JP3521585B2 - Hydrogen storage alloy plates for sealed nickel-hydrogen storage batteries - Google Patents

Hydrogen storage alloy plates for sealed nickel-hydrogen storage batteries

Info

Publication number
JP3521585B2
JP3521585B2 JP32534395A JP32534395A JP3521585B2 JP 3521585 B2 JP3521585 B2 JP 3521585B2 JP 32534395 A JP32534395 A JP 32534395A JP 32534395 A JP32534395 A JP 32534395A JP 3521585 B2 JP3521585 B2 JP 3521585B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
electrode plate
storage alloy
ethylene
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32534395A
Other languages
Japanese (ja)
Other versions
JPH09161803A (en
Inventor
康太郎 小林
裕治 石井
孝夫 小倉
敏 箕浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Kobe Electric Machinery Co Ltd
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP32534395A priority Critical patent/JP3521585B2/en
Publication of JPH09161803A publication Critical patent/JPH09161803A/en
Application granted granted Critical
Publication of JP3521585B2 publication Critical patent/JP3521585B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、水素を吸蔵、放出
する水素吸蔵合金を負極活物質として用いる密閉形ニッ
ケル−水素蓄電池用水素吸蔵合金極板に関するものであ
る。 【0002】 【従来の技術】ニッケル−水素蓄電池等のアルカリ蓄電
池では、水素を吸蔵、放出する水素吸蔵合金を活物質と
する水素吸蔵合金極板を負極板として用いている。この
負極板(水素吸蔵合金極板)は、水素吸蔵合金粉末と結
着剤とを混練したペーストを集電体に充填してペースト
式活物質層を形成して作る。結着剤としては、メチルセ
ルロース、ヒドロキシプロピルメチルセルロース、カル
ボキシメチルセルロース等のセルロース誘導体やポリビ
ニルアルコール、ポリエチレンオキサイド等の水溶性高
分子やポリテトラフルオロエチレン等を用いている。 【0003】この種の電池では、下記に示す電気化学的
触媒反応と化学反応の両方の反応式で充電末期に正極板
から発生する酸素ガスを負極板(水素吸蔵合金極板)で
吸収して、電池の密閉化を可能にしている。 【0004】 【化1】 通常は(1)及び(2)の両方の反応式で酸素ガスを吸
収しているが、上述した従来の結着剤を用いた場合は、
上記(1)の電気化学的触媒反応が遅くなるため、電気
化学的触媒反応が酸素ガス吸収反応の律速となる。その
ため、酸素ガス吸収性能が低くなるという問題があっ
た。そこで特公平6−77450号公報に示すようにペ
ースト式活物質層の上にカーボン粉末を含むカーボン層
を形成して電気化学的触媒反応を促進することが提案さ
れた。 【0005】 【発明が解決しようとする課題】しかしながら、ペース
ト式活物質層の上にカーボン層を形成すると、酸素ガス
吸収性能は向上するものの、カーボン層により水素吸蔵
合金の電解液に対する濡れ性が低下し、電池の容量が低
下する問題があった。また、従来の結着剤を用いた水素
吸蔵合金極板では、活物質が集電体から脱落しやすいと
いう問題があった。 【0006】本発明の目的は、酸素ガス吸収性能を高
め、しかも電池の容量低下を抑制できる密閉形ニッケル
−水素蓄電池用水素吸蔵合金極板を提供することにあ
る。 【0007】本発明の他の目的は、ペースト式活物質層
の集電体からの脱落を抑制できる密閉形ニッケル−水素
蓄電池用水素吸蔵合金極板を提供することにある。 【0008】 【課題を解決するための手段】上記課題を解決するため
に本発明は、ミッシュメタルとニッケルとの合金を主成
分とする水素吸蔵合金と結着剤とを含有するペースト式
活物質層が集電体上に形成され、前記ペースト式活物質
層の上にカーボン層が形成されている密閉形ニッケル−
水素蓄電池用水素吸蔵合金極板において、前記結着剤と
してエチレン−酢酸ビニル−長鎖ビニルエステル共重合
体を用い、 前記ペースト式活物質層の単位表面積に対
する前記カーボン層の重量が0.05〜5 mg/cm であ
り、前記エチレン−酢酸ビニル−長鎖ビニルエステル共
重合体の前記水素吸蔵合金に対する重量割合が0.1〜
3%であることを特徴とする。本発明では、結着剤とし
てエチレン−酢酸ビニル系樹脂の一種であるエチレン−
酢酸ビニル−長鎖ビニルエステル共重合体を用いる。従
来用いていたセルロース誘導体等の結着剤は水素吸蔵合
金の表面を覆うため、カーボン層により水素吸蔵合金の
電解液に対する濡れ性が低下すると、水素吸蔵合金の活
性化が著しく阻害される。これに対してエチレン−酢酸
ビニル−長鎖ビニルエステル共重合体は水素吸蔵合金の
表面を覆うことがないため、本発明のように、結着剤と
してエチレン−酢酸ビニル−長鎖ビニルエステル共重合
を用いると水素吸蔵合金の活性化が阻害されるのを防
ぐことができる。そのため、カーボン層を形成しても電
池の容量低下を抑制できる。またエチレン−酢酸ビニル
−長鎖ビニルエステル共重合体を結着剤として用いると
極板の可撓性を高くできるので、活物質の集電体から脱
落を抑制できる。 【0009】 【発明の実施の形態】本発明は、水素吸蔵合金と結着剤
とを含有するペースト式活物質層が集電体上に形成さ
れ、このペースト式活物質層の上にカーボン層が形成さ
れている密閉形ニッケル−水素蓄電池用水素吸蔵合金極
板を対象にする。ここでいうペースト式活物質層とは活
物質ペーストにより形成した層または活物質ペーストを
乾燥して形成した層である。またカーボン層とはカーボ
ンまたはカーボンを主成分とする層である。例えば、カ
ーボン粉末で形成した層またはカーボン粉末と結着剤と
を混練したペーストで形成した層等である。本発明で
は、結着剤としてエチレン−酢酸ビニル−長鎖ビニルエ
ステル共重合体を用いる。エチレン−酢酸ビニル−長鎖
ビニルエステル共重合体とは、エチレン、酢酸ビニルを
含む共重合体であり、酢酸ビニルの含有量が50%以上
のものをいう。ペースト式活物質層の単位表面積に対す
るカーボン層の重量は0.05〜5 mg/cmが好まし
い。0.05 mg/cmを下回ると酸素ガス吸収性能が
低下する。5 mg/cmを上回ると水素吸蔵合金の活性
化が阻害されて電池の容量が低下する。 【0010】また、エチレン−酢酸ビニル−長鎖ビニル
エステル共重合体の水素吸蔵合金に対する重量割合は
0.1〜3%が好ましい。0.1重量%を下回ると
着性が低下して活物質が集電体から剥離しやすくなる。
3重量%を上回ると酸素ガス吸収性能が低下して電池
の内圧が上昇しやすくなる。 【0011】 【実施例】(実施例1〜8) 各実施例1〜8の水素吸蔵合金極板は、次のようにして
作った。まず、ランタンを主体としたMm(ミッシュメ
タル)とNiとの合金と、所定量のCo、Al、Mnと
をアーク溶解で加熱溶解した後、これを冷却した。そし
てこれをボールミルを用いて平均径100μm程度の粉
末に機械粉砕して水素吸蔵合金を得た。次に水素吸蔵合
金粉末と、該水素吸蔵合金粉末に対して0.5重量%の
ニッケル粉末と、該水素吸蔵合金粉末に対して1.06
重量%のエチレン−酢酸ビニル−長鎖ビニルエステル共
重合体エマルジョンからなる結着溶液と、該水素吸蔵合
金粉末に対して0.5重量%のメチルセルロースとを混
練して粘度30,000 mPa・s のペーストを作った。
エチレン−酢酸ビニル−長鎖ビニルエステル共重合体エ
マルジョンは水中にエチレン−酢酸ビニル−長鎖ビニル
エステル共重合体を分散させたエマルジョンであり、ガ
ラス転移温度(Tg)が−30℃である。本実施例で
は、住友化学工業株式会社が、スミカフレックスの商品
名で販売しているエチレン−酢酸ビニル−長鎖ビニルエ
ステル共重合体エマルジョンを用いた。また水素吸蔵合
金粉末に対して1.06重量%のエマルジョンを用いる
ことにより、水素吸蔵合金粉末に対して0.5重量%の
結着剤(エチレン−酢酸ビニル−長鎖ビニルエステル共
重合体)が添加されることになる。次にペーストを厚み
60μmの導電性支持基体からなる集電体の両面にドク
ターブレード法により塗着してから乾燥、プレスを行
い、極板素材を得た。次にケッチェンブラック(カーボ
ン粉末)50重量部、メチルセルロース50重量部から
なるカーボン粉末を分散した分散液を作った。次に極板
素材の表面に、この分散液をロース転写法により塗着
