JPH06283172A - Positive electrode plate for lead-acid battery - Google Patents

Positive electrode plate for lead-acid battery

Info

Publication number
JPH06283172A
JPH06283172A JP5071607A JP7160793A JPH06283172A JP H06283172 A JPH06283172 A JP H06283172A JP 5071607 A JP5071607 A JP 5071607A JP 7160793 A JP7160793 A JP 7160793A JP H06283172 A JPH06283172 A JP H06283172A
Authority
JP
Japan
Prior art keywords
lead
lead powder
active material
powder
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5071607A
Other languages
Japanese (ja)
Inventor
Kaoru Maeda
馨 前田
Imakichi Hirasawa
今吉 平沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP5071607A priority Critical patent/JPH06283172A/en
Publication of JPH06283172A publication Critical patent/JPH06283172A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide a positive electrode plate for lead-acid battery having high capacity and excellent durability by using a material lead powder for which lead powder of different grain sizes containing different amounts of metal lead are mixed together at a specific ratio. CONSTITUTION:Lead powder having a peak of grain size distribution in the range of 0.5mum-3mum and containing less than 5% of metal lead, and lead powder having a peak of grain size distribution in the range of 1mum-20mum and containing 5-20% of metal lead, are mixed together to provide material lead powder. Concerning the ratio of mixture, the lead powder of 0.5mum-3mum is mixed at the ratio of 10-60%. A positive electrode active material manufactured by the material lead powder is provided with an active material having a fine structure by the 0.5mum-3mum of lead powder, and with an active material having a large structure by the lead powder of 1mum-20mum. The active material utilization factor is improved by the structure of the fine active material, while the durability is improved by the active material having the large structure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鉛電池用陽極板に関す
るものである。
FIELD OF THE INVENTION The present invention relates to an anode plate for a lead battery.

【0002】[0002]

【従来の技術】従来、鉛電池用陽極活物質の利用率を向
上させる手段としては、活物質中に中空カーボンバルー
ンを添加する、あるいは活物質中に異方性の大きい黒鉛
を添加する、ラメラ構造を有した球状炭素微粒子を添加
するなどの方法が知られている。中空カーボンバルーン
の添加については特開昭62−160659号公報に記
載されている。また異方性の大きい黒鉛を添加する方法
については、例えば特開昭56−109460号公報な
どに記載されている。また球状炭素微粒子の添加につい
ては特開平2−297861号公報に記載されている。
2. Description of the Related Art Hitherto, as a means for improving the utilization rate of a positive electrode active material for a lead battery, a lamella that has a hollow carbon balloon added to the active material or graphite having large anisotropy has been added to the active material. A method of adding spherical carbon fine particles having a structure is known. The addition of hollow carbon balloons is described in JP-A-62-160659. The method of adding graphite having large anisotropy is described in, for example, JP-A-56-109460. The addition of spherical carbon fine particles is described in JP-A-2-297861.

【0003】また従来、鉛電池用陽極板の耐久性を向上
させる手段としては、ポリマー繊維に金属鉛粉末及び鉛
酸化物粉末を塗着又は埋設させたものを添加する。フッ
素樹脂繊維を添加させるなどの方法が知られている。金
属鉛粉末、鉛酸化物粉末を塗着または埋設させたものを
添加する方法については、特開平2−106874号公
報に記載されている。またフッ素樹脂繊維を添加する方
法については、特開平3−201363号公報に記載さ
れている。
Conventionally, as a means for improving the durability of a lead battery positive electrode plate, polymer fibers coated with or embedded with metallic lead powder and lead oxide powder are added. Methods such as adding fluororesin fibers are known. A method of adding a metal lead powder or a lead oxide powder coated or buried therein is described in JP-A-2-106874. The method of adding the fluororesin fiber is described in JP-A-3-201363.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来の陽極活物質の利用率向上の目的で中空カーボンバル
ーンや異方性の大きい黒鉛を添加する方法は活物質の利
用率は向上する。しかし利用率が向上するのはカーボン
添加により過剰の水がペースト中に取り込まれ陽極活物
質中に利用率向上に有効な1μm程度のポアが数多く作
られるためである。しかしながらこのような陽極活物質
強度は非常に弱い。この欠点を改善するためにカーボン
を添加したものにフッ素樹脂繊維やポリマー繊維を添加
することが行なわれるが、それなりの効果は認められる
もののカーボンを添加しない陽極板の活物質強度には及
ばないという問題点があった。
However, the conventional method of adding hollow carbon balloons or graphite having large anisotropy for the purpose of improving the utilization rate of the positive electrode active material improves the utilization rate of the active material. However, the utilization rate is improved because the addition of carbon causes an excessive amount of water to be incorporated into the paste to form many pores of about 1 μm in the anode active material, which are effective for improving the utilization rate. However, the strength of such an anode active material is very weak. In order to improve this drawback, fluorocarbon resin fibers and polymer fibers are added to those with carbon added, but although some effects are recognized, it does not reach the active material strength of the anode plate without carbon added. There was a problem.

【0005】本発明の目的は、0.5μm〜3μmの範
囲に粒度分布のピークをもち、5%未満の金属鉛を含有
する鉛粉と1μm〜20μmの範囲に粒度分布のピーク
をもち、5〜20%の金属鉛量を含有する鉛粉を混合し
たものを原料とすることにより、陽極活物質の利用率お
よび耐久性の両方を向上させた鉛電池用陽極板を提供す
ることである。
The object of the present invention is to have a particle size distribution peak in the range of 0.5 μm to 3 μm, lead powder containing less than 5% metallic lead and a particle size distribution peak in the range of 1 μm to 20 μm, and An object of the present invention is to provide an anode plate for a lead battery in which both the utilization rate and the durability of the anode active material are improved by using, as a raw material, a mixture of lead powder containing an amount of metallic lead of -20%.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明は0.5μm〜3μmの範囲に粒度分布のピ
ークをもち、5%未満の金属鉛を含有する鉛粉と1μm
〜20μmの範囲に粒度分布のピークをもち5〜20%
の金属鉛を含有する鉛粉を混合し、それを鉛電池用陽極
板の原料鉛粉とすることにした。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention has a particle size distribution peak in the range of 0.5 μm to 3 μm and a lead powder containing less than 5% metallic lead and 1 μm.
5 ~ 20% with peak of particle size distribution in the range of ~ 20μm
It was decided to mix the lead powder containing the above metallic lead and to use it as the raw material lead powder for the anode plate for the lead battery.

【0007】[0007]

【作用】0.5μm〜3μmの範囲に粒度分布のピーク
をもち、5%未満の金属鉛を含有する鉛粉と1μm〜2
0μmの範囲に粒度分布のピークをもち5〜20%の金
属鉛を含有する鉛粉を混合した原料鉛粉を用い鉛電池用
陽極板を製作すると、0.5μm〜3μmの範囲に粒度
分布のピークをもち、5%未満の金属鉛を含有する鉛粉
により非常に微細な活物質構造が形成され活物質利用率
が向上する。また1μm〜20μmの範囲に粒度分布の
ピークをもち5〜20%の金属鉛を含有する鉛粉により
大きなしっかりとした構造をもつ活物質が形成され、そ
の部分が活物質の骨格となり活物質の耐久性が向上す
る。
Function: Lead powder having a particle size distribution peak in the range of 0.5 μm to 3 μm and containing less than 5% metallic lead and 1 μm to 2 μm.
When an anode plate for a lead battery is manufactured by using a raw material lead powder mixed with a lead powder containing 5 to 20% of metallic lead having a particle size distribution peak in the range of 0 μm, the particle size distribution of 0.5 μm to 3 μm can be obtained. An extremely fine active material structure is formed by the lead powder having a peak and containing less than 5% of metallic lead, and the active material utilization rate is improved. Further, an active material having a large and firm structure is formed by lead powder containing a peak of particle size distribution in the range of 1 μm to 20 μm and containing 5 to 20% of metallic lead. The durability is improved.

