JPH01267956A - Manufacture of hydrogen absorption alloy electrode - Google Patents

Manufacture of hydrogen absorption alloy electrode

Info

Publication number
JPH01267956A
JPH01267956A JP63097092A JP9709288A JPH01267956A JP H01267956 A JPH01267956 A JP H01267956A JP 63097092 A JP63097092 A JP 63097092A JP 9709288 A JP9709288 A JP 9709288A JP H01267956 A JPH01267956 A JP H01267956A
Authority
JP
Japan
Prior art keywords
battery
hydrogen storage
sheet
powder
hydrogen absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63097092A
Other languages
Japanese (ja)
Other versions
JP2629258B2 (en
Inventor
Koji Yuasa
浩次 湯浅
Munehisa Ikoma
宗久 生駒
Yasuko Ito
康子 伊藤
Shoichi Ikeyama
正一 池山
Hiroshi Kawano
川野 博志
Isao Matsumoto
功 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63097092A priority Critical patent/JP2629258B2/en
Publication of JPH01267956A publication Critical patent/JPH01267956A/en
Application granted granted Critical
Publication of JP2629258B2 publication Critical patent/JP2629258B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To suppress rise of the internal pressure of a battery at the time of overcharging, by mixing fluoric resin with hydrogen absorption alloy, turning the fluoric resin into fibers, pressurizing them into a sheet, recrushing it, filling a support with the powder obtained from recrushing, or otherwise pressure fitting or coating the powder to/over the support. CONSTITUTION:Fluoric resin is mixed with hydrogen absorption alloy powder, and the resultant is pressurized into a sheet, which is crushed. A support is filled with splinters thus obtained, or otherwise they are pressure fitted or coated into/over the support. This provides satisfactory three-phase interface of the surface of hydrogen absorption alloy due to uniform dispersion of PTFE over the surface of the hydrogen absorption alloy. The mentioned re-crushing enhances the oxygen gas permeability of the hydrogen absorption alloy, and the filling, pressure fitting, or coating process is made easy and uniform. Also the internal pressure of the battery at the time of overcharging is dropped with good reproducibility, and the battery performance enhanced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ニッケル・水素蓄電池等の負極に用いられる
水素吸蔵合金電極の製造法の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an improvement in the manufacturing method of a hydrogen storage alloy electrode used as a negative electrode of a nickel-hydrogen storage battery or the like.

従来の技術 高密度に水素を吸蔵・放出する特性を有する水素吸蔵合
金を負極材料として用いる、ニッケル・水素蓄電池は、
密閉化が可能であり、円筒密閉形ニッケル・カドミウム
蓄電池を、はるかに凌ぐ高エネルギー密度電池として期
待されている。
Conventional technology Nickel-hydrogen storage batteries use a hydrogen storage alloy as the negative electrode material, which has the property of storing and releasing hydrogen at high density.
It can be sealed and is expected to be a high-energy density battery that far exceeds sealed cylindrical nickel-cadmium storage batteries.

水素吸蔵合金を用いた二次電池用負極(以後、合金負極
と称す)の電極作成プロセスとしては、一般に、水素吸
蔵合金の粉末(以後、合金粉末と称す)を適当な結着剤
とともに、支持体に充填、圧入または、塗着する方法、
または、合金粉末を不活性ガス等の雰囲気下で高温で焼
結する方法等がある。しかし、焼結によって作成しだt
rMは、焼結後の組成変化などによる水素吸蔵能力の低
下や成形性が悪すなど種々の課題を有している。
The electrode manufacturing process for secondary battery negative electrodes (hereinafter referred to as alloy negative electrodes) using hydrogen storage alloys generally involves supporting hydrogen storage alloy powders (hereinafter referred to as alloy powders) with a suitable binder. Methods of filling, press-fitting, or applying to the body;
Alternatively, there is a method in which alloy powder is sintered at high temperature in an atmosphere such as an inert gas. However, it cannot be created by sintering.
rM has various problems such as a decrease in hydrogen storage capacity and poor formability due to changes in composition after sintering.

これらの観点から、電極作成方法としては、合金粉末と
結着剤とを混合し、支持体に充填、圧入または、塗着す
る方法が一般的である。ところが、使用される結着剤の
種類や添加量、合金粉末との結合状態ならびに処理方法
等の差異により、合金負極の酸素還元性能などが著しく
影響される場合がある。そのため、この際の結着剤とし
ては、フッ素m脂、ポリエチレン、ホリビニルアルコー
ル(以後、(−れぞれPTFE 、PE 、PVAと称
−i)で代表される各種の材料が検討されている。
From these viewpoints, a common method for producing an electrode is to mix alloy powder and a binder and fill, press fit, or paint the mixture into a support. However, the oxygen reduction performance of the alloy negative electrode may be significantly affected by differences in the type and amount of the binder used, the state of bonding with the alloy powder, the processing method, etc. Therefore, various materials are being considered as binders in this case, including fluorine resin, polyethylene, and polyvinyl alcohol (hereinafter referred to as PTFE, PE, and PVA, respectively). .

上記手法により合金負極を作成する際、基本的には以下
の方法が採用できる。
When creating an alloy negative electrode using the above method, basically the following method can be adopted.

(1)ニッケル・カドミウム蓄電池においては、既に公
知であるが、PVAなどの親水性を有する結着剤などと
合金粉末とを混合し、支持体に充填、圧入または塗着し
た後、所定の厚さに加圧する方法。
(1) In the case of nickel-cadmium storage batteries, as is already known, a hydrophilic binder such as PVA is mixed with alloy powder, and the mixture is filled, press-fitted or coated into a support, and then a predetermined thickness is obtained. How to apply pressure.

(2)PTFEなどの撥水性のフッ素樹脂と合金粉末と
を混合し、支持体に充填、圧入または、塗着した後、所
望の厚さに加圧する方法。
(2) A method in which a water-repellent fluororesin such as PTFE and alloy powder are mixed, filled, press-fitted, or painted onto a support, and then pressed to a desired thickness.

(3)PTFEなどの撥水性のフッ素樹脂と合金粉末と
を混合し、シート化した後、これを支持体に充填、圧入
または、塗着し、所望の厚さ如加圧する方法(特開昭8
2−216163号)。
(3) A method in which a water-repellent fluororesin such as PTFE and alloy powder are mixed, formed into a sheet, and then filled, press-fitted, or painted onto a support and pressurized to the desired thickness (Japanese Patent Laid-Open No. 8
2-216163).

発明が解決しようとする課題 水素吸蔵合金を負極に用いたニッケル・水素蓄電池にお
いて、完全密閉化するためには、過充電時に負極から水
素ガスが発生することなく、正極から発生する酸素ガス
を負極表面で水に消失還元する必要がある。そのため、
一般には、負極の容量を正極のそれよりも大きくするこ
とにより、過充電時に正極から発生する酸素ガスを負極
で吸収する構成が用いられている。その酸素ガス吸収反
応は、以下の(1) 、 (2)式で表わされる。
Problems to be Solved by the Invention In order to completely seal a nickel-metal hydride storage battery that uses a hydrogen storage alloy as the negative electrode, it is necessary to prevent hydrogen gas from being generated from the negative electrode during overcharging and to transfer oxygen gas generated from the positive electrode to the negative electrode. It must be reduced to water at the surface. Therefore,
Generally, a configuration is used in which the capacity of the negative electrode is made larger than that of the positive electrode so that the negative electrode absorbs oxygen gas generated from the positive electrode during overcharging. The oxygen gas absorption reaction is expressed by the following formulas (1) and (2).

3A02 + H2O+ 2 e″″−+ 20 H−
−−(1)MH!+20H”’−+MH!−2+2H2
0+2e’″  ・・・・・・(2)ここで、(1)式
の酸素イオン化反応が律速であり、電池内如おける酸素
ガス吸収能を向上させるには、(1)式の反応速度を速
める必要がある。そして、そのためには、負極表面の固
相・液相・気相の三相界面を増大させて、反応1の有効
反応面積を拡大させる必要がある。
3A02 + H2O+ 2 e″″−+ 20 H−
--(1) MH! +20H"'-+MH!-2+2H2
0+2e'''...(2) Here, the oxygen ionization reaction in equation (1) is rate-determining, and in order to improve the oxygen gas absorption capacity in the battery, the reaction rate in equation (1) must be To achieve this, it is necessary to increase the three-phase interface of solid phase, liquid phase, and gas phase on the surface of the negative electrode to expand the effective reaction area of reaction 1.

上記の方法1では、結着剤として親水性のPVAを使用
することから、三相界面の形成分が不充分であり、酸素
ガス吸収が劣る。その結果、電池内圧が上昇し、電池の
安全弁が作動し、電池外にガスが飛散して、電解液の減
少をきたし、放電容量など種々の電池性能が低下する課
題がある。また、上記方法2では撥水性の結着剤である
PTFEは、水素吸蔵合金表面との結合状態が不充分で
ある結果、電池内圧が上昇するという課題がある。また
、上記方法3では、三相界面は、形成されやすいが、P
TFEの水素吸蔵合金電層内部への分散性が悪い。すな
わち、PTFEが電極表面に集中的に分布し、電極表面
を平滑にするとともに電極表面を被覆し、酸素ガスの透
過性が悪くなる。また、シート状となるだめ、支持体へ
の充填、圧入または、塗着の均一性が悪くなシ、充電末
期の電池内圧などの特性に再現性がない。とくに、三次
元の支持体を使用する場合には、充填工程が、シート化
のため、極めて困難となるなどの課題があった。
In method 1 above, since hydrophilic PVA is used as a binder, the amount of components forming the three-phase interface is insufficient, resulting in poor oxygen gas absorption. As a result, the internal pressure of the battery increases, the safety valve of the battery operates, gas scatters outside the battery, the amount of electrolyte decreases, and various battery performances such as discharge capacity deteriorate. Furthermore, in method 2, PTFE, which is a water-repellent binder, is insufficiently bonded to the surface of the hydrogen storage alloy, resulting in a problem in that the internal pressure of the battery increases. In addition, in method 3, the three-phase interface is easily formed, but P
The dispersibility of TFE into the hydrogen storage alloy electrode layer is poor. That is, PTFE is distributed intensively on the electrode surface, smoothing the electrode surface and coating the electrode surface, resulting in poor oxygen gas permeability. In addition, it does not form into a sheet, has poor uniformity in filling, press-fitting, or coating the support, and has no reproducibility in characteristics such as battery internal pressure at the end of charging. In particular, when a three-dimensional support is used, the filling process becomes extremely difficult due to the formation of a sheet.

本発明は、このような問題点を解決するもので、水素吸
蔵合金の支持体への充填、圧入または塗着を均一かつ容
易にし、さらに電池充電時の電池内圧の上昇を抑制する
ことを目的とするものである。
The present invention is intended to solve these problems, and aims to uniformly and easily fill, press fit, or apply a hydrogen storage alloy to a support, and further to suppress an increase in battery internal pressure during battery charging. That is.

課題を解決するだめの手段 これらの課題を解決するために、本発明は、水素吸蔵合
金粉末とフン素樹脂とを混合し、これを加圧してノート
とし、その後、このシートを粉砕して得られる粉砕物を
支持体に充填、圧入または、塗着するものである。
Means for Solving the Problems In order to solve these problems, the present invention mixes a hydrogen storage alloy powder and a fluorine resin, pressurizes the mixture to form a notebook, and then crushes this sheet to obtain a notebook. The pulverized material is filled, press-fitted, or coated onto a support.

作  用 この構成によシ、PTFEの水素吸蔵合金表面への均一
な分散による、水素吸蔵合金表面の三相界面が充分にな
る。また、再粉砕により、水素吸蔵合金への酸素ガスの
透過性が向上し、支持体への充填、圧入または、塗着工
程が、容易かつ均一となシ、過充電時の電池内圧が再現
性よく低下し、電池性能が向上することとなる。
Function: With this configuration, the three-phase interface on the surface of the hydrogen storage alloy becomes sufficient due to uniform dispersion of PTFE on the surface of the hydrogen storage alloy. In addition, re-grinding improves the permeability of oxygen gas to the hydrogen storage alloy, making the filling, press-fitting, or coating process into the support easy and uniform, and the battery internal pressure during overcharging is reproducible. This results in improved battery performance.

実施例 以下、本発明をその実施例により説明する。負極に用い
る水素吸蔵合金は、MmN i 3.s5”o、4”o
、a”o、7sを用いた。希土類元素の混合物であるミ
ツシュメタルMm (La :約26重量% 、 Co
 :約52重量%。
EXAMPLES Hereinafter, the present invention will be explained with reference to examples. The hydrogen storage alloy used for the negative electrode is MmN i 3. s5”o, 4”o
, a"o, 7s. Mitsushmetal Mm (La: about 26% by weight, Co
: Approximately 52% by weight.

Nd:約18重fi%、Pr:約6重量%他)とNi 
、Mn 。
Nd: about 18% by weight, Pr: about 6% by weight, etc.) and Ni
, Mn.

Al、Coの各試料をアーク溶解炉に入れて、1o−4
〜10−”Torr  まで真空状態にした後、アルゴ
ンガス雰囲気中(減圧状態)でアーク放電し、加熱溶解
させた。試料の均質化を図るため、真空中、1o60″
Cで6時間、熱処理を行なった。得られた合金を粗粉砕
後、ボールミルで38μm以下の@粉末にした。
Each sample of Al and Co was put into an arc melting furnace and heated to 1o-4.
After creating a vacuum to ~10-" Torr, arc discharge was performed in an argon gas atmosphere (reduced pressure) to heat and melt the sample. In order to homogenize the sample, it was heated to 1060" in vacuum.
Heat treatment was performed at C for 6 hours. The obtained alloy was coarsely ground and then made into powder with a particle size of 38 μm or less using a ball mill.

以上のようにして得た合金粉末を用い、実施例として、 (a)  結着剤としてPTFE粉末を用い、PTFE
3wt%と合金粉末97wtチとを混合し、PTFEを
繊維化させた後、合剤粉末を多孔度が50%となる様に
加圧しシート化させ、前記シートを合剤の平均粒子径が
20μmとなる様に再粉砕して粉末を得、有機溶剤と混
合しペースト状にした後、多孔度96%の発泡状ニッケ
ル多孔体へ充填した。
Using the alloy powder obtained as described above, as an example, (a) using PTFE powder as a binder, PTFE
3 wt% and 97 wt. The powder was re-pulverized to give a powder, mixed with an organic solvent to form a paste, and then filled into a foamed nickel porous body with a porosity of 96%.

比較例として、 (b)  結着剤としてPTFE粉末を用い、PTFE
粉末3wt% と合金粉末97wt% とを有機溶剤と
混合し、ペースト状にした後、多孔度95チの発泡状ニ
ッケル多孔体へ充填した。
As a comparative example, (b) using PTFE powder as a binder, PTFE
3 wt % of the powder and 97 wt % of the alloy powder were mixed with an organic solvent and made into a paste, which was then filled into a foamed nickel porous body with a porosity of 95 inches.

(C)結着剤として1,5wt%のPVA水溶液ど合金
粉末とを混合し、ペースト状にした後、多孔度96%の
発泡状ニッケル多孔体に充填した。
(C) A 1.5 wt % PVA aqueous solution and alloy powder were mixed as a binder to form a paste, which was then filled into a foamed nickel porous body with a porosity of 96%.

(a) 、 (b) 、 (c)は、それぞれ、乾燥後
、比重1.30のKOH水溶液中に50bで12時間浸
漬し、水洗、乾燥後、加圧し、AAサイズの寸法(39
×80 x o、5fl )に切断し、充放電可能容量
が1600mAh  である負極板(a)、Φ) 、 
Cc)を得た。この電極と公知の発泡メタル式ニッケル
正極とを組み合わせて、容量100100OのAAサイ
ズの密閉形蓄電池を構成した。電池内圧は、電池ケース
底部に1φの穴をあけ、圧力センサーを取り付けた固定
装置に電池を固定し測定した。電池内圧測定時の充電は
、I CmA までの種々の充電率で、正極容量の16
0%まで行ない、その時点における、電池内圧を、その
充電率における電池内圧とした。
After drying, (a), (b), and (c) were respectively immersed in a KOH aqueous solution with a specific gravity of 1.30 at 50B for 12 hours, washed with water, dried, and pressurized to obtain the dimensions of AA size (39
Negative electrode plate (a), Φ) cut into ×80 x o, 5fl) and having a charge/discharge capacity of 1600mAh,
Cc) was obtained. This electrode was combined with a known foamed metal nickel positive electrode to construct an AA size sealed storage battery with a capacity of 100,100 O. The internal pressure of the battery was measured by making a 1φ hole in the bottom of the battery case and fixing the battery to a fixing device equipped with a pressure sensor. Charging at the time of battery internal pressure measurement was performed at various charging rates up to I CmA, and the positive electrode capacity was 16
The battery was charged to 0%, and the battery internal pressure at that point was taken as the battery internal pressure at that charging rate.

第1図に、それぞれ実施例(a)及び、比較例(b)。FIG. 1 shows an example (a) and a comparative example (b), respectively.

(C)の負極板を含む電池を、充電率0.60mAで、
充電した場合の、充電容量に対する電池内圧の上昇挙動
を示した。aが実施例(a)、bが比較例(b)、Cが
比較例(C)の負極をそれぞれ用いて構成した電池のも
のである。aとCを比較すると明らかな様に、撥水性の
PTFEを結着剤として用いた場合、1ao%充電時の
電池内圧は、3.2kv−備となり、親水性のPVAを
結着剤として用いた場合(16゜チ充電時でs、skg
−CM)よりも低下した。
A battery containing the negative electrode plate of (C) was charged at a charging rate of 0.60 mA.
The behavior of the battery internal pressure increasing with respect to the charging capacity when charging is shown. A is a battery constructed using the negative electrode of Example (a), b is a comparative example (b), and C is a battery constructed using the negative electrode of comparative example (C), respectively. As is clear from comparing a and C, when water-repellent PTFE is used as a binder, the internal pressure of the battery at 1ao% charge is 3.2 kV, and when hydrophilic PVA is used as a binder, (s, skg when charging at 16°
-CM).

これは、実施例aにおいては、PTFEにより水素吸蔵
合金表面に三相界面が付与されるため、比較例Cよりも
酸素ガス吸収能力が向上す7るためである。また、比較
例すは、実施例aよりも電池内圧が高くなる。これは、
比較例すにおいては、PTFEが繊維化していないため
に、水素吸蔵合金との結着性が悪く、また、PTFHに
よる水素吸蔵合金の被覆面積が少ないため、三相界面が
充分にできておらず、電池内圧が実施例aよシも上昇す
るためである。
This is because in Example A, a three-phase interface is provided to the surface of the hydrogen storage alloy by PTFE, so that the oxygen gas absorption ability is improved7 compared to Comparative Example C. Further, in Comparative Example 2, the battery internal pressure is higher than in Example A. this is,
In Comparative Examples, the PTFE was not fibrous, so it had poor binding properties with the hydrogen storage alloy, and the area covered by the hydrogen storage alloy with PTFH was small, so a three-phase interface was not formed sufficiently. This is because the battery internal pressure increases in Example A as well.

次に、本発明におけるPTFEの添加量の最適値を求め
た。水素吸蔵合金電極としては、実施例aにおいて、P
TFEの添加量を0.δ〜5 、Ow を係の範囲で変
化させ、同様な製法で作成した電極を用いた。第2図に
、PTFE添加量と0 、50 mAの充電率で正極容
量の150%充電した際の電池内圧との関係を示した。
Next, the optimum value of the amount of PTFE added in the present invention was determined. As the hydrogen storage alloy electrode, in Example a, P
The amount of TFE added was 0. Electrodes prepared by the same manufacturing method were used while changing δ~5 and Ow within the ranges shown above. FIG. 2 shows the relationship between the amount of PTFE added and the battery internal pressure when the battery was charged to 150% of the positive electrode capacity at charging rates of 0 and 50 mA.

この図から、PTFEの添加量が0.5〜4.5wt 
%の範囲において、0.50mAの充電率で電池内圧が
6却・(Ig−2以下となった。
From this figure, the amount of PTFE added is 0.5 to 4.5wt.
In the range of 0.50 mA, the internal pressure of the battery became 6°C.(Ig-2 or less).

PTFEの添加量は、ごく少量でも効果はあるが、極板
強度などの実用上の面から0.5wt% 以上が適当で
ある。また、負極の高エネルギー密度化を考慮すると、
4.5wt%以上は好ましくない。以上より、PTFE
の添加量は0.5〜4.5wt% が適当である。
Although a very small amount of PTFE is effective, it is appropriate to add 0.5 wt% or more from a practical standpoint such as the strength of the electrode plate. Also, considering the high energy density of the negative electrode,
A content of 4.5 wt% or more is not preferable. From the above, PTFE
The appropriate amount of addition is 0.5 to 4.5 wt%.

次に、実施例aにおける水素吸蔵合金7−トの多孔度を
10〜70%の範囲で変化させ、同様な製法で作成した
水素吸蔵合金電極を負極として用い、前記シートの多孔
度の最適値を検討した。
Next, the porosity of the hydrogen storage alloy 7-t in Example a was varied in the range of 10 to 70%, and a hydrogen storage alloy electrode prepared by the same manufacturing method was used as a negative electrode, and the porosity of the sheet was adjusted to the optimum value. It was investigated.

PTFEと水素吸蔵合金との混合物を加圧しシート化す
る工程において、シートの多孔度が50%以上であると
、0.5CmA の充電率で150%充電した際の電池
内圧は6に9−011−2 以上となり、シートの多孔
度が50%の場合の電池内圧、3.2鱈・α−2よりも
1.8蛇・α  以上電池内圧が上昇する。シートの多
孔度が50%以下の場合には、150%充電時の電池内
圧は、多孔度をそれ以上小さくしてもほとんど変化しな
い。このことより、PTFEと水素吸蔵合金とを加圧し
、シート化する工程においては、シートの多孔度を60
%以下とするのが適当である。
In the process of pressurizing a mixture of PTFE and hydrogen storage alloy to form a sheet, if the porosity of the sheet is 50% or more, the internal pressure of the battery when charged to 150% at a charging rate of 0.5 CmA is 6.9-011 -2 or more, and the battery internal pressure increases by 1.8 h.α or more when the sheet porosity is 50%, which is 3.2 h.α-2. When the porosity of the sheet is 50% or less, the battery internal pressure at 150% charge hardly changes even if the porosity is further reduced. From this, in the process of pressurizing PTFE and hydrogen storage alloy to form a sheet, the porosity of the sheet is set to 60.
% or less is appropriate.

また、再粉砕後の水素吸蔵合金とPTFEとの合剤粉末
の平均粒子径と、電池内圧との関係を検討した。その際
、負極は、実施例h′における合剤平均粒子径を5μm
〜900μmの範囲で変化させ、同様な製法で作成した
水素吸蔵合金電極を用いた。
Furthermore, the relationship between the average particle diameter of the mixture powder of the hydrogen storage alloy and PTFE after re-pulverization and the battery internal pressure was investigated. At that time, the negative electrode had an average particle size of the mixture in Example h' of 5 μm.
Hydrogen storage alloy electrodes made using the same manufacturing method were used, with the thickness being varied within the range of ~900 μm.

合剤の平均粒子径が10μm以下となると、0.50m
Aの充電率における150%過充電時の電池内圧は6k
y−Qll−2となり、電池特性か劣化した。
When the average particle diameter of the mixture is 10 μm or less, 0.50 m
The internal pressure of the battery at 150% overcharging at charging rate A is 6k.
y-Qll-2, and the battery characteristics deteriorated.

しかし、合剤の平均粒子径が大きくなればなるほど、支
持体への充填、圧入または塗着の均一性が悪くなる。本
発明によれば、合剤の平均粒子径は、10μm〜600
μmが好ましい。
However, the larger the average particle diameter of the mixture, the worse the uniformity of filling, press-fitting, or coating onto the support. According to the present invention, the average particle diameter of the mixture is 10 μm to 600 μm.
μm is preferred.

なお、撥水性の結着剤としてはPTFEの他に、テトフ
ルオロエチレンーヘキサフルオロプロピレン共重合体、
6フツ化プロピレン等のフッ素樹脂、塩化ビニリデン、
ポリスチレン、ポリイソブチレンなども使用できる。
In addition to PTFE, examples of water-repellent binders include tetrafluoroethylene-hexafluoropropylene copolymer,
Fluororesins such as propylene hexafluoride, vinylidene chloride,
Polystyrene, polyisobutylene, etc. can also be used.

発明の効果 以上のように、本発明によれば、水素吸蔵合金とフッ素
樹脂とを混合し、前記フッ素樹脂を繊維化し、その後、
加圧してシート化し、前記シートを再粉砕して得た粉末
を支持体に充填、圧入または塗着することによ□って、
水素吸蔵合金の結着剤として、繊維化したフッ素樹脂を
用いた場合に、支持体への均一な充填、圧入、扮着を容
易にし、また、電極全体の水素吸蔵合金表面は撥水性を
付与することにより、酸素ガス吸収能力を向上させる結
果、過充電時に電池内圧の上昇を抑制した、密閉形アル
カリ蓄電池の提供を可能にするという効果が得られる。
Effects of the Invention As described above, according to the present invention, a hydrogen storage alloy and a fluororesin are mixed, the fluororesin is made into fibers, and then,
By pressurizing it into a sheet, re-pulverizing the sheet, and filling, press-fitting or coating the powder into a support,
When fibrous fluororesin is used as a binder for the hydrogen storage alloy, it facilitates uniform filling, press-fitting, and adhesion to the support, and the hydrogen storage alloy surface of the entire electrode has water repellency. As a result of improving the oxygen gas absorption capacity, it is possible to provide a sealed alkaline storage battery that suppresses an increase in battery internal pressure during overcharging.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は結着剤の違いによる0、50mA充電率での充
電電気量と電池内圧との関係を示す図、第2図は結着剤
添加量と0.50mA充電率での160チ充電時の電池
内圧との関係を示す図である。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名覧旭
内兵/璧・C/WL−2−
Figure 1 shows the relationship between the amount of electricity charged and battery internal pressure at 0 and 50 mA charging rates depending on the binder used, and Figure 2 shows the relationship between the amount of binder added and the 160-chi charge at 0.50 mA charging rate. FIG. Name of agent: Patent attorney Toshio Nakao and one other person

Claims (4)

【特許請求の範囲】[Claims] (1)活物質である水素を電気化学的に吸蔵・放出する
水素吸蔵合金粉末とフッ素樹脂との混合物を加圧してシ
ートとする工程、前記シートを粉砕する工程、および、
前記粉砕物を支持体に充填、圧入または塗着後、所望の
厚さに加圧する工程を有することを特徴とする水素吸蔵
合金電極の製造法。
(1) A step of pressurizing a mixture of a fluororesin and a hydrogen storage alloy powder that electrochemically absorbs and releases hydrogen as an active material into a sheet, a step of pulverizing the sheet, and
A method for producing a hydrogen storage alloy electrode, comprising the step of filling, press-fitting or coating the pulverized material into a support, and then pressurizing it to a desired thickness.
(2)前記フッ素樹脂は、粉末状又は、ディスパージョ
ン状態であり、前記混合物中に0.5〜4.5wt%含
有されていることを特徴とする特許請求の範囲第1項記
載の水素吸蔵合金電極の製造法。
(2) The hydrogen storage according to claim 1, wherein the fluororesin is in a powder or dispersion state and is contained in the mixture in an amount of 0.5 to 4.5 wt%. Method for manufacturing alloy electrodes.
(3)前記シートとする工程において、前記シートの多
孔度が50%以下となるまで加圧することを特徴とする
特許請求の範囲第1項記載の水素吸蔵合金電極の製造法
(3) The method for producing a hydrogen storage alloy electrode according to claim 1, wherein in the step of forming the sheet, pressure is applied until the porosity of the sheet becomes 50% or less.
(4)前記シートを粉砕し、水素吸蔵合金とフッ素樹脂
との合剤粉末を得る工程で得られる、合剤の平均粒子径
が、10〜500μmであることを特徴とする特許請求
の範囲第1項記載の水素吸蔵合金電極の製造法。
(4) The average particle diameter of the mixture obtained in the step of pulverizing the sheet to obtain a mixture powder of the hydrogen storage alloy and the fluororesin is 10 to 500 μm. A method for producing a hydrogen storage alloy electrode according to item 1.
JP63097092A 1988-04-20 1988-04-20 Manufacturing method of hydrogen storage alloy electrode Expired - Lifetime JP2629258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63097092A JP2629258B2 (en) 1988-04-20 1988-04-20 Manufacturing method of hydrogen storage alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63097092A JP2629258B2 (en) 1988-04-20 1988-04-20 Manufacturing method of hydrogen storage alloy electrode

Publications (2)

Publication Number Publication Date
JPH01267956A true JPH01267956A (en) 1989-10-25
JP2629258B2 JP2629258B2 (en) 1997-07-09

Family

ID=14182996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63097092A Expired - Lifetime JP2629258B2 (en) 1988-04-20 1988-04-20 Manufacturing method of hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JP2629258B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003026046A1 (en) 2001-09-17 2003-03-27 Kawasaki Jukogyo Kabushiki Kaisha Active material for cell and its manufacturing method
JP2003197187A (en) * 2002-12-12 2003-07-11 Kawasaki Heavy Ind Ltd Active material for battery and its manufacturing method
US6899978B2 (en) * 2000-12-18 2005-05-31 Johan Christiaan Fitter Electrochemical cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6899978B2 (en) * 2000-12-18 2005-05-31 Johan Christiaan Fitter Electrochemical cell
WO2003026046A1 (en) 2001-09-17 2003-03-27 Kawasaki Jukogyo Kabushiki Kaisha Active material for cell and its manufacturing method
JP2003197187A (en) * 2002-12-12 2003-07-11 Kawasaki Heavy Ind Ltd Active material for battery and its manufacturing method

Also Published As

Publication number Publication date
JP2629258B2 (en) 1997-07-09

Similar Documents

Publication Publication Date Title
TW567633B (en) Electrode material for rechargeable lithium battery, electrode structural body comprising said electrode material, rechargeable lithium battery having said electrode structural body, process for the production of said electrode structural body
US5529857A (en) Hydrogen-absorbing alloy electrode and process for producing the same
US5034289A (en) Alkaline storage battery and method of producing negative electrode thereof
US5360687A (en) Hydrogen-occulusion electrode
JP3138120B2 (en) Metal hydride storage battery
JP3345889B2 (en) Manufacturing method of alkaline storage battery and its negative electrode
JP3499924B2 (en) Hydrogen storage alloy electrodes for metal-hydride alkaline storage batteries
JPH01267956A (en) Manufacture of hydrogen absorption alloy electrode
US3888695A (en) Rechargeable cell having improved cadmium negative electrode and method of producing same
JP2689473B2 (en) Hydrogen storage alloy electrode and its manufacturing method
US20040214083A1 (en) Nickel-metal hydride storage battery and method for producing negative electrode thereof
JP3156485B2 (en) Nickel electrode for alkaline storage battery
JP4179648B2 (en) Polytetrafluoroethylene dispersion, method for producing the same, and method for producing a hydrogen storage alloy electrode using the dispersion
JP3678109B2 (en) Nickel-hydrogen storage battery and method for producing hydrogen storage alloy negative electrode used therefor
JPH0677450B2 (en) Sealed nickel-hydrogen battery
JP3101622B2 (en) Nickel-hydrogen alkaline storage battery
JP3521585B2 (en) Hydrogen storage alloy plates for sealed nickel-hydrogen storage batteries
JP2001266860A (en) Nickel hydrogen storage battery
JP3530302B2 (en) Method for producing hydrogen storage alloy electrode
JP3222902B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH1060361A (en) Hydrogen-occluding alloy electrode
JPH03295177A (en) Sealed alkaline storage battery
JP2854920B2 (en) Nickel-metal hydride battery
JP3148409B2 (en) Stationary batteries
JPH06168719A (en) Negative electrode plate for nickel-hydrogen battery, manufacture thereof, and nickel-hydrogen battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080418

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 12