at 120 mA (10 hour rate) at 25 ° C. for 15 hours, left at 0 ° C. for 3 hours, and then discharged at 2400 mA (0.5 hour rate) at 0 ° C. As a result, in the battery using the negative electrode of the comparative example, the discharge capacity was 0.82 Ah. On the other hand, in the battery using the negative electrode of the reference example , the discharge capacity was 0.91 Ah (about 11% improvement over the comparative example). Further, in the battery using the negative electrode of the example , the discharge capacity was 0.95 Ah (an improvement of about 16% over the comparative example).
[0032]
Thus, it was found that by using the hydrogen storage alloy electrode manufactured using the method for manufacturing the hydrogen storage alloy electrode of the present invention, a nickel-metal hydride storage battery having high low-temperature and high-rate discharge characteristics can be obtained. This is considered to be because the conductive agent in the hydrogen storage alloy electrode is dispersed substantially uniformly.
[0033]
Further, from the above evaluation, by using a production method in which the binder is not added in the first step and the second step and the binder is added for the first time in the third step, a hydrogen storage alloy having particularly good output characteristics. It has been found that electrodes and nickel metal hydride batteries can be manufactured.
[0034]
Although the embodiments of the present invention have been described above by way of examples, the present invention is not limited to the above-described embodiments, and can be applied to other embodiments based on the technical idea of the present invention.
[0035]
【The invention's effect】
As described above, according to the method for producing a hydrogen storage alloy electrode of the present invention, it is possible to produce a hydrogen storage alloy electrode having a conductive agent dispersed substantially uniformly and having high conductivity. And the nickel hydride storage battery with a high output characteristic can be manufactured by using the hydrogen storage alloy electrode manufactured by the manufacturing method of this invention. That is, the nickel hydride storage battery including the hydrogen storage alloy electrode manufactured by the manufacturing method of the present invention has high output characteristics. Moreover, according to the manufacturing method of the nickel hydride storage battery including the manufacturing method of the hydrogen storage alloy of this invention, a nickel hydride storage battery with high output characteristics can be manufactured.
[Brief description of the drawings]
FIG. 1 is a process diagram showing an example of a method for producing a hydrogen storage alloy electrode according to the present invention.
[Explanation of symbols]
11 Mixer 12 First paste 13 Second paste

Claims (2)

水素吸蔵合金を主成分として含む水素吸蔵合金電極の製造方法であって、
比重が前記水素吸蔵合金よりも小さい導電剤と増粘剤とを含む添加剤と、分散媒とを混練することによって、前記導電剤と前記増粘剤とを含む第1のペーストを作製する第1の工程後に、
前記第1のペーストに前記水素吸蔵合金を加えて混練することによって第2のペーストを作製する第2の工程を行い、その後さらに、
前記第2のペーストに結着剤を加えて混練する第3の工程を行うことにより負極合剤ペーストを作製することを特徴とする水素吸蔵合金電極の製造方法。
A method for producing a hydrogen storage alloy electrode comprising a hydrogen storage alloy as a main component,
A first paste containing the conductive agent and the thickener is prepared by kneading an additive containing a conductive agent and a thickener having a specific gravity smaller than that of the hydrogen storage alloy and a dispersion medium. After step 1 ,
Performing the second step of preparing the second paste by adding the hydrogen storage alloy to the first paste and kneading , and then further,
A method for producing a hydrogen-absorbing alloy electrode, comprising producing a negative electrode mixture paste by performing a third step of adding and kneading a binder to the second paste .
前記導電剤はカーボンである請求項1に記載の水素吸蔵合金電極の製造方法。The method for producing a hydrogen storage alloy electrode according to claim 1, wherein the conductive agent is carbon.
JP2000137296A 2000-05-10 2000-05-10 Method for producing hydrogen storage alloy electrode Expired - Fee Related JP4536209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000137296A JP4536209B2 (en) 2000-05-10 2000-05-10 Method for producing hydrogen storage alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000137296A JP4536209B2 (en) 2000-05-10 2000-05-10 Method for producing hydrogen storage alloy electrode

Publications (2)

Publication Number Publication Date
JP2001319645A JP2001319645A (en) 2001-11-16
JP4536209B2 true JP4536209B2 (en) 2010-09-01

Family

ID=18645088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000137296A Expired - Fee Related JP4536209B2 (en) 2000-05-10 2000-05-10 Method for producing hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JP4536209B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4967263B2 (en) * 2005-06-29 2012-07-04 パナソニック株式会社 Method for producing electrode mixture paste for alkaline storage battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000123832A (en) * 1998-10-16 2000-04-28 Furukawa Battery Co Ltd:The Manufacture of paste type electrode for storage battery
JP2001068103A (en) * 1999-08-30 2001-03-16 Sanyo Electric Co Ltd Method for manufacturing hydrogen storage alloy electrode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000123832A (en) * 1998-10-16 2000-04-28 Furukawa Battery Co Ltd:The Manufacture of paste type electrode for storage battery
JP2001068103A (en) * 1999-08-30 2001-03-16 Sanyo Electric Co Ltd Method for manufacturing hydrogen storage alloy electrode

Also Published As

Publication number Publication date
JP2001319645A (en) 2001-11-16

Similar Documents

Publication Publication Date Title
US6699617B2 (en) Alkaline storage battery, hydrogen-absorbing alloy electrode and method for producing the same
JP3136668B2 (en) Nickel hydroxide active material powder, nickel positive electrode and alkaline storage battery using the same
JP3245072B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP2000306574A (en) Manufacture of battery electrode
JP4536209B2 (en) Method for producing hydrogen storage alloy electrode
JPH11339793A (en) Hydrogen storage alloy for battery, its manufacture and alkaline storage battery using it
JP3114402B2 (en) Manufacturing method of alkaline storage battery
JP3572794B2 (en) Alkaline storage battery
JP2004327387A (en) Nickel-hydrogen storage battery and method for manufacturing negative electrode plate
JP4110562B2 (en) battery
JP4178226B2 (en) Secondary battery
JP2000345253A (en) Production of hydrogen storage alloy and hydrogen storage alloy electrode
JP3994155B2 (en) Secondary battery formation method
JP3685643B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery using the electrode
JP3317099B2 (en) Hydrogen storage alloy powder for alkaline storage battery, method for producing the same, and method for producing hydrogen storage electrode
JPH01241755A (en) Manufacture of hydrogen storage alloy electrode
JPH10172550A (en) Alkaline battery with nickel positive electrode and its activating method
JP3653412B2 (en) Hydrogen storage alloy electrode and nickel-hydrogen storage battery using this electrode
JP2568967B2 (en) Manufacturing method of sealed nickel-hydrogen secondary battery
JP2530281B2 (en) Alkaline storage battery
JPH08130010A (en) Manufacture of nickel electrode for nickel-hydrogen secondary battery
JPH05190175A (en) Surface treatment of hydrogen storage alloy for alkaline secondary battery
JP3003218B2 (en) Method for producing nickel electrode plate and method for producing alkaline storage battery
JP2001338677A (en) Method of manufacturing alkalistorage battery
JP2623413B2 (en) Paste nickel electrode for alkaline storage batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4536209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees