JP3069767B2 - Hydrogen storage alloy electrode - Google Patents

Hydrogen storage alloy electrode

Info

Publication number
JP3069767B2
JP3069767B2 JP7316815A JP31681595A JP3069767B2 JP 3069767 B2 JP3069767 B2 JP 3069767B2 JP 7316815 A JP7316815 A JP 7316815A JP 31681595 A JP31681595 A JP 31681595A JP 3069767 B2 JP3069767 B2 JP 3069767B2
Authority
JP
Japan
Prior art keywords
powder
storage alloy
hydrogen storage
battery
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7316815A
Other languages
Japanese (ja)
Other versions
JPH09161786A (en
Inventor
崇 池上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP7316815A priority Critical patent/JP3069767B2/en
Publication of JPH09161786A publication Critical patent/JPH09161786A/en
Application granted granted Critical
Publication of JP3069767B2 publication Critical patent/JP3069767B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は水素吸蔵合金電極に
関し、更に詳しくは、過充電時における電池内圧の上昇
と電池の発熱を抑制し、もって充電効率を高めることが
できる水素吸蔵合金電極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy electrode, and more particularly, to a hydrogen storage alloy electrode capable of suppressing an increase in battery internal pressure and overheating of a battery during overcharge, thereby increasing charging efficiency.

【0002】[0002]

【従来の技術】高容量電池として注目を集めているニッ
ケル・水素二次電池は、水素を負極活物質として作動
し、電気化学的に水素を吸蔵・放出することができる水
素吸蔵合金を集電体として機能する導電性基板に担持さ
せて成る負極と、正極活物質として動作するニッケル水
酸化物を導電性基板に担持させて成る正極との間に、電
気絶縁性と保液性を有するセパレータを挟んで極板群を
形成し、この極板群を導電性の有底缶体の中に収容し、
ここに所定のアルカリ電解液を注液したのち全体を密封
した構造になっている。
2. Description of the Related Art Nickel-hydrogen secondary batteries, which have attracted attention as high-capacity batteries, operate on hydrogen as a negative electrode active material and collect hydrogen-absorbing alloy capable of electrochemically absorbing and releasing hydrogen. A separator having electrical insulation and liquid retention properties between a negative electrode supported on a conductive substrate functioning as a body and a positive electrode supported on a conductive substrate with nickel hydroxide operating as a positive electrode active material. To form an electrode group, and house the electrode group in a conductive bottomed can,
Here, a predetermined alkaline electrolyte is injected and then the whole is sealed.

【0003】この電池に組み込まれている水素吸蔵合金
電極は、概ね、次のようにして製造されている。まず、
つぎのようにして水素吸蔵合金粉末のスラリーが調製さ
れる。例えば、イオン交換水や蒸留水にメチルセルロー
ス,カルボキシメチルセルロース,ポリエチレンオキサ
イド,ポリビニルアルコールのような増粘剤の1種また
は2種以上を所定量溶解して成る増粘剤水溶液に、所定
粒径の水素吸蔵合金粉末の所定量を分散させる。このと
き、前記した導電性基板に担持される水素吸蔵合金粉末
層における各合金粉末の相互結着を強め、これらが導電
性基板から剥落することを防止するために、例えば、ポ
リテトラフルオロエチレン粉末,ポリエチレン粉末,ポ
リプロピレン粉末,ポリビニリデンフルオライド粉末の
ような結着剤粉末や、上記水素吸蔵合金粉末層の導電性
を高めて負極としての集電能を向上させるために、例え
ばコバルト粉末,銅粉末,カーボン粉末のような導電材
粉末が、それぞれ、適量配合される。
The hydrogen storage alloy electrode incorporated in this battery is generally manufactured as follows. First,
A slurry of the hydrogen storage alloy powder is prepared as follows. For example, an aqueous solution of a thickener obtained by dissolving a predetermined amount of one or more of a thickener such as methylcellulose, carboxymethylcellulose, polyethylene oxide, and polyvinyl alcohol in ion-exchanged water or distilled water is mixed with hydrogen having a predetermined particle size. A predetermined amount of the storage alloy powder is dispersed. At this time, in order to strengthen the mutual bonding of each alloy powder in the hydrogen storage alloy powder layer supported on the conductive substrate and to prevent them from peeling off from the conductive substrate, for example, polytetrafluoroethylene powder Binder powder such as polyethylene powder, polypropylene powder, polyvinylidene fluoride powder, and cobalt powder, copper powder, etc. in order to increase the conductivity of the above-mentioned hydrogen storage alloy powder layer and improve the current collecting ability as a negative electrode. And a conductive material powder such as carbon powder are blended in an appropriate amount.

【0004】このようにして調製されたスラリーに、例
えば、パンチングニッケルシートやニッケルネットのよ
うな導電性基板が浸漬され、その導電性基板を所定速度
で引き上げて導電性基板に上記スラリーを充填または塗
着させる。ついで、導電性基板に充填または塗着されて
いるスラリーを乾燥したのち、全体に所定の圧力で圧延
処理を施すことにより、乾燥スラリー層の厚みを所定の
厚みに制御するとともに、それを導電性基板に密着させ
て担持させ、ここに目的とする水素吸蔵合金電極とす
る。
[0004] A conductive substrate such as a punched nickel sheet or a nickel net is immersed in the slurry thus prepared, and the conductive substrate is pulled up at a predetermined speed to fill the conductive substrate with the slurry. Apply. Next, after drying the slurry filled or coated on the conductive substrate, the whole is subjected to a rolling treatment at a predetermined pressure to control the thickness of the dried slurry layer to a predetermined thickness and to make the conductive layer a conductive slurry. The substrate is held in close contact with the substrate to form a target hydrogen storage alloy electrode.

【0005】なお、結着剤粉末としてポリビニリデンフ
ルオライド粉末を用いた場合には、上記した圧延処理に
続けて、例えば窒素雰囲気中において150〜210℃
程度の温度で焼成することにより、これら結着剤を軟
化,結合させるという処置が採られている。
[0005] Incidentally, 150 to 210 ° C. in the case of using the port re vinylidene fluoride powder as a binder powder, following the rolling process described above, for example in a nitrogen atmosphere
A measure is taken to soften and bind these binders by baking at about the same temperature.

【0006】[0006]

【発明が解決しようとする課題】ところで、ニッケル・
水素二次電池は、充電時に正極から酸素ガスが発生す
る。そしてこの発生した酸素ガスは、電池反応が正常に
進行するときは、負極に吸蔵されている水素と反応して
水に還元される。そして、酸素ガスの水への還元が順調
に進まないときには、電池は密閉構造であるためその内
圧は上昇し、また、酸素ガスと水素との反応は発熱反応
であるため電池温度の上昇が進む。この現象は、過充電
時に顕著に発現する。
SUMMARY OF THE INVENTION By the way, nickel
In a hydrogen secondary battery, oxygen gas is generated from the positive electrode during charging. When the battery reaction proceeds normally, the generated oxygen gas reacts with hydrogen stored in the negative electrode and is reduced to water. When the reduction of oxygen gas to water does not proceed smoothly, the internal pressure of the battery is increased due to the sealed structure, and the temperature of the battery is increased because the reaction between oxygen gas and hydrogen is an exothermic reaction. . This phenomenon appears remarkably during overcharging.

【0007】電池内圧の上昇が進行すると、電池の破裂
を招くこともあるので、そのことを防ぐために、電池に
内圧弁を設けたり、電池内に緩衝空間を設けたりしてい
る。しかしながら、このような対策は、電池構造を全体
として複雑にし、しかも大型化するようになるのであま
り好ましいことではない。また、電池温度が上昇する
と、充電末期ではかなりの高温となり、そのため、水素
吸蔵合金電極の水素受け入れ性が悪くなり、結局は充電
効率が低下するという事態を引き寄せることになる。
As the internal pressure of the battery increases, the battery may be ruptured. To prevent this, an internal pressure valve is provided in the battery or a buffer space is provided in the battery. However, such a measure is not so preferable because it complicates the battery structure as a whole and increases the size. In addition, when the battery temperature rises, the temperature rises considerably at the end of charging, so that the hydrogen absorbing alloy electrode has a poor hydrogen acceptability, which eventually leads to a reduction in charging efficiency.

【0008】本発明は、ニッケル・水素二次電池におけ
る上記した問題を解決することができ、電池内圧の上昇
を抑制し、また電池温度の上昇を抑制することができる
水素吸蔵合金電極の提供を目的とする。
The present invention provides a hydrogen storage alloy electrode that can solve the above-mentioned problems in a nickel-hydrogen secondary battery, suppresses an increase in battery internal pressure, and suppresses a rise in battery temperature. Aim.

【0009】[0009]

【課題を解決するための手段】上記した目的を達成する
ために、本発明においては、導電性基板に水素吸蔵合金
粉末層が担持され、前記水素吸蔵合金粉末層の表面は、
フィッシャーサイズが3.0μm以下である3次元鎖状構
造のニッケル粉末で被覆されていることを特徴とする水
素吸蔵合金電極が提供される。
In order to achieve the above object, according to the present invention, a hydrogen absorbing alloy powder layer is supported on a conductive substrate, and the surface of the hydrogen absorbing alloy powder layer is
There is provided a hydrogen storage alloy electrode characterized by being coated with a nickel powder having a three-dimensional chain structure having a Fisher size of 3.0 μm or less.

【0010】とくに、ニッケル粉末が、水素吸蔵合金粉
末層の表面を80%以上被覆しているものが好適例とし
て提供される。
[0010] In particular, a nickel powder covering the surface of the hydrogen storage alloy powder layer by 80% or more is provided as a preferred example.

【0011】[0011]

【発明の実施の形態】本発明の水素吸蔵合金電極は、導
電性基板に担持されている水素吸蔵合金粉末層の表面が
後述するニッケル粉末で被覆されていることを除いて
は、従来から知られている水素吸蔵合金電極の構造と変
わることはない。ここで、水素吸蔵合金粉末層の表面を
被覆するニッケル粉末は、フィッシャーサイズ(Fisher
size)が3.0μm以下のものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A hydrogen storage alloy electrode according to the present invention is conventionally known except that the surface of a hydrogen storage alloy powder layer supported on a conductive substrate is coated with nickel powder described later. It does not differ from the structure of the hydrogen storage alloy electrode used. Here, the nickel powder covering the surface of the hydrogen storage alloy powder layer is a Fisher size (Fisher size).
size) is 3.0 μm or less.

【0012】このニッケル粉末は、酸素ガスと水素の反
応を促進するための触媒として機能する。すなわち、こ
のニッケル粉末は、正極で発生して水素吸蔵合金電極の
表面にまで到達した酸素ガスを、電極表面で、水素吸蔵
合金に吸蔵されている水素と迅速に反応させることによ
り水に還元し、もって電池内圧の上昇を抑制する。この
ニッケル粉末は、ニッケルカーボニル蒸気(Ni(C
O)4)を熱分解して製造され、カーボンブラックのスト
ラクチャーのような3次元鎖状構造を有する粉末で、例
えば、INCO社からFilamentary Nickel Powderとし
て市販されているものをあげることができる。
This nickel powder functions as a catalyst for promoting the reaction between oxygen gas and hydrogen. In other words, this nickel powder reduces the oxygen gas generated at the positive electrode and reaches the surface of the hydrogen storage alloy electrode to water by rapidly reacting on the electrode surface with the hydrogen stored in the hydrogen storage alloy. Thus, the rise in battery internal pressure is suppressed. This nickel powder is made of nickel carbonyl vapor (Ni (C
O) 4 ) is a powder produced by pyrolysis and having a three-dimensional chain structure such as a structure of carbon black, for example, a powder commercially available from INCO as Filamentary Nickel Powder.

【0013】なお、フィッシャーサイズとは、凝集粉末
の粒度を表示する指標であり、JIS H 2116−
1979で規定する方法で測定される比表面積径のこと
をいい、フィッシャー空気透過装置を用い、次式: Dm=6×104 /ρ・Sw (ただし、Dmは測定対象粉末の粒度(μm)、ρは測
定対象粉末の真密度(g/cm3 )、Swは測定対象粉末の
比表面積(cm2/g )を表す)に基づいて算出され、定義
される値である。
The Fisher size is an index for indicating the particle size of the agglomerated powder, and is defined by JIS H2116.
Refers to the specific surface area diameter measured by the method specified in 1979, using a Fischer air permeation apparatus, and the following formula: Dm = 6 × 10 4 / ρ · Sw (where Dm is the particle size (μm) of the powder to be measured) , Ρ are calculated and defined based on the true density (g / cm 3 ) of the powder to be measured, and Sw is the specific surface area (cm 2 / g) of the powder to be measured.

【0014】この値が小さいほど、粉末の比表面積は大
きくなり、当該粉末の表面活性が高まることを意味す
る。本発明では、このフィッシャーサイズが3.0μm以
下であるニッケル粉末が用いられる。フィッシャーサイ
ズが3.0μmより大きいものを用いると、酸素ガスと水
素との反応にとって充分な表面活性を示さず、充電時に
は、電池内圧の上昇と電池温度の上昇を抑制する効果は
減退するようになる。好ましいフィッシャーサイズは、
0.8〜3.0μmである。
The smaller the value, the larger the specific surface area of the powder, which means that the surface activity of the powder is increased. In the present invention, a nickel powder having a Fisher size of 3.0 μm or less is used. If the size of the fisher is larger than 3.0 μm, the surface activity does not show enough for the reaction between oxygen gas and hydrogen, and the effect of suppressing the rise in battery internal pressure and the rise in battery temperature during charging is reduced. Become. The preferred Fisher size is
0.8 to 3.0 μm.

【0015】本発明の水素吸蔵合金電極は次のようにし
て製造することができる。まず、公知の方法によって、
導電性基板に水素吸蔵合金粉末層を担持させる。一方、
所定のフィッシャーサイズのニッケル粉末を、水、エタ
ノール、ポリビニルアルコール、カルボキシメチルセル
ロース、メチルセルロース、ポリアクリル酸ナトリウ
ム、ポリエチレンオキサイド、ポリエチレン粉末、DN
A水溶液、ゼラチン、ポリエチレングリコールなどの群
から選ばれる少なくとも1種を含むような分散媒に所定
量分散させることにより、当該ニッケル粉末の懸濁液を
調製しておく。
The hydrogen storage alloy electrode of the present invention can be manufactured as follows. First, by a known method,
A hydrogen storage alloy powder layer is supported on a conductive substrate. on the other hand,
A nickel powder having a predetermined Fisher size is prepared by mixing water, ethanol, polyvinyl alcohol, carboxymethylcellulose, methylcellulose, sodium polyacrylate, polyethylene oxide, polyethylene powder, and DN.
A suspension of the nickel powder is prepared by dispersing a predetermined amount in a dispersion medium containing at least one selected from the group consisting of aqueous solution A, gelatin, and polyethylene glycol.

【0016】ついで、上記懸濁液に前記した水素吸蔵合
金電極を浸漬したり、または懸濁液の所定量を水素吸蔵
合金電極の表面に塗布する。その後、処理後の電極を乾
燥し、更には圧延することにより、本発明の電極が得ら
れる。この浸漬または塗布の過程で、水素吸蔵合金粉末
層の全体の表面または粉末層を構成する個々の粉末は懸
濁液と接触し、乾燥後には、ニッケル粉末が水素吸蔵合
金粉末層または個々の粉末の表面に残置してそこを被覆
する。
Next, the above-mentioned hydrogen storage alloy electrode is immersed in the above suspension, or a predetermined amount of the suspension is applied to the surface of the hydrogen storage alloy electrode. Thereafter, the treated electrode is dried and further rolled to obtain the electrode of the present invention. In the process of immersion or coating, the individual powder constituting the entire surface of the hydrogen storage alloy powder layer or the powder layer comes into contact with the suspension, and after drying, the nickel powder becomes the hydrogen storage alloy powder layer or the individual powder. To cover the surface.

【0017】その場合、ニッケル粉末は、前記したよう
に3次元鎖状構造であるため、前記被覆は緻密な膜をな
して形成されることはなく、互いのニッケル粉末が絡み
合っている多孔構造になる。したがって、電解液はこの
ニッケル粉末の被覆を通過して水素吸蔵合金粉末層に浸
透することができるので、電池反応が阻害されるという
ことは起こらない。
In this case, since the nickel powder has a three-dimensional chain structure as described above, the coating is not formed as a dense film, but has a porous structure in which the nickel powders are entangled with each other. Become. Therefore, the electrolytic solution can penetrate into the hydrogen storage alloy powder layer through the nickel powder coating, so that the battery reaction is not inhibited.

【0018】このニッケル粉末は、水素吸蔵合金粉末層
の表面の80%以上を被覆していることが好ましい。被
覆表面積が80%より小さくなると、酸素ガスを水に還
元させるための触媒能が不充分であり、そのため、電池
内圧の上昇や電池温度の上昇を抑制する作用が低下する
からである。したがって、前記した懸濁液の調製時に
は、ニッケル粉末が水素吸蔵合金粉末の表面を80%以
上被覆できるように、当該ニッケル粉末の分散濃度を調
整することが好ましい。
The nickel powder preferably covers 80% or more of the surface of the hydrogen storage alloy powder layer. If the coating surface area is less than 80%, the catalytic activity for reducing oxygen gas to water is insufficient, and the action of suppressing an increase in battery internal pressure and a rise in battery temperature is reduced. Therefore, when preparing the above-described suspension, it is preferable to adjust the dispersion concentration of the nickel powder so that the nickel powder can cover the surface of the hydrogen storage alloy powder by 80% or more.

【0019】[0019]

【実施例】実施例1〜7,比較例1〜4 組成:MmNi3.3Co0.4Al0.3Mn0.4(Mmはミッ
シュメタル)の水素吸蔵合金を粉砕して平均粒径60μ
mの粉末とし、この粉末100重量部に対し、導電材と
して平均粒径0.8μmのニッケル粉末10重量部、平均
粒径3μmのポリビニリデンフルオライド粉末2重量
部,0.5%カルボキシメチルセルロース水溶液0.1重量
部を混練してスラリーを調製した。
EXAMPLES Examples 1 to 7 and Comparative Examples 1 to 4 Composition: MmNi 3.3 Co 0.4 Al 0.3 Mn 0.4 (Mm is a misch metal) hydrogen storage alloy was pulverized to an average particle size of 60 μm.
m powder, 100 parts by weight of this powder, 10 parts by weight of nickel powder having an average particle diameter of 0.8 μm, 2 parts by weight of polyvinylidene fluoride powder having an average particle diameter of 3 μm, and a 0.5% aqueous solution of carboxymethyl cellulose as a conductive material. A slurry was prepared by kneading 0.1 part by weight.

【0020】このスラリーを、パンチングニッケルシー
ト(開口径1.5mm,開口率38%,厚み0.07mm)の両
面に塗着したのち室温下で120分間乾燥し、更に圧2
ton/cm2 でロール圧延して厚み0.4mmの負極板にしたの
ち、真空加熱炉により温度160〜200℃で2時間の
熱処理を行った。この負極板に担持されている水素吸蔵
合金粉末層の重量は7.0gである。
This slurry was applied to both sides of a punched nickel sheet (opening diameter 1.5 mm, opening ratio 38%, thickness 0.07 mm), dried at room temperature for 120 minutes, and further pressed at a pressure of 2 mm.
After being roll-rolled at ton / cm 2 to form a negative electrode plate having a thickness of 0.4 mm, a heat treatment was performed at 160 to 200 ° C. for 2 hours in a vacuum heating furnace. The weight of the hydrogen storage alloy powder layer supported on the negative electrode plate was 7.0 g.

【0021】一方、表1に示したフィッシャーサイズを
有するニッケル粉末を水に分散させて、表示の分散濃度
の懸濁液を調製した。ついで、各懸濁液に前記した負極
板を浸漬したのち取り出し、温度50℃で30分間乾燥
し、更に圧2ton/cm2 でロール圧延して各種の水素吸蔵
合金電極を製造した。
On the other hand, a nickel powder having a Fisher size shown in Table 1 was dispersed in water to prepare a suspension having the indicated dispersion concentration. Then, the above-mentioned negative electrode plate was immersed in each suspension, taken out, dried at a temperature of 50 ° C. for 30 minutes, and further roll-rolled at a pressure of 2 ton / cm 2 to produce various hydrogen storage alloy electrodes.

【0022】各水素吸蔵合金電極の重量を測定し、その
値から懸濁液浸漬前の重量を減算して付着したニッケル
粉末の重量を求めた。また、ニッケル粉末の付着前後に
おける水素吸蔵合金電極の厚みをマイクロメータで測定
し、その差から付着しているニッケル粉末層の厚みを測
定し、次式:
The weight of each hydrogen-absorbing alloy electrode was measured, and the weight before suspension immersion was subtracted from the value to determine the weight of the attached nickel powder. Further, the thickness of the hydrogen storage alloy electrode before and after the nickel powder was attached was measured with a micrometer, and the thickness of the attached nickel powder layer was measured from the difference.

【0023】[0023]

【数1】 (Equation 1)

【0024】に基づいて、ニッケル粉末が水素吸蔵合金
粉末層の表面を被覆する面積割合(%)を算出した。ま
た、1〜40μmの粒度分布を有する球状の水酸化ニッ
ケル粉末100重量部に対し、約5μm粒度の一酸化コ
バルト粉末8重量部,濃度1.2重量%のカルボキシメチ
ルセルロース水溶液40.5重量部を混練して活物質ペー
ストを調製し、これを、空隙率96%のスポンジ状ニッ
ケル板に充填し、温度80℃で120分間乾燥したのち
圧2ton/cm2 でロール圧延して厚み0.6mmのニッケル極
板を製造した。
Based on the above, the area ratio (%) of the nickel powder covering the surface of the hydrogen storage alloy powder layer was calculated. Further, 40.5 parts by weight of an aqueous solution of carboxymethyl cellulose having a concentration of 1.2% by weight and 8 parts by weight of cobalt monoxide powder having a particle size of about 5 μm was added to 100 parts by weight of spherical nickel hydroxide powder having a particle size distribution of 1 to 40 μm. An active material paste was prepared by kneading, filled in a sponge-like nickel plate having a porosity of 96%, dried at a temperature of 80 ° C. for 120 minutes, and then roll-rolled at a pressure of 2 ton / cm 2 to obtain a 0.6 mm-thick material. A nickel plate was manufactured.

【0025】前記した各水素吸蔵合金電極とニッケル極
板との間に、ナイロン製セパレータを介在させたのち巻
回して極板群とし、これを、ニッケルめっきが施されて
いるステンレス鋼製の円筒缶に収容し、ここに、所定の
アルカリ電解液を注液して封口し、AAサイズ,定格容
量1100mAh の円筒形ニッケル・水素二次電池を組み
立てた。
A nylon separator is interposed between each of the above-mentioned hydrogen storage alloy electrodes and the nickel electrode plate, and then wound to form an electrode plate group, which is formed of a nickel-plated stainless steel cylinder. The container was housed in a can, and a predetermined alkaline electrolyte was injected into the container and sealed, thereby assembling a cylindrical nickel-hydrogen secondary battery having an AA size and a rated capacity of 1100 mAh.

【0026】これらの電池につき、下記の仕様で電池内
圧と電池温度を測定した。 電池内圧:電池底部に圧力ゲージを取り付け、温度20
℃において、1100mAh で4.5時間の充電を行い、こ
のときの電池内圧を測定。 電池温度:電池の外側に熱電対を取り付け、1100mA
h で4.5時間の充電を行い、そのときの温度を測定。
With respect to these batteries, battery internal pressure and battery temperature were measured according to the following specifications. Battery internal pressure: Attach a pressure gauge to the bottom of the battery,
The battery was charged at 1100 mAh for 4.5 hours at ℃, and the internal pressure of the battery was measured. Battery temperature: Thermocouple attached outside battery, 1100mA
Charge for 4.5 hours with h and measure the temperature at that time.

【0027】以上の結果を一括して表1に示した。Table 1 summarizes the above results.

【0028】[0028]

【表1】 [Table 1]

【0029】表1の結果から以下のことが明らかであ
る。 1)水素吸蔵合金粉末層の表面をニッケル粉末で被覆し
ないもの(比較例1)を組み込んだ電池では、実施例の
水素吸蔵合金電極を組み込んだ電池に比べて、電池内
圧,電池温度がいずれも大幅に上昇している。すなわ
ち、ニッケル粉末で被覆することの効果は歴然としてい
る。
The following is clear from the results in Table 1. 1) In the battery in which the surface of the hydrogen storage alloy powder layer was not coated with nickel powder (Comparative Example 1), both the battery internal pressure and the battery temperature were lower than those of the battery in which the hydrogen storage alloy electrode of the example was incorporated. It has risen significantly. That is, the effect of coating with nickel powder is obvious.

【0030】2)しかし、実施例1〜3,比較例2から
明らかなように、電極の表面が100%ニッケル粉末で
被覆されていても、ニッケル粉末のフィッシャーサイズ
が大きくなるにつれて、電池内圧と電池温度は上昇して
おり、これら特性を適正にするためには、ニッケル粉末
のフィッシャーサイズは3.0μm以下にすべきことがわ
かる。
2) However, as is apparent from Examples 1 to 3 and Comparative Example 2, even if the surface of the electrode is coated with 100% nickel powder, the internal pressure of the battery increases as the nickel powder becomes larger. The battery temperature is rising, and it can be seen that the Fisher size of the nickel powder should be 3.0 μm or less in order to optimize these characteristics.

【0031】3)また、実施例1、4、5と比較例3、
4を比べて明らかなように、ニッケル粉末で水素吸蔵合
金電極の表面を被覆する割合が80%よりも小さくなる
と、電池内圧は上昇しはじめ、電池温度も上昇しはじめ
ることがわかる。
3) Examples 1, 4 and 5 and Comparative Example 3
As is clear from comparison of No. 4 , hydrogen absorption and
It can be seen that when the ratio of covering the surface of the gold electrode becomes smaller than 80%, the battery internal pressure starts to increase and the battery temperature also starts to increase.

【0032】[0032]

【発明の効果】以上の説明で明らかなように、本発明の
水素吸蔵合金電極は、それを組み込んだ電池の充電時に
おける電池内圧の上昇と電池温度の上昇がいずれも抑制
される。これは、水素吸蔵合金粉末層の表面をフィッシ
ャーサイズが3.0μm以下のニッケル粉末で被覆し、こ
のニッケル粉末の触媒作用で充電時に発生する酸素ガス
と水素吸蔵合金が吸蔵する水素との反応を促進して酸素
ガスを水に還元することができるからである。
As is apparent from the above description, the hydrogen storage alloy electrode of the present invention suppresses both the rise in battery internal pressure and the rise in battery temperature during charging of a battery incorporating the same. This means that the surface of the hydrogen storage alloy powder layer is coated with nickel powder having a Fisher size of 3.0 μm or less, and the reaction between oxygen gas generated during charging by the catalytic action of the nickel powder and hydrogen stored by the hydrogen storage alloy is performed. This is because oxygen gas can be reduced to water by promotion.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 導電性基板に水素吸蔵合金粉末層が担持
され、前記水素吸蔵合金粉末層の表面は、フィッシャー
サイズが3.0μm以下である3次元鎖状構造のニッケル
粉末で被覆されていることを特徴とする水素吸蔵合金電
極。
1. A hydrogen storage alloy powder layer is supported on a conductive substrate, and the surface of the hydrogen storage alloy powder layer is made of nickel powder having a three-dimensional chain structure with a Fisher size of 3.0 μm or less. A hydrogen storage alloy electrode characterized by being coated.
【請求項2】 前記ニッケル粉末、前記水素吸蔵合金
粉末層の表面を80%以上被覆している請求項1の水素
吸蔵合金電極。
Wherein said nickel powder, the hydrogen absorbing alloy powder layer of hydrogen storage alloy electrode according to claim 1 which covers 80% of the surface of the.
JP7316815A 1995-12-05 1995-12-05 Hydrogen storage alloy electrode Expired - Lifetime JP3069767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7316815A JP3069767B2 (en) 1995-12-05 1995-12-05 Hydrogen storage alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7316815A JP3069767B2 (en) 1995-12-05 1995-12-05 Hydrogen storage alloy electrode

Publications (2)

Publication Number Publication Date
JPH09161786A JPH09161786A (en) 1997-06-20
JP3069767B2 true JP3069767B2 (en) 2000-07-24

Family

ID=18081231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7316815A Expired - Lifetime JP3069767B2 (en) 1995-12-05 1995-12-05 Hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JP3069767B2 (en)

Also Published As

Publication number Publication date
JPH09161786A (en) 1997-06-20

Similar Documents

Publication Publication Date Title
JPH0278155A (en) Dry manufacturing process of hydrogen storage alloy electrode
US4994334A (en) Sealed alkaline storage battery and method of producing negative electrode thereof
JP3069767B2 (en) Hydrogen storage alloy electrode
JPH11162468A (en) Alkaline secondary battery
JP3686139B2 (en) Alkaline secondary battery
JP2603188B2 (en) Hydrogen storage alloy electrode
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
JP2537128B2 (en) Method for producing hydrogen storage alloy powder for negative electrode of nickel-hydrogen secondary battery and method for producing negative electrode for nickel-hydrogen secondary battery
US20090261305A1 (en) Composition of and method of using nanoscale materials in hydrogen storage applications
JP2566912B2 (en) Nickel oxide / hydrogen battery
JP3778685B2 (en) Hydrogen storage alloy electrode and manufacturing method thereof
JPH08287906A (en) Hydrogen storage alloy electrode
JP3071026B2 (en) Metal hydride storage battery
JPH103940A (en) Nickel-metal hydride storage battery and its manufacture
JPH0810596B2 (en) Metal oxide / hydrogen battery
JPH08138658A (en) Hydrogen storage alloy-based electrode
JPH11111280A (en) Hydride secondary battery
JP3101622B2 (en) Nickel-hydrogen alkaline storage battery
JP2001266860A (en) Nickel hydrogen storage battery
JP3213684B2 (en) Manufacturing method of alkaline secondary battery
JP3504350B2 (en) Manufacturing method of alkaline secondary battery
JP2983135B2 (en) Alkaline secondary battery
JP2000149938A (en) Nickel positive electrode active material
JPH1040950A (en) Alkaline secondary battery
JP3742149B2 (en) Alkaline secondary battery