【0008】[0008]

【実施例】本発明の一実施例を説明する。 (実施例1)0.5μm〜3μmの範囲に粒度分布のピ
ークをもち、5%未満の金属鉛を含有している鉛粉と1
μm〜20μmの範囲に粒度分布のピークをもち5〜2
0%の金属鉛を含有している鉛粉の最適な混合比を検討
することにした。以下0.5μm〜3μmの範囲に粒度
分布のピークをもち、かつ5%未満の金属鉛を含有する
鉛粉をA鉛粉、1μm〜20μmの範囲に粒度分布のピ
ークをもち5〜20%の金属鉛を含有する鉛粉をB鉛粉
とする。まずA鉛粉を0〜100%の割合いでB鉛粉に
混合し、その混合鉛粉を用いて鉛電池用陽極板を作成
し、5時間率(以下5HRとする。)放電時の利用率と
JISの寿命試験200サイクル時の放電持続時間をも
とに活物質利用率および耐久性に優れた混合比を検討す
る。これら検討に用いた鉛電池用陽極板の作製は以下の
手順に従って行った。A鉛粉を0〜100%の割合でB
鉛粉に混合した10仕様の混合鉛粉に2d、2mmのポ
リエステル繊維を鉛粉に対し、0.07wt%添加し、
水を添加しながら練った後、比重1.26(20℃)の
希硫酸を添加しながら練った。10仕様のこの練ったペ
ーストはすべて同じ水分量および同じ硬さになるように
調整した。そのペーストを鉛−アンチモン系合金から成
る格子体(w108×h115×1.45)に充填後、
50℃、95%RHの雰囲気中で熟成、120℃で乾燥
後、活物質の利用率および耐久性の検討用の陽極板とし
た。次にその陽極板を用いて、活物質の利用率の評価方
法としての5HR放電試験および耐久性評価試験として
JIS寿命試験の試験方法を示す。5HR放電試験は十
分に化成した陽極板1枚と陰極板2枚から成るセルに比
重1.28(20℃)の希硫酸を注入し、5HR電流
(1.4A)で放電を行いセルの電圧が1.75Vに達
した時の時間から放電電気量を求めこれと別途求めた活
物質量とから活物質利用率を算出した。またJIS寿命
試験は上記のセルを用い、放電電流5Aで1時間放電を
行い、すぐ充電電流1.25Aで5時間の充電を行うサ
イクルを24サイクル繰り返し、25サイクル目に放電
電流5Aで放電を行いセルの電圧が1.70Vに達した
時の放電持続時間を求める。この放電持続時間が42分
を切ったサイクル数がそのセルの寿命とする試験であ
る。図1には、それらの試験結果を示す。従来、B鉛粉
のみで作製した鉛電池用陽極板の5HR放電試験におけ
る活物質利用率は50%程度であり、A鉛粉のみで作製
した鉛電池用陽極板の利用率も60%程度である。鉛粉
の違いによりこのように利用率に差が生じる原因は鉛粉
の粒子の大きさにより形成される活物質構造が異なるた
めである。粒子が微細なA鉛粉は形成される活物質も微
細な構造であり電解液である希硫酸と反応する部分が多
いため利用率が高い。しかし粒子径の大きいB鉛粉で形
成された活物質は、大きな構造のため希硫酸と反応する
部分が、少なく利用率が低い。
EXAMPLE An example of the present invention will be described. (Example 1) Lead powder having a particle size distribution peak in the range of 0.5 μm to 3 μm and containing less than 5% metallic lead and 1
5-2 with peak of particle size distribution in the range of μm to 20 μm
It was decided to investigate the optimum mixing ratio of lead powder containing 0% metallic lead. A lead powder having a particle size distribution peak in the range of 0.5 μm to 3 μm and containing less than 5% of metallic lead is A lead powder, and a particle size distribution peak in the range of 1 μm to 20 μm is 5 to 20%. Lead powder containing metallic lead is referred to as B lead powder. First, A lead powder is mixed with B lead powder in a ratio of 0 to 100%, and the mixed lead powder is used to prepare a positive electrode plate for a lead battery, and a utilization rate at the time of discharging for 5 hours (hereinafter referred to as 5HR). Based on the discharge duration after 200 cycles of JIS and life test, the mixing ratio of the active material utilization rate and the excellent durability is examined. The lead battery anode plate used in these studies was manufactured according to the following procedure. A Lead powder is 0 to 100% B
To the mixed lead powder of 10 specifications mixed with lead powder, 2d, 2 mm polyester fiber was added 0.07 wt% to the lead powder,
After kneading while adding water, kneading was performed while adding dilute sulfuric acid having a specific gravity of 1.26 (20 ° C.). The ten specifications of this kneaded paste were all adjusted to have the same water content and the same hardness. After filling the grid body (w108 × h115 × 1.45) made of the lead-antimony alloy with the paste,
After aging in an atmosphere of 50 ° C. and 95% RH and drying at 120 ° C., it was used as an anode plate for examining the utilization rate and durability of the active material. Next, using the anode plate, a test method of a 5HR discharge test as a method for evaluating the utilization rate of the active material and a JIS life test as a durability evaluation test will be shown. The 5HR discharge test was carried out by injecting diluted sulfuric acid with a specific gravity of 1.28 (20 ° C) into a cell consisting of one fully formed anode plate and two cathode plates and discharging at 5HR current (1.4A) to obtain the cell voltage. When the voltage reaches 1.75 V, the discharge electricity quantity is obtained, and the active material utilization rate is calculated from this and the separately obtained amount of the active material. In the JIS life test, using the above cells, discharging was performed at a discharge current of 5 A for 1 hour, and immediately charging was performed at a charge current of 1.25 A for 5 hours. The discharge duration when the cell voltage reaches 1.70V is determined. This is a test in which the number of cycles when the discharge duration is less than 42 minutes is the life of the cell. FIG. 1 shows the test results. Conventionally, the utilization rate of the active material in the 5HR discharge test of the lead battery anode plate made only of B lead powder was about 50%, and the utilization rate of the lead battery anode plate made only of A lead powder was about 60%. is there. The cause of such a difference in the utilization rate due to the difference in the lead powder is that the active material structure formed differs depending on the particle size of the lead powder. The lead A powder with fine particles has a high utilization factor because the active material to be formed has a fine structure and there are many portions that react with dilute sulfuric acid which is the electrolytic solution. However, the active material formed of B lead powder having a large particle size has a large structure, and therefore has a small portion that reacts with dilute sulfuric acid and thus has a low utilization rate.

【0009】次にJISの寿命試験の結果であるが、2
00サイクル時の放電持続時間は、B鉛粉のみで作製し
た活物質が50minであり、A鉛粉のみで作製した活
物質は、寿命の判定となる42minを切っている。活
物質の耐久性のこのような違いもやはり活物質の構造の
違いが大きく影響している。A鉛粉のみで作製された活
物質構造は微細なため希硫酸と反応する部分が多いため
利用率は高いが、JISの寿命試験を繰り返すうちに、
早い時期に反応に活物質が消費されてしまい、200サ
イクル時にはもう放電不可能な活物質になってしまって
いる。それに対しB鉛粉のみで作製された活物質は、活
物質の構造が大きいため、利用率は低いがJISの寿命
試験を繰り返しても、活物質の消費は大きな構造をもつ
活物質の表面から進むので200サイクル時においても
まだ十分放電可能な状態にある。以上のことから鉛電池
用陽極板の活物質の利用率および耐久性の両方を従来の
ものより向上させるのに最適なA鉛粉とB鉛粉の混合割
合いは、図1よりA鉛粉10〜60%の割合いでB鉛粉
に混合すれば良いことがわかった。
The results of the JIS life test are as follows.
The discharge duration at the time of 00 cycles is 50 min for the active material made only of the B lead powder, and less than 42 min for the life judgment of the active material made only of the A lead powder. The difference in the durability of the active material is also greatly influenced by the difference in the structure of the active material. Since the active material structure made of only the A lead powder is fine, there are many parts that react with dilute sulfuric acid, so the utilization rate is high, but as the JIS life test is repeated,
The active material was consumed in the reaction at an early stage, and after 200 cycles, the active material could no longer be discharged. On the other hand, the active material made of only the B lead powder has a large structure of the active material, and thus the utilization factor is low, but even if the JIS life test is repeated, the consumption of the active material is large from the surface of the active material having a large structure. Since it proceeds, it is still in a state where it can be sufficiently discharged even after 200 cycles. From the above, the optimum mixing ratio of A lead powder and B lead powder for improving both the utilization rate and durability of the active material of the lead battery anode plate as compared with the conventional one is shown in FIG. It has been found that the B lead powder may be mixed in a proportion of 10 to 60%.

【0010】またA鉛粉が30%とB鉛粉が70%の割
合いで混合した鉛粉を用い、上記の鉛電池用陽極板の作
製方法と同様にして陽極板を作製し、JISの寿命試験
を行った。その結果を図2に示す。また比較としてA鉛
粉のみから作製した鉛電池用陽極板とB鉛粉のみから作
製した鉛電池用陽極板の寿命試験も行った。寿命試験用
セルの構成は上記のセルの構成と同様であり、JISの
寿命試験方法も同じである。図2はサイクル数と放電持
続時間の関係を示したものであるがA鉛粉のみで作製さ
れた鉛電池用陽極板は寿命試験初期の放電持続時間は高
いが200サイクルで寿命となっている。またB鉛粉の
みで作製された鉛電池用陽極板は、200サイクルまで
寿命はもつが初期の放電持続時間が低い。しかし混合鉛
粉を用いて作製した鉛電池用陽極板は初期の放電持続時
間も他のものに較べて高く、200サイクルをすぎても
放電持続時間は、現行のレベルより高い。このことから
A鉛粉とB鉛粉を混合することにより従来のものより活
物質の利用率と耐久性の両方を向上させることができる
ことが明かになった。
A lead plate was prepared in the same manner as in the above-described method for preparing an anode plate for a lead battery using lead powder in which A lead powder was mixed at a ratio of 30% and B lead powder at a ratio of 70%. The test was conducted. The result is shown in FIG. As a comparison, a life test was also performed on a lead battery anode plate made only from the A lead powder and a lead battery anode plate made only from the B lead powder. The structure of the life test cell is the same as that of the above cell, and the JIS life test method is also the same. Fig. 2 shows the relationship between the number of cycles and the discharge duration. A positive electrode plate for a lead battery made only of lead powder A has a high discharge duration at the beginning of the life test, but has a life of 200 cycles. . An anode plate for a lead battery made only of B lead powder has a life of up to 200 cycles but has a low initial discharge duration. However, the positive electrode positive electrode plate prepared using the mixed lead powder has a higher initial discharge duration than the others, and the discharge duration is higher than the current level even after 200 cycles. From this, it became clear that by mixing the A lead powder and the B lead powder, both the utilization rate of the active material and the durability can be improved as compared with the conventional one.

【0011】次にこのA鉛粉とB鉛粉をどのようにして
得るかの検討を行った。まず図3にポールミル方式で作
製された鉛粉の粒度分布を示す。ボールミル方式で作製
された鉛粉は0.5μm〜3μmの粒子径をもつ鉛粉を
多く含む鉛粉であることがわかる。そのため3μm以上
の粒子径をもつ鉛粉を分級することによりA鉛粉を得る
ことにした。次にバートンポット方式で作製された鉛粉
の粒度分布を図4に示す。バートンポット方式で作製さ
れた鉛粉の粒度分布は1μm〜20μmの範囲で、ほぼ
単一な粒度分布を示しているので分級せずにそのままB
鉛粉として用いることができる。またボールミル方式で
作製し、3μm以上の粒子径をもつ鉛粉を分級して得ら
れたA鉛粉の金属鉛量を測定したところ表1に示すよう
に5%未満であることがわかる。また同様にB鉛粉の金
属鉛量は5〜20%であることがわかった。このように
鉛粉の金属鉛量が異なるのは鉛粉の作製方法の違いによ
り鉛粉の大きさが異なるためであり、鉛粉の粒子が小さ
いA鉛粉は、すぐ酸化されてしまい金属鉛が少なく、粒
子の大きいB鉛粉はなかなか酸化が進まず、金属鉛が多
く存在しているためである。
Next, how to obtain the lead A powder and the lead B powder was examined. First, FIG. 3 shows a particle size distribution of lead powder produced by the pole mill method. It can be seen that the lead powder produced by the ball mill method is a lead powder containing a large amount of lead powder having a particle diameter of 0.5 μm to 3 μm. Therefore, it was decided to obtain lead A powder by classifying lead powder having a particle size of 3 μm or more. Next, FIG. 4 shows the particle size distribution of the lead powder produced by the Burton pot method. The particle size distribution of the lead powder produced by the Burton pot method is in the range of 1 μm to 20 μm and shows a substantially uniform particle size distribution.
It can be used as lead powder. Further, when the amount of metallic lead of the lead A powder obtained by classifying lead powder having a particle size of 3 μm or more and produced by a ball mill method was measured, it was found to be less than 5%. Similarly, it was found that the amount of metallic lead in the B lead powder was 5 to 20%. The reason why the amount of metallic lead in the lead powder is different is that the size of the lead powder is different due to the difference in the manufacturing method of the lead powder. This is because the B lead powder having a small amount of particles and large particles does not easily oxidize and a large amount of metallic lead is present.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【発明の効果】上述したように、本発明に係る鉛電池用
陽極板はA鉛粉を10〜60%の割合いでB鉛粉に混合
することとしたため、従来の鉛電池用陽極板に比べ、A
鉛粉により利用率向上に有効な微細な構造を有する活物
質が形成され、活物質の構造を微細にするための添加剤
を添加する必要もない。またB鉛粉により活物質の構造
は大きく、しっかりしたものになり、活物質に微細な部
分が多く存在しても、その大きくしっかりした部分が活
物質の格骨となり、活物質の耐久性を向上させるための
添加剤を添加する必要もない。
As described above, the lead battery positive electrode plate according to the present invention is prepared by mixing A lead powder with B lead powder at a ratio of 10 to 60%, and therefore, compared with the conventional lead battery positive electrode plate. , A
The lead powder forms an active material having a fine structure effective for improving the utilization rate, and it is not necessary to add an additive for making the structure of the active material fine. In addition, the B lead powder makes the structure of the active material large and solid, and even if there are many fine parts in the active material, the large and solid parts become the skeleton of the active material and improve the durability of the active material. There is no need to add additives to improve.

【0014】また現在工程で使用しているボールミル方
式で作製された鉛粉を3μm以上の鉛粉を除去すること
により0.5μm〜3μmの範囲に粒度分布のピークを
もち、かつ金属鉛量が5%未満の鉛粉を容易に得ること
ができる。またバートンポット方式で作製した鉛粉も1
μm〜20μmの範囲に粒度分布のピークをもちかつ金
属鉛量が5〜20%なので分級する必要もない。そのた
め新にA鉛粉なB鉛粉のような鉛粉を製造する鉛粉製造
装置を検討する必要もない。このような活物質の利用率
および耐久性が向上した鉛電池用陽極板を既存の工程で
作製することができる点で優れている。
Further, the lead powder produced by the ball mill method used in the present process has a particle size distribution peak in the range of 0.5 μm to 3 μm by removing lead powder of 3 μm or more, and the amount of metallic lead is Lead powder of less than 5% can be easily obtained. Also, the lead powder produced by the Burton pot method is 1
Since there is a particle size distribution peak in the range of μm to 20 μm and the amount of metallic lead is 5 to 20%, it is not necessary to perform classification. Therefore, it is not necessary to newly consider a lead powder manufacturing apparatus for manufacturing lead powder such as A lead powder and B lead powder. It is excellent in that an anode plate for a lead battery, which has improved utilization rate and durability of such an active material, can be produced by an existing process.

【図面の簡単な説明】[Brief description of drawings]

【図1】A鉛粉とB鉛粉の混合割合と、その混合鉛粉を
原料とする鉛電池用陽極板の5HR利用率とJIS寿命
試験200サイクル時の放電持続時間との関係を示す図
である。
FIG. 1 is a diagram showing a relationship between a mixing ratio of A lead powder and B lead powder, a 5HR utilization rate of a lead battery anode plate using the mixed lead powder as a raw material, and a discharge duration time after 200 cycles of JIS life test. Is.

【図2】A鉛粉を30%とB鉛粉を70%混合し作製し
た鉛電池用陽極板とA鉛粉およびB鉛粉のみで作製した
鉛電池用陽極板のJIS寿命試験結果を示した図であ
る。
FIG. 2 shows JIS life test results of a lead battery anode plate prepared by mixing 30% A lead powder and 70% B lead powder and a lead battery anode plate prepared only by A lead powder and B lead powder. It is a figure.

【図3】ボールミル方式で作製した鉛粉の粒度分布を示
す図である。
FIG. 3 is a diagram showing a particle size distribution of lead powder produced by a ball mill method.

【図4】バートンポット方式で作製した鉛粉の粒度分布
を示す図である。
FIG. 4 is a diagram showing a particle size distribution of lead powder produced by the Burton pot method.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】鉛粉を水と希硫酸で練ったペーストを鉛、
または鉛合金格子に塗布してなる鉛電池用陽極板におい
て、0.5μm〜3μmの範囲に粒度分布のピークをも
ち、5%未満の金属鉛を含有する鉛粉と1μm〜20μ
mの範囲に粒度分布のピークをもち5〜20%の金属鉛
を含有する鉛粉を混合してなる鉛粉を原料とすることを
特徴とする鉛電池用陽極板。
1. A lead paste prepared by kneading lead powder with water and dilute sulfuric acid.
Alternatively, in a lead battery positive electrode plate coated on a lead alloy grid, a lead powder having a particle size distribution peak in the range of 0.5 μm to 3 μm and containing less than 5% metallic lead and 1 μm to 20 μm.
An anode plate for a lead battery, characterized in that a lead powder obtained by mixing lead powder having a particle size distribution peak in the range of m and containing 5 to 20% of metallic lead is used as a raw material.
【請求項2】0.5μm〜3μmの範囲に粒度分布のピ
ークをもち、5%未満の金属鉛を含有する鉛粉の割合い
が10〜60%であることを特徴とする請求項1記載の
鉛電池用陽極板。
2. A particle size distribution peak in the range of 0.5 μm to 3 μm, and the proportion of lead powder containing less than 5% metallic lead is 10 to 60%. Anode plate for lead batteries.
【請求項3】ボールミル式鉛粉製造装置でつくった0.
5μm〜3μmの範囲にピークをもち、5%未満の金属
鉛を含有する鉛粉とバートンポット式鉛粉製造装置でつ
くった1μm〜20μmの範囲にピークをもち、5〜2
0%の金属鉛を含有する鉛粉を混合してなることを特徴
とする請求項1記載の鉛電池用陽極板。
3. A ball mill-type lead powder manufacturing apparatus for producing
It has a peak in the range of 5 μm to 3 μm, has a peak in the range of 1 μm to 20 μm produced by a lead powder containing less than 5% metallic lead and a Burton pot type lead powder manufacturing apparatus, and has 5-2.
The positive electrode plate for a lead battery according to claim 1, wherein lead powder containing 0% metallic lead is mixed.
JP5071607A 1993-03-30 1993-03-30 Positive electrode plate for lead-acid battery Pending JPH06283172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5071607A JPH06283172A (en) 1993-03-30 1993-03-30 Positive electrode plate for lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5071607A JPH06283172A (en) 1993-03-30 1993-03-30 Positive electrode plate for lead-acid battery

Publications (1)

Publication Number Publication Date
JPH06283172A true JPH06283172A (en) 1994-10-07

Family

ID=13465511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5071607A Pending JPH06283172A (en) 1993-03-30 1993-03-30 Positive electrode plate for lead-acid battery

Country Status (1)

Country Link
JP (1) JPH06283172A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016246A (en) * 2006-07-04 2008-01-24 Shin Kobe Electric Mach Co Ltd Lead battery fabrication method
KR20150113032A (en) * 2013-01-25 2015-10-07 아르끄마 프랑스 Method for manufacturing an electrode paste
CN109616667A (en) * 2018-11-23 2019-04-12 骆驼集团蓄电池研究院有限公司 A kind of long service life head-acid accumulator lead plaster and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016246A (en) * 2006-07-04 2008-01-24 Shin Kobe Electric Mach Co Ltd Lead battery fabrication method
KR20150113032A (en) * 2013-01-25 2015-10-07 아르끄마 프랑스 Method for manufacturing an electrode paste
JP2016504743A (en) * 2013-01-25 2016-02-12 アルケマ フランス Electrode paste manufacturing method
US10158116B2 (en) 2013-01-25 2018-12-18 Arkema France Method for manufacturing an electrode paste
CN109616667A (en) * 2018-11-23 2019-04-12 骆驼集团蓄电池研究院有限公司 A kind of long service life head-acid accumulator lead plaster and preparation method thereof
CN109616667B (en) * 2018-11-23 2022-06-24 骆驼集团蓄电池研究院有限公司 Lead paste for long-life lead-acid storage battery and preparation method thereof

Similar Documents

Publication Publication Date Title
CN107735889B (en) Doped conductive oxides and improved electrochemical energy storage device plates based thereon
CN103337624A (en) Lead-acid storage battery negative lead plaster capable of inhibiting hydrogen evolution and preparation method
CN110993884B (en) Lithium ion battery negative electrode slurry, preparation method, negative electrode plate and battery
CN108376761A (en) A kind of preparation method and lithium ion battery of anode slice of lithium ion battery
JPH05174825A (en) Lead battery
CN110071267A (en) A kind of positive plate of lead storage battery lead paste formula
CN108365176A (en) A kind of preparation method and lithium ion battery of lithium ion battery negative electrode
US20030180613A1 (en) Negative battery paste
JP2000251896A (en) Lead-acid battery and its manufacture
JPH06283172A (en) Positive electrode plate for lead-acid battery
KR102196991B1 (en) Method for manufacturing anode active material for lead-acid battery employing high conductivity black phosphorus
JP4984430B2 (en) Method for producing paste active material for negative electrode
JPH11162456A (en) Lead-acid battery
KR102209377B1 (en) How to remove residues from lead-acid battery lugs using Etching solution
JP4066509B2 (en) Manufacturing method of lead acid battery
JPH11329420A (en) Manufacture of lead-acid battery
JP2004055417A (en) Manufacturing method of pasty active material for positive electrode and lead storage battery using it
JP2001043861A (en) Positive electrode plate for lead-acid battery and lead- acid battery
JPH0676815A (en) Positive electrode plate for lead-acid battery and manufacture thereof
RU2237316C2 (en) Paste for positive electrode of lead accumulator method of manufacture thereof
JPH07122268A (en) Positive plate for lead acid battery and its manufacture
JPH05144441A (en) Positive electrode plate for lead-acid battery
JP4390481B2 (en) Lead acid battery
JP2016096025A (en) Control valve-type lead storage battery
KR20240042994A (en) How to improve the electrical conductivity using a fullerene