し、乾燥してカーボン層を形成した。これによりペース
ト式活物質層の単位表面積に対するカーボン層の重量が
表1に示すように0.04〜7.0 mg/cmの範囲で
異なる各実施例1〜8の極板を完成した。 【0012】(比較例1) 本比較例の水素吸蔵合金極板は、極板素材の表面にカー
ボン層を形成せず、その他は実施例1〜8の極板と同様
にして作った。 【0013】(比較例2) 本比較例の水素吸蔵合金極板は、エチレン−酢酸ビニル
−長鎖ビニルエステル共重合体の代りにポリビニルアル
コールを結着剤として用い、該結着剤を水素吸蔵合金粉
末に対して1重量%添加した。またペースト式活物質層
の単位表面積に対するカーボン層の重量は0.1 mg/cm
とした。そして、その他は実施例1〜8の極板と同
様にして作った。 【0014】(比較例3) 本比較例の水素吸蔵合金極板は、エチレン−酢酸ビニル
−長鎖ビニルエステル共重合体の代りにポリエチレンオ
キサイドを結着剤として用い、該結着剤を水素吸蔵合金
粉末に対して1重量%添加した。またペースト式活物質
層の単位表面積に対するカーボン層の重量は0.1 mg/
cmとした。そして、その他は実施例1〜8の極板と
同様にして作った。 【0015】 【表1】 次に上記各極板における活物質の集電体からの脱落程
度を調べた。具体的には、上記各極板を直径3mmの軸に
巻き付けた後に、これを巻き戻して各極板の活物質の集
電体からの脱落率(捲回脱落率)を測定した。捲回脱落
率は捲回試験前の極板重量から捲回試験後の極板重量を
引いた値を捲回試験前の極板重量で割った値である。上
記表1にその測定結果を示す。本表よりエチレン−酢酸
ビニル−長鎖ビニルエステル共重合体を結着剤として用
いた実施例1〜8及び比較例1の極板は、ポリビニルア
ルコール、ポリエチレンオキサイドを結着剤として用い
た比較例2,3の極板に比べて捲回脱落率が低いのが分
る。これは、エチレン−酢酸ビニル−長鎖ビニルエステ
ル共重合体を結着剤として用いることにより極板の可撓
性が高くなったためである。 【0016】次に各極板の特性を調べるために各極板を
用いて密閉形ニッケル−水素蓄電池を作った。まず水酸
化ニッケルを活物質とする容量1300 mAhのニッケル
極からなる公知の正極板と上記各極板とをナイロン製の
不織布からなるセパレータを介して積層しながら上記各
極板が最外周になるように捲回して捲回式極板群を作っ
た。次に各極板群を円筒形電池容器に挿入後、極板群に
濃度31重量%の水酸化カリウム水溶液からなる電解液
をそれぞれ注液して公称容量1300 mAhの正規容量規
制の密閉形ニッケル−水素蓄電池を作った。 【0017】最初に各電池を用いて初期容量試験を行っ
た。まず、各電池を公知の活性化処理を施して水素吸蔵
合金に水素を吸蔵させた後、0.1 CmAで16時間充電
し、0.2 CmAで放電する充放電を3サイクル繰り返し
て、各サイクル時の放電容量を測定した。上記表1にそ
の測定結果を示す。本表よりポリビニルアルコール、ポ
リエチレンオキサイドを結着剤として用いた比較例2,
3の極板を用いた電池は、3サイクル目においても十分
な容量が得られないのが分る。これに対して実施例1〜
の極板を用いた電池では、初期から電池容量が高いの
が分る。特にペースト式活物質層の単位表面積に対す
るカーボン層の重量が5.0 mg/cm以下の極板(実
施例1〜7)を用いると電池容量が高められるのが分
る。これは比較例2,3の極板を用いると負極の活性
化が阻害されるためである。電池は正極容量規制である
ため、負極容量が電池容量に影響し難いものの、負極の
活性化が阻害されると所定の正負極容量比が得られ
ず、電池は容量が低下する。 【0018】次に各電池の内圧特性を調べた。具体的に
は、各電池の缶底に1mmの孔をあけて圧力センサを電池
内に配置した。そして、各電池を1 CmAで90分間充電
(150%充電)して各電池の電池内圧を測定した。上
記表1にその測定結果を示す。本表よりカーボン層を形
成しない比較例1の極板を用いると内圧が高くなるのが
分る。これに対して実施例1〜8の極板を用いた電池で
は、電池内圧の上昇を抑えられるのが分る。特にペー
スト式活物質層の単位表面積に対するカーボン層の重量
が0.05 mg/cm以上の極板(実施例2〜8)を用
いると電池容量が高められるのが分る。またポリビ
ニルアルコール、ポリエチレンオキサイドを結着剤とし
て用いた比較例2,3の極板でも比較的内圧が高くな
るのが分る。これはポリビニルアルコール、ポリエチレ
ンオキサイドは水素吸蔵合金を覆うため、比較例2,3
の極板では、酸素ガス吸収性能が低下したと考えられ
る。 【0019】また各試験よりペースト式活物質層の単位
表面積に対するカーボン層の重量が0.05〜5 mg/cm
の極板を用いると、内圧特性及び初期容量の両特性
を改善できるのが分る。 【0020】なお本実施例では、エチレン−酢酸ビニル
系樹脂としてエチレン−酢酸ビニル−長鎖ビニルエステ
ル共重合体を用いたが、エチレン−酢酸ビニル−アクリ
ル共重合体等の他のエチレン−酢酸ビニル系樹脂を結着
剤として用いてもよい。ガラス転移温度(Tg)が異な
るエチレン−酢酸ビニル−アクリル共重合体を用いて
も、エチレン−酢酸ビニル−長鎖ビニルエステル共重合
体を用いた場合と同じような試験結果を得られたのが確
認された。 【0021】以下、明細書に記載した発明についてその
構成を示す。 【0022】(1) ミッシュメタルとニッケルとの合
金を主成分とする水素吸蔵合金と結着剤とを含有するペ
ースト式活物質層が集電体上に形成され、前記ペースト
式活物質層の上にカーボン層が形成されている密閉形ニ
ッケル−水素蓄電池用水素吸蔵合金極板において、前記
結着剤としてエチレン−酢酸ビニル−長鎖ビニルエステ
ル共重合体を用い、 前記ペースト式活物質層の単位表
面積に対する前記カーボン層の重量が0.05〜5 mg/
cmであり、前記エチレン−酢酸ビニル−長鎖ビニルエ
ステル共重合体の前記水素吸蔵合金に対する重量割合が
0.1〜3%であることを特徴とする密閉形ニッケル−
水素蓄電池用水素吸蔵合金極板。 【0023】 【発明の効果】エチレン−酢酸ビニル−長鎖ビニルエス
テル共重合体は水素吸蔵合金の表面を覆うことがない。
そのため、本発明のように、結着剤としてエチレン−酢
酸ビニル−長鎖ビニルエステル共重合体を用いると、カ
ーボン層により水素吸蔵合金の電解液に対する濡れ性が
低下しても水素吸蔵合金の活性化が阻害されるのを防ぐ
ことができる。そのため、カーボン層を形成して酸素ガ
ス吸収性能を高め、しかも電池の容量低下を抑制でき
る。また、エチレン−酢酸ビニル−長鎖ビニルエステル
共重合体を結着剤として用いると極板の可撓性を高く
できるので、活物質の集電体から脱落を抑制できる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealed type nickel using a hydrogen storage alloy which stores and releases hydrogen as a negative electrode active material.
The present invention relates to a hydrogen storage alloy electrode plate for a Kel-hydrogen storage battery. 2. Description of the Related Art In an alkaline storage battery such as a nickel-hydrogen storage battery, a hydrogen storage alloy electrode plate using a hydrogen storage alloy that stores and releases hydrogen as an active material is used as a negative electrode plate. This negative electrode plate (hydrogen storage alloy electrode plate) is formed by filling a current collector with a paste obtained by kneading a hydrogen storage alloy powder and a binder to form a paste-type active material layer. As the binder, cellulose derivatives such as methylcellulose, hydroxypropylmethylcellulose and carboxymethylcellulose, water-soluble polymers such as polyvinyl alcohol and polyethylene oxide, and polytetrafluoroethylene are used. [0003] In this type of battery, oxygen gas generated from the positive electrode plate at the end of charging is absorbed by the negative electrode plate (hydrogen storage alloy electrode plate) by both the electrochemical catalytic reaction and the chemical reaction shown below. , Making the battery hermetically sealed. [0004] Usually, oxygen gas is absorbed by both the reaction formulas (1) and (2), but when the above-mentioned conventional binder is used,
Since the electrochemical catalytic reaction of the above (1) is slowed down, the electrochemical catalytic reaction becomes the rate-limiting of the oxygen gas absorption reaction. Therefore, there was a problem that the oxygen gas absorption performance was reduced. Therefore, it has been proposed to form a carbon layer containing carbon powder on a paste-type active material layer to promote an electrochemical catalytic reaction as shown in Japanese Patent Publication No. 6-77450. [0005] However, when a carbon layer is formed on the paste-type active material layer, the oxygen gas absorption performance is improved, but the carbon layer reduces the wettability of the hydrogen storage alloy with respect to the electrolytic solution. And the capacity of the battery decreases. Further, in the conventional hydrogen storage alloy electrode plate using a binder, there is a problem that the active material is easily dropped from the current collector. SUMMARY OF THE INVENTION It is an object of the present invention to provide a sealed nickel alloy capable of improving oxygen gas absorption performance and suppressing a decrease in battery capacity.
- to provide a hydrogen storage alloy electrode plate for hydrogen storage battery. Another object of the present invention is to provide a hydrogen-absorbing alloy electrode plate for a sealed nickel-hydrogen storage battery which can prevent the paste-type active material layer from falling off the current collector. [0008] In order to solve the above problems, the present invention mainly comprises an alloy of misch metal and nickel.
Paste containing hydrogen storage alloy and binder
An active material layer is formed on the current collector, and the paste-type active material is
Closed nickel with a carbon layer formed on the layer
In the hydrogen storage alloy electrode plate for a hydrogen storage battery, the binder
Ethylene-vinyl acetate-long chain vinyl ester copolymer
The paste-type active material layer has a
The weight of the carbon layer is 0.05 to 5 mg / cm 2 der to
The ethylene-vinyl acetate-long chain vinyl ester
The weight ratio of the polymer to the hydrogen storage alloy is 0.1 to
It is characterized by 3%. In the present invention, the binder
Ethylene-a kind of ethylene-vinyl acetate resin
A vinyl acetate-long chain vinyl ester copolymer is used. Since a conventionally used binder such as a cellulose derivative covers the surface of the hydrogen storage alloy, if the wettability of the hydrogen storage alloy to the electrolytic solution is reduced by the carbon layer, activation of the hydrogen storage alloy is significantly inhibited. In contrast, ethylene-acetic acid
Since the vinyl-long-chain vinyl ester copolymer does not cover the surface of the hydrogen storage alloy, as in the present invention, ethylene-vinyl acetate-long-chain vinyl ester copolymer is used as a binder.
The use of a body can prevent the activation of the hydrogen storage alloy from being hindered. Therefore, even if the carbon layer is formed, a decrease in the capacity of the battery can be suppressed. Also ethylene-vinyl acetate
-When the long-chain vinyl ester copolymer is used as the binder, the flexibility of the electrode plate can be increased, so that the active material can be prevented from falling off the current collector. DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a paste type active material layer containing a hydrogen storage alloy and a binder formed on a current collector, and a carbon layer formed on the paste type active material layer. The present invention is directed to a hydrogen-absorbing alloy electrode plate for a sealed nickel-metal hydride storage battery in which is formed. Here, the paste-type active material layer is a layer formed from the active material paste or a layer formed by drying the active material paste. The carbon layer is a layer containing carbon or carbon as a main component. For example, a layer formed of carbon powder or a layer formed of a paste obtained by kneading carbon powder and a binder is used. In the present invention, ethylene-vinyl acetate-long-chain vinyl ether is used as a binder.
A steal copolymer is used. Ethylene-vinyl acetate-long chain
The vinyl ester copolymer is a copolymer containing ethylene and vinyl acetate, and has a vinyl acetate content of 50% or more . The weight of the carbon layer per unit surface area of the paste type active material layer is preferably 0.05 to 5 mg / cm 2 . If the amount is less than 0.05 mg / cm 2 , the oxygen gas absorption performance is reduced. If it exceeds 5 mg / cm 2 , the activation of the hydrogen storage alloy is inhibited, and the capacity of the battery decreases. Also, ethylene-vinyl acetate-long chain vinyl
The weight ratio of the ester copolymer to the hydrogen storage alloy is preferably 0.1 to 3%. When the content is less than 0.1% by weight , the binding property is reduced and the active material is easily peeled off from the current collector.
If the content exceeds 3% by weight , the oxygen gas absorption performance is reduced, and the internal pressure of the battery tends to increase. EXAMPLES (Examples 1 to 8) The hydrogen-absorbing alloy electrodes of Examples 1 to 8 were produced as follows. First, an alloy of Mm (mish metal) mainly composed of lanthanum and Ni and a predetermined amount of Co, Al, and Mn were heated and melted by arc melting, and then cooled. This was mechanically pulverized into a powder having an average diameter of about 100 μm using a ball mill to obtain a hydrogen storage alloy. Next, a hydrogen storage alloy powder, 0.5% by weight of nickel powder with respect to the hydrogen storage alloy powder, and 1.06% with respect to the hydrogen storage alloy powder
% By weight of a binder solution consisting of an ethylene-vinyl acetate-long chain vinyl ester copolymer emulsion and 0.5% by weight of methylcellulose based on the hydrogen storage alloy powder, and having a viscosity of 30,000 mPa · s. I made a paste.
The ethylene-vinyl acetate-long chain vinyl ester copolymer emulsion is an emulsion in which an ethylene-vinyl acetate-long chain vinyl ester copolymer is dispersed in water, and has a glass transition temperature (Tg) of -30 ° C. In this example, an ethylene-vinyl acetate-long chain vinyl ester copolymer emulsion sold by Sumitomo Chemical Co., Ltd. under the trade name of Sumikaflex was used. Further, by using 1.06% by weight of the emulsion with respect to the hydrogen storage alloy powder, 0.5% by weight of the binder (ethylene-vinyl acetate-long chain vinyl ester copolymer) with respect to the hydrogen storage alloy powder. Will be added. Next, the paste was applied to both surfaces of a current collector made of a conductive support substrate having a thickness of 60 μm by a doctor blade method, and then dried and pressed to obtain an electrode plate material. Next, a dispersion was prepared by dispersing carbon powder consisting of 50 parts by weight of Ketjen black (carbon powder) and 50 parts by weight of methylcellulose. Next, this dispersion was applied on the surface of the electrode plate material by the loin transfer method, and dried to form a carbon layer. As a result, the electrode plates of Examples 1 to 8 having different weights of the carbon layer with respect to the unit surface area of the paste-type active material layer in the range of 0.04 to 7.0 mg / cm 2 as shown in Table 1 were completed. Comparative Example 1 A hydrogen storage alloy electrode plate of this comparative example was produced in the same manner as the electrode plates of Examples 1 to 8, except that no carbon layer was formed on the surface of the electrode plate material. Comparative Example 2 The hydrogen-absorbing alloy electrode plate of this comparative example uses polyvinyl alcohol as a binder instead of ethylene-vinyl acetate-long chain vinyl ester copolymer, and the binder absorbs hydrogen. 1% by weight was added to the alloy powder. The weight of the carbon layer per unit surface area of the paste-type active material layer was 0.1 mg / cm.
And 2 . The others were made in the same manner as the electrode plates of Examples 1 to 8. Comparative Example 3 The hydrogen-absorbing alloy electrode plate of this comparative example uses polyethylene oxide as a binder instead of ethylene-vinyl acetate-long-chain vinyl ester copolymer, and uses the binder to absorb hydrogen. 1% by weight was added to the alloy powder. The weight of the carbon layer per unit surface area of the paste-type active material layer was 0.1 mg /
cm 2 . The others were made in the same manner as the electrode plates of Examples 1 to 8. [Table 1] Next , the degree of dropping of the active material from the current collector in each electrode plate was examined. Specifically, after each of the above-mentioned electrode plates was wound around a shaft having a diameter of 3 mm, the electrodes were rewound and the rate of dropping of the active material of each electrode plate from the current collector (winding drop rate) was measured. The winding drop-off rate is a value obtained by subtracting the electrode plate weight after the winding test from the electrode weight before the winding test and dividing the value by the electrode weight before the winding test. Table 1 shows the measurement results. From this table, ethylene-acetic acid
The electrode plates of Examples 1 to 8 and Comparative Example 1 using a vinyl-long-chain vinyl ester copolymer as a binder were the electrode plates of Comparative Examples 2 and 3 using polyvinyl alcohol and polyethylene oxide as a binder. It can be seen that the rate of falling off the winding is lower than that of. This is an ethylene-vinyl acetate-long chain vinyl ester
This is because the flexibility of the electrode plate has been increased by using the styrene copolymer as the binder. Next, in order to examine the characteristics of each electrode plate, a sealed nickel-hydrogen storage battery was manufactured using each electrode plate. First, while laminating a known positive electrode plate composed of a nickel electrode having a capacity of 1300 mAh using nickel hydroxide as an active material and the respective electrode plates via a separator made of a nonwoven fabric made of nylon, the respective electrode plates become the outermost periphery. To form a wound electrode plate group. Next, after inserting each electrode plate group into the cylindrical battery container, an electrolyte solution consisting of a 31% by weight aqueous solution of potassium hydroxide was poured into each of the electrode plate groups to form a sealed nickel battery having a nominal capacity of 1300 mAh and a regulated capacity. -Make a hydrogen storage battery. First, an initial capacity test was performed using each battery. First, each battery was subjected to a known activation treatment to store hydrogen in the hydrogen storage alloy, then charged at 0.1 CmA for 16 hours, and charged and discharged at 0.2 CmA for 3 cycles. The discharge capacity during the cycle was measured. Table 1 shows the measurement results. From this table, Comparative Example 2 using polyvinyl alcohol and polyethylene oxide as binders
It can be seen that the battery using the No. 3 electrode plate cannot obtain a sufficient capacity even in the third cycle. In contrast, Examples 1 to
It can be seen that the battery using the electrode plate No. 8 has a high battery capacity from the beginning. In particular , it can be seen that the battery capacity can be increased by using an electrode plate (Examples 1 to 7) in which the weight of the carbon layer per unit surface area of the paste-type active material layer is 5.0 mg / cm 2 or less. This is because the activation of the negative electrode is inhibited when the electrode plates of Comparative Examples 2 and 3 are used. Since the capacity of the battery is regulated by the positive electrode capacity, the negative electrode capacity hardly affects the battery capacity. However, if the activation of the negative electrode is inhibited , a predetermined positive / negative capacity ratio cannot be obtained, and the capacity of the battery decreases. Next, the internal pressure characteristics of each battery were examined. Specifically, a 1 mm hole was made in the bottom of the can of each battery, and the pressure sensor was arranged inside the battery. Then, each battery was charged at 1 CmA for 90 minutes (150% charge), and the internal pressure of each battery was measured. Table 1 shows the measurement results. From this table, it can be seen that the internal pressure increases when the electrode plate of Comparative Example 1 in which the carbon layer is not formed is used. On the other hand, in the batteries using the electrode plates of Examples 1 to 8 , it can be seen that the increase in battery internal pressure can be suppressed. In particular, when the weight of the carbon layer per unit surface area of the paste Shikikatsu material layer used 0.05 mg / cm 2 or more plates (Example 2-8), seen that the battery capacity is increased. Further, polyvinyl alcohol, in plates of Comparative Examples 2 and 3 using a polyethylene oxide as the binder, a relatively pressure is the is seen higher. This is because polyvinyl alcohol and polyethylene oxide cover the hydrogen-absorbing alloy.
It is considered that the oxygen gas absorbing performance of the electrode plate was decreased. In each test, the weight of the carbon layer per unit surface area of the paste-type active material layer was 0.05 to 5 mg / cm.
It can be seen that the use of the second electrode plate can improve both the internal pressure characteristics and the initial capacity characteristics. In this embodiment, an ethylene-vinyl acetate-long chain vinyl ester copolymer was used as the ethylene-vinyl acetate resin, but other ethylene-vinyl acetate such as an ethylene-vinyl acetate-acrylic copolymer was used. A system resin may be used as a binder. Even when an ethylene-vinyl acetate-acrylic copolymer having a different glass transition temperature (Tg) was used, the same test results were obtained as when an ethylene-vinyl acetate-long-chain vinyl ester copolymer was used. confirmed. The configuration of the invention described in the specification will be described below. (1) A paste-type active material layer containing a hydrogen storage alloy mainly composed of an alloy of misch metal and nickel and a binder is formed on a current collector, and a paste-type active material layer is formed on the current collector. In the sealed nickel-hydrogen storage battery hydrogen storage alloy electrode plate having a carbon layer formed thereon, using an ethylene-vinyl acetate-long chain vinyl ester copolymer as the binder, the paste-type active material layer The weight of the carbon layer per unit surface area is 0.05 to 5 mg /
cm 2, and the ethylene - vinyl acetate - enclosed nickel weight ratio with respect to the hydrogen storage alloy of long-chain vinyl ester copolymer, characterized in that a 0.1% to 3% -
Hydrogen storage alloy plates for hydrogen storage batteries. EFFECT OF THE INVENTION Ethylene-vinyl acetate-long chain vinyl S
The tercopolymer does not cover the surface of the hydrogen storage alloy.
Therefore, as in the present invention, ethylene-vinegar is used as a binder.
When the acid vinyl-long chain vinyl ester copolymer is used, it is possible to prevent the activation of the hydrogen storage alloy from being hindered even when the wettability of the hydrogen storage alloy with the electrolytic solution is reduced by the carbon layer. Therefore, it is possible to enhance the oxygen gas absorption performance by forming a carbon layer, and to suppress a decrease in battery capacity. Also, ethylene-vinyl acetate-long chain vinyl ester
When the copolymer is used as a binder , the flexibility of the electrode plate can be increased, so that the active material can be prevented from falling off the current collector.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 箕浦 敏 東京都新宿区西新宿二丁目1番1号 新 神戸電機株式会社内 (56)参考文献 特開 昭54−109142(JP,A) 特公 平6−77450(JP,B2) (58)調査した分野(Int.Cl.7,DB名) H01M 4/24 H01M 4/62 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Satoshi Minoura 2-1-1 Shinishijuku, Shinjuku-ku, Tokyo Inside Shin-Kobe Electric Co., Ltd. (56) References JP-A-54-109142 (JP, A) Hei 6-7750 (JP, B2) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/24 H01M 4/62

Claims (1)

(57)【特許請求の範囲】 【請求項1】 ミッシュメタルとニッケルとの合金を主
成分とする水素吸蔵合金と結着剤とを含有するペースト
式活物質層が集電体上に形成され、前記ペースト式活物
質層の上にカーボン層が形成されている密閉形ニッケル
−水素蓄電池用水素吸蔵合金極板において、 前記結着剤としてエチレン−酢酸ビニル−長鎖ビニルエ
ステル共重合体を用い、 前記ペースト式活物質層の単
位表面積に対する前記カーボン層の重量が0.05〜5
mg/cm であり、 前記エチレン−酢酸ビニル−長鎖ビニルエステル共重合
体の前記水素吸蔵合金に対する重量割合が0.1〜3%
であることを特徴とする密閉形ニッケル−水素 蓄電池用
水素吸蔵合金極板。
(57) [Claims] [Claim 1] An alloy of misch metal and nickel is mainly used.
Containing a hydrogen storage alloy as a component and a binder
A paste active material layer is formed on the current collector,
Sealed nickel with a carbon layer formed on the porous layer
-In the hydrogen-absorbing alloy electrode plate for a hydrogen storage battery , ethylene-vinyl acetate-long chain vinyl ether as the binder;
Using a stell copolymer, the paste type active material layer
The weight of the carbon layer with respect to the surface area is 0.05 to 5
mg / cm 2 , the ethylene-vinyl acetate-long chain vinyl ester copolymer
Weight ratio of the body to the hydrogen storage alloy is 0.1 to 3%
A hydrogen-absorbing alloy electrode plate for a sealed nickel-hydrogen storage battery , characterized in that:
JP32534395A 1995-12-14 1995-12-14 Hydrogen storage alloy plates for sealed nickel-hydrogen storage batteries Expired - Fee Related JP3521585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32534395A JP3521585B2 (en) 1995-12-14 1995-12-14 Hydrogen storage alloy plates for sealed nickel-hydrogen storage batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32534395A JP3521585B2 (en) 1995-12-14 1995-12-14 Hydrogen storage alloy plates for sealed nickel-hydrogen storage batteries

Publications (2)

Publication Number Publication Date
JPH09161803A JPH09161803A (en) 1997-06-20
JP3521585B2 true JP3521585B2 (en) 2004-04-19

Family

ID=18175757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32534395A Expired - Fee Related JP3521585B2 (en) 1995-12-14 1995-12-14 Hydrogen storage alloy plates for sealed nickel-hydrogen storage batteries

Country Status (1)

Country Link
JP (1) JP3521585B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024052261A1 (en) * 2022-09-06 2024-03-14 Arlanxeo Deutschland Gmbh EVM cathode binders for battery cells using γ-valerolactone as processing solvent

Also Published As

Publication number Publication date
JPH09161803A (en) 1997-06-20

Similar Documents

Publication Publication Date Title
CN101662012B (en) Negative pole piece, preparation method thereof and battery comprising same
EP0901179B1 (en) Alkaline storage battery
JP3521585B2 (en) Hydrogen storage alloy plates for sealed nickel-hydrogen storage batteries
JP3558727B2 (en) Alkaline secondary battery
JP3005423B2 (en) Alkaline secondary battery
JP4399662B2 (en) Electrode and battery using the same
JP3209071B2 (en) Alkaline storage battery
JP3567021B2 (en) Alkaline secondary battery
US6455195B1 (en) Hydrogen absorbing alloy electrodes and nickel-metal hydride batteries using the same
JP3588933B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP3012658B2 (en) Nickel hydride rechargeable battery
JP3349619B2 (en) Alkaline secondary battery
JP3101622B2 (en) Nickel-hydrogen alkaline storage battery
JP3182790B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP3216689B2 (en) Hydrogen storage alloy electrode and nickel-hydrogen storage battery
JP2983135B2 (en) Alkaline secondary battery
JP2002260650A (en) Battery
JPH11250908A (en) Electrode for alkaline secondary battery and alkaline secondary battery
JPH11149920A (en) Nickel electrode for alkali secondary battery and alkali secondary battery
JP3343413B2 (en) Alkaline secondary battery
JP3567018B2 (en) Alkaline secondary battery
JPH04272656A (en) Hydrogen storage alloy electrode for nickelhydrogen secondary battery
JP2854920B2 (en) Nickel-metal hydride battery
JP3069767B2 (en) Hydrogen storage alloy electrode
JP3025770B2 (en) Metal oxide / hydrogen battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040202

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees