JP3216689B2 - Hydrogen storage alloy electrode and nickel-hydrogen storage battery - Google Patents

Hydrogen storage alloy electrode and nickel-hydrogen storage battery

Info

Publication number
JP3216689B2
JP3216689B2 JP06847495A JP6847495A JP3216689B2 JP 3216689 B2 JP3216689 B2 JP 3216689B2 JP 06847495 A JP06847495 A JP 06847495A JP 6847495 A JP6847495 A JP 6847495A JP 3216689 B2 JP3216689 B2 JP 3216689B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
electrode
weight
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06847495A
Other languages
Japanese (ja)
Other versions
JPH08264175A (en
Inventor
康太郎 小林
啓典 玉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Kobe Electric Machinery Co Ltd
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP06847495A priority Critical patent/JP3216689B2/en
Publication of JPH08264175A publication Critical patent/JPH08264175A/en
Application granted granted Critical
Publication of JP3216689B2 publication Critical patent/JP3216689B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、水素を可逆的に吸蔵・
放出する水素吸蔵合金を主体とする水素吸蔵合金電極に
関するものであり、さらに詳しくは水素吸蔵合金を保持
するための結着剤に関するものである。この電極は特に
ニッケル電極と組み合わせたニッケル−水素蓄電池に用
いるのに適している。
BACKGROUND OF THE INVENTION The present invention relates to a method for reversibly storing and storing hydrogen.
The present invention relates to a hydrogen storage alloy electrode mainly composed of a hydrogen storage alloy to be released, and more particularly to a binder for holding the hydrogen storage alloy. This electrode is particularly suitable for use in nickel-metal hydride batteries in combination with nickel electrodes.

【0002】[0002]

【従来の技術】従来、ニッケル−水素電池等に用いられ
る水素吸蔵合金電極の結着剤には、ニッケル−カドミウ
ム電池のカドミウム極などの結着剤に用いられているセ
ルロース誘導体(メチルセルロース、ヒドロキシプロピ
ルメチルセルロース、カルボキシメチルセルロース等)
やポリビニルアルコールなどの水溶性高分子が用いられ
ていた。しかし、これらを結着剤として用いた水素吸蔵
合金電極の問題点として、第1は可とう性が低いこと、
第2は水素吸蔵合金粉末と水素吸蔵合金粉末、水素吸蔵
合金粉末と導電性支持基体との結着性が低いこと、ま
た、上記の結着剤の中で特にポリビニルアルコールは、
ガス透過性が劣るという第3の問題点が挙げられてい
た。第1の問題点である可とう性の低い電極を、特に捲
回型円筒電池に用いる場合、捲回時、導電性支持基体か
ら水素吸蔵合金粉末の剥離、つまり電極からの水素吸蔵
合金粉末の脱落が起こる。そのように捲回された電池
は、充放電サイクルの繰り返しによる水素吸蔵合金粉末
の膨張、収縮や、それに伴って起こる微粉化の進行によ
り上記脱落が促進される。水素吸蔵合金が脱落すると電
極容量の低下を招いたり、サイクル寿命性能が悪いもの
となる。また、脱落した粉末が正極まで移動し、正極と
負極を導通させ、短絡の原因となったりもする。一般に
ガラス転移点(以下、Tgと記す)の低い樹脂はそれ自
身が非常に柔軟であり、粉体と一体化させた場合にそれ
自体に可とう性を持たせることが可能である。Tgが低
い樹脂は、一般的にはポリウレタン系樹脂やポリオレフ
ィン系樹脂などがある。しかし、ニッケル−水素電池の
ようなアルカリ電解液を使用する電池では樹脂自体に耐
アルカリ性が要求される。ポリウレタン系樹脂は耐アル
カリ性が低く、アルカリ電解液中に置くと瞬く間に分解
されてしまう。第2の問題点である水素吸蔵合金粉末の
結着性が低い電極を用いると、電池を組み立てる際の水
素吸蔵合金粉末の脱落はもちろんのこと、充放電サイク
ルを繰り返した場合、上記第1の問題点と同様の問題を
抱えることになる。第3の問題点であるガス吸収性能が
低い電極を用いると、陰極吸収式を用いた密閉式電池で
は充電末期の正極からの酸素ガスの陰極での吸収が発生
に追いつかず、電池内圧を上昇させ、安全弁を動作させ
るに至ってしまう。これらの問題に対し、特開平03−
84857号公報では、結着剤にポリエチレンオキサイ
ドを用いることにより、機械的強度を備えた極板の製造
方法を提案している。これは、結着剤としてのポリエチ
レンオキサイドの添加量を水素吸蔵合金に対し0.5重
量%以上2重量%以下とし、粘度が10,000から1
00,000mPa・sの水素吸蔵合金粉末のスラリを
導電性支持体に保持させるというものである。
2. Description of the Related Art Conventionally, as a binder for a hydrogen storage alloy electrode used in a nickel-hydrogen battery or the like, a cellulose derivative (methylcellulose, hydroxypropyl) used in a binder such as a cadmium electrode of a nickel-cadmium battery has been used. Methylcellulose, carboxymethylcellulose, etc.)
And a water-soluble polymer such as polyvinyl alcohol. However, the first problem with hydrogen storage alloy electrodes using these as a binder is that they have low flexibility,
Second, the hydrogen storage alloy powder and the hydrogen storage alloy powder, the binding property between the hydrogen storage alloy powder and the conductive support base is low, and among the above binders, polyvinyl alcohol is particularly preferred.
The third problem that gas permeability is inferior was mentioned. When the electrode having low flexibility, which is the first problem, is used particularly in a wound cylindrical battery, at the time of winding, peeling of the hydrogen storage alloy powder from the conductive support base, that is, removal of the hydrogen storage alloy powder from the electrode. Shedding occurs. In the battery wound in such a manner, the dropout is promoted by the expansion and contraction of the hydrogen storage alloy powder due to the repetition of the charge / discharge cycle, and the progress of the pulverization accompanying the expansion. If the hydrogen storage alloy falls off, the electrode capacity will be reduced, or the cycle life performance will be poor. In addition, the dropped powder moves to the positive electrode, conducts the positive electrode and the negative electrode, and may cause a short circuit. Generally, a resin having a low glass transition point (hereinafter, referred to as Tg) is very flexible in itself, and can be made flexible when integrated with powder. Resins having a low Tg generally include polyurethane resins and polyolefin resins. However, in a battery using an alkaline electrolyte such as a nickel-hydrogen battery, the resin itself is required to have alkali resistance. Polyurethane-based resins have low alkali resistance and are quickly decomposed when placed in an alkaline electrolyte. When an electrode having a low binding property of the hydrogen storage alloy powder, which is the second problem, is used, not only the drop of the hydrogen storage alloy powder when assembling the battery, but also the first charge / discharge cycle when the charge / discharge cycle is repeated. You will have the same problem as the problem. When an electrode with low gas absorption performance, which is the third problem, is used, in a sealed battery using a cathode absorption method, the absorption of oxygen gas from the positive electrode at the end of charging at the cathode cannot catch up with the generation, and the internal pressure of the battery increases. This causes the safety valve to operate. To solve these problems,
No. 84857 proposes a method for manufacturing an electrode plate having mechanical strength by using polyethylene oxide as a binder. This is because the addition amount of polyethylene oxide as a binder is 0.5% by weight or more and 2% by weight or less based on the hydrogen storage alloy, and the viscosity is 10,000 to 1%.
The slurry of the hydrogen storage alloy powder of 0.00000 mPa · s is held on a conductive support.

【0003】[0003]

【発明が解決しようとする課題】上記公報に開示された
技術により作製した電極は、水素吸蔵合金粉末の充填密
度がある一定値までは十分な可とう性が得られるが、そ
れ以上に充填密度を上げた場合に急激に可とう性が低下
してしまう。また、従来の結着剤でガス吸収性能は改善
できない。また、本来上述したような結着剤は、不導体
であるため、結着剤の存在自体充放電を阻害し、高率放
電性能を悪化させる要因となっている。本発明の第1の
目的は、充分な可とう性と結着性を保持したまま、さら
にガス吸収性能にも優れる水素吸蔵合金電極及びそれを
用いたニッケル−水素蓄電池を提供することである。ま
た、本発明の第2の目的は、第1の目的を達成し、且
つ、高率放電性能を向上させた水素吸蔵合金電極及びそ
れを用いたニッケル−水素蓄電池を提供することであ
る。
The electrode manufactured by the technique disclosed in the above publication has sufficient flexibility until the packing density of the hydrogen-absorbing alloy powder reaches a certain value. When the value is increased, the flexibility rapidly decreases. Further, the gas absorbing performance cannot be improved with the conventional binder. In addition, since the above-described binder is originally a non-conductor, the presence of the binder itself hinders charging / discharging and becomes a factor of deteriorating high-rate discharge performance. A first object of the present invention is to provide a hydrogen storage alloy electrode having excellent gas absorption performance while maintaining sufficient flexibility and binding properties, and a nickel-hydrogen storage battery using the same. A second object of the present invention is to provide a hydrogen storage alloy electrode which achieves the first object and has improved high-rate discharge performance, and a nickel-hydrogen storage battery using the same.

【0004】[0004]

【課題を解決するための手段】上記の課題を解決するた
めに本発明は、水素を可逆的に吸蔵・放出する水素吸蔵
合金を導電性支持基体に保持させた水素吸蔵合金電極に
おいて、前記合金粉末を固定する結着剤の必須成分に、
ガラス転移点(Tg)が−10℃以下のエチレン−酢酸
ビニル系樹脂とガラス転移点(Tg)が0℃よりも高い
アクリル系樹脂を用いたことを特徴とする。エチレン−
酢酸ビニル系樹脂とは、例えば酢酸ビニルとエチレンと
アクリルを共重合させたもの、または酢酸ビニルとエチ
レンと長鎖ビニルエステルを共重合させたもの等で、酢
酸ビニル含有量が50%以上のものをいう。また、アク
リル系樹脂とは、例えばアルキルアクリレートを主成分
としたものにアクリル酸やスチレン等を共重合させたも
ので、アルキルアクリレート含有量が50%以上のもの
をいう。また、上記必須結着剤に加え、併用結着剤とし
て、セルロース誘導体、ポリエチレンオキサイド、ポリ
アクリル酸塩から選ばれる1つ以上を用いることが好ま
しい。また、上記必須結着剤であるエチレン−酢酸ビニ
ル系樹脂、アクリル系樹脂のそれぞれの添加量を電極中
の水素吸蔵合金重量に対して0.1重量%以上1.0重
量%以下とすること、また、結着剤の総添加量が電極中
の水素吸蔵合金重量に対して2重量%以下とすることが
さらに好ましい。以上に記載した水素吸蔵合金電極を用
いた電池を作製することにより前述した第1の目的を達
成できる。また、上記第1の目的を達成した水素吸蔵合
金電極に、ニッケル粉末を電極中の水素吸蔵合金重量に
対し3重量%以下含有させた電池を作製することにより
前述した第2の目的を達成できる。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a hydrogen storage alloy electrode having a conductive support substrate holding a hydrogen storage alloy for reversibly storing and releasing hydrogen. Indispensable component of binder to fix powder,
It is characterized by using an ethylene-vinyl acetate resin having a glass transition point (Tg) of −10 ° C. or lower and an acrylic resin having a glass transition point (Tg) higher than 0 ° C. Ethylene-
The vinyl acetate resin is, for example, a copolymer of vinyl acetate, ethylene and acrylic, or a copolymer of vinyl acetate, ethylene and long-chain vinyl ester, and has a vinyl acetate content of 50% or more. Say. The acrylic resin is, for example, a resin obtained by copolymerizing acrylic acid, styrene, or the like with an alkyl acrylate as a main component, and having an alkyl acrylate content of 50% or more. Further, in addition to the essential binder, it is preferable to use one or more selected from a cellulose derivative, a polyethylene oxide, and a polyacrylate as the combined binder. Further, the addition amount of each of the above-mentioned ethylene-vinyl acetate resin and acrylic resin, which are essential binders, is set to 0.1% by weight or more and 1.0% by weight or less with respect to the weight of the hydrogen storage alloy in the electrode. It is more preferable that the total amount of the binder is 2% by weight or less based on the weight of the hydrogen storage alloy in the electrode. The first object described above can be achieved by manufacturing a battery using the hydrogen storage alloy electrode described above. Further, the above-mentioned second object can be achieved by producing a battery in which nickel powder is contained in the hydrogen-absorbing alloy electrode that has achieved the first object in an amount of 3% by weight or less based on the weight of the hydrogen-occluding alloy in the electrode. .

【0005】[0005]

【作用】本発明による水素吸蔵合金電極は、結着剤の必
須成分としてTgが−10℃以下のエチレン−酢酸ビニ
ル−アクリル共重合体やエチレン−酢酸ビニル−長鎖ビ
ニルエステル共重合体等のエチレン−酢酸ビニル系樹脂
とTgが0℃よりも高いアクリル酸−アルキルアクリレ
ート共重合体やアクリル酸−スチレン−アルキルアクリ
レート共重合体等のアクリル系樹脂とを用いている。T
gが低い樹脂はその皮膜自体が非常に柔軟であり、粉体
と一体化させた場合にそれ自体に可とう性を持たせるこ
とが可能である。さらにこれは非常に強い結着力を有す
る。また、Tgが−10℃以下のエチレン−酢酸ビニル
系樹脂に、Tgが0℃よりも高いアクリル系樹脂を加え
た場合には、さらに水素吸蔵合金粉末を導電性支持基体
と共に強固に結着させることができる。また、Tgが0
℃よりも高いアクリル系樹脂は、酸素ガス透過性が良好
であり、これをエチレン−酢酸ビニル系樹脂に加えるこ
とでエチレン−酢酸ビニル系樹脂を単独で用いた場合よ
りもガス吸収性能に優れる電極が得られる。また、上記
結着剤に従来のどの結着剤を併用しても上記のような効
果は得られるが、特にメチルセルロース、ヒドロキシプ
ロピルメチルセルロース等のセルロース誘導体、ポリエ
チレンオキサイド、ポリアクリル酸塩を用いた時に電池
性能として最も良好である。それは、これらの結着剤を
組み合わせることにより、ガス透過性をさらに付与でき
るためと考えられる。そのことにより電池の過充電時に
正極から発生する酸素ガスを負極で吸収しやすくなると
考えられる。結着剤は本来、充放電反応上不必要な物質
であり、添加量は少なければ少ないほど良い。本発明に
用いたエチレン−酢酸ビニル系樹脂やアクリル系樹脂に
ついても同様であるが、後述する実験の結果からエチレ
ン−酢酸ビニル系樹脂あるいはアクリル系樹脂の添加量
が電極中の水素吸蔵合金重量に対して0.1重量%以上
1.0重量%以下とするのが好ましく、結着剤の総添加
量が2重量%以下とするとさらに好ましい。これらの結
着剤を用いた場合、電極可とう性、結着性、電池内圧特
性において大幅な特性向上が見られるが、結着剤自身が
不導体であるため、電極内部の導電性は多少劣ることに
ならざるを得ない。そこで、上記結着剤とニッケル粉末
を同時に添加することにより、導電性を向上させること
ができ、高率放電特性に優れる電極が得られる。
The hydrogen storage alloy electrode according to the present invention can be used as an essential component of a binder such as an ethylene-vinyl acetate-acryl copolymer or an ethylene-vinyl acetate-long chain vinyl ester copolymer having a Tg of -10 ° C or less. An ethylene-vinyl acetate resin and an acrylic resin such as an acrylic acid-alkyl acrylate copolymer or an acrylic acid-styrene-alkyl acrylate copolymer having a Tg higher than 0 ° C are used. T
A resin having a low g has a very flexible film itself, and can be made flexible when integrated with powder. It also has a very strong binding force. Further, when an acrylic resin having a Tg higher than 0 ° C. is added to an ethylene-vinyl acetate resin having a Tg of −10 ° C. or less, the hydrogen storage alloy powder is further firmly bound together with the conductive support base. be able to. Also, Tg is 0
An acrylic resin having a temperature higher than ℃ has good oxygen gas permeability, and by adding this to an ethylene-vinyl acetate resin, the electrode is more excellent in gas absorption performance than when ethylene-vinyl acetate resin is used alone. Is obtained. Further, even if any of the conventional binders are used in combination with the above binder, the above-described effects can be obtained.However, methyl cellulose, cellulose derivatives such as hydroxypropylmethyl cellulose, polyethylene oxide, and polyacrylate are particularly used. The best battery performance. It is considered that the gas permeability can be further imparted by combining these binders. It is considered that this makes it easier for the negative electrode to absorb oxygen gas generated from the positive electrode when the battery is overcharged. The binder is essentially an unnecessary substance in the charge / discharge reaction, and the smaller the amount added, the better. The same applies to the ethylene-vinyl acetate-based resin and the acrylic resin used in the present invention, but from the results of the experiments described later, the amount of the ethylene-vinyl acetate-based resin or the acrylic resin added to the weight of the hydrogen storage alloy in the electrode. On the other hand, the amount is preferably 0.1% by weight or more and 1.0% by weight or less, and more preferably the total amount of the binder is 2% by weight or less. When these binders are used, significant improvements in electrode flexibility, binding properties, and internal pressure characteristics of the battery are seen, but since the binder itself is a non-conductor, the conductivity inside the electrodes is somewhat It has to be inferior. Therefore, by simultaneously adding the binder and the nickel powder, the conductivity can be improved, and an electrode having excellent high-rate discharge characteristics can be obtained.

【0006】[0006]

【実施例】本発明による水素吸蔵合金電極を、円筒密閉
型ニッケル−水素蓄電池を例にして以下詳細に説明す
る。以下に説明する実施例、比較例に用いる結着剤を表
1に示した。以下、それぞれの結着剤を表1に示すよう
に略記する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A hydrogen storage alloy electrode according to the present invention will be described in detail below by taking a cylindrical sealed nickel-hydrogen storage battery as an example. Table 1 shows binders used in Examples and Comparative Examples described below. Hereinafter, each binder is abbreviated as shown in Table 1.

【0007】[0007]

【表1】 [Table 1]

【0008】(実験1)まず、本発明に係る結着剤を用
いた水素吸蔵合金電極が、他の結着剤を用いた水素吸蔵
合金電極よりも優れている点を具体的に以下に説明す
る。 実施例1〜4、比較例1〜3 水素吸蔵合金電極は以下のように作製した。水素吸蔵合
金には、ランタンを主体としたMm(ミッシュメタル)
・Ni合金にCo、Al、Mnを所定量添加したものを
用いた。この水素吸蔵合金は、前記各試料をアーク溶解
にて加熱溶解させた後、ボールミルを用いて粒径100
μm程度の微粉末に機械粉砕することにより得た。この
水素吸蔵合金に、本発明の必須結着剤であるA(Tg:
−30℃)とC(Tg:2℃)とを水素吸蔵合金に対し
それぞれ0.25重量%、併用結着剤であるEを水素吸
蔵合金に対し0.5重量%になるように調整、添加し、
粘度が約20,000mPa・sのスラリを作製した。
この時、AとCは、水中に樹脂を分散させた状態のエマ
ルジョン溶液を使用した。このスラリを厚さ60μmの
導電性支持基体の両面にドクタ−ブレード法により塗着
し、乾燥、所定厚みまでプレスすることにより電極を作
製した。この時の水素吸蔵合金電極の充填密度は5.0
g/cm3であった。これを実施例1の電極とする。上
記と同様の方法により表2に示す組成の、結着剤を用い
た実施例2〜4及び比較例1〜3の水素吸蔵合金電極を
作製した。上記のように作製した水素吸蔵合金電極の可
とう性を評価するため、水素吸蔵合金電極を直径が3m
mの軸に巻き付けた後、巻き戻して、そのときの水素吸
蔵合金の脱落率(捲回脱落率)を測定した。捲回脱落率
は、捲回試験前の電極重量から捲回試験後の電極重量を
引いた値を試験前の電極重量で割った値とした。実施例
1〜4、比較例1〜3の電極の捲回脱落率を充填密度と
併せて表2に示す。
(Experiment 1) First, the fact that the hydrogen storage alloy electrode using the binder according to the present invention is superior to the hydrogen storage alloy electrode using another binder will be specifically described below. I do. Examples 1 to 4 and Comparative Examples 1 to 3 Hydrogen storage alloy electrodes were produced as follows. For hydrogen storage alloy, Mm (Misch metal) mainly composed of lanthanum
A Ni alloy to which Co, Al, and Mn were added in predetermined amounts was used. The hydrogen storage alloy was heated and melted by arc melting each of the above-mentioned samples, and then was subjected to a particle size of 100 using a ball mill.
It was obtained by mechanical pulverization to a fine powder of about μm. A (Tg: an essential binder of the present invention) is added to this hydrogen storage alloy.
−30 ° C.) and C (Tg: 2 ° C.) so as to be 0.25% by weight with respect to the hydrogen storage alloy, and the combined binder E so as to be 0.5% by weight with respect to the hydrogen storage alloy. Add,
A slurry having a viscosity of about 20,000 mPa · s was produced.
At this time, A and C used an emulsion solution in which a resin was dispersed in water. The slurry was applied to both sides of a 60 μm-thick conductive support substrate by a doctor blade method, dried, and pressed to a predetermined thickness to produce an electrode. At this time, the packing density of the hydrogen storage alloy electrode was 5.0.
g / cm 3 . This is the electrode of Example 1. The hydrogen storage alloy electrodes of Examples 2 to 4 and Comparative Examples 1 to 3 having the compositions shown in Table 2 using the binder were prepared in the same manner as described above. In order to evaluate the flexibility of the hydrogen storage alloy electrode prepared as described above, a diameter of the hydrogen storage alloy electrode was 3 m.
After being wound around the shaft of m, the film was rewound and the falling rate of the hydrogen storage alloy (rolling falling rate) at that time was measured. The wound dropout rate was a value obtained by subtracting the electrode weight after the winding test from the electrode weight before the winding test and dividing the value by the electrode weight before the test. Table 2 shows the wound dropout rates of the electrodes of Examples 1 to 4 and Comparative Examples 1 to 3 together with the packing density.

【0009】[0009]

【表2】 [Table 2]

【0010】表2から明らかなように、従来の結着剤で
あるGを単独で用いた比較例1の電極は、結着力はある
が可とう性が低いために、高容量化(高密度化)した場
合にやはり脱落が生じてしまう。また、IやJを単独で
用いた比較例2、3の電極は、水素吸蔵合金同士及び水
素吸蔵合金と導電性支持基体との結着性が低いためにす
ぐに剥離、脱落を生じてしまう。それに対し、本発明に
よる実施例1〜4の電極は、結着力だけでなく可とう性
にも非常に優れるために、比較例の電極よりも高密度充
填した場合でも脱落しにくい。次にこの水素吸蔵合金電
極とともに常法により作製した水酸化ニッケルを活物質
とする理論容量1000mAhのニッケル極とナイロン
製の不織布セパレータを用いて、最外周が水素吸蔵合金
電極になるように捲回した。この電極群を円筒形電池容
器に挿入後、31重量%の水酸化カリウム水溶液を注液
し、理論容量1000mAhの正極容量規制密閉形ニッ
ケル−水素蓄電池を作製した。作製した蓄電池につい
て、サイクル寿命特性を評価した。評価は従来の方法に
より活性化処理を行った後、充放電を繰り返して行う。
充電は、雰囲気温度20℃において1000mAの電流
で行い、電池電圧降下(−△V)が10mVに達したら
終了する。放電は、1000mAの電流で行い、電池電
圧が1.0Vになったら終了する。サイクル寿命試験の
結果を図1に示す。従来の結着剤であるIやJを単独で
用いた比較例2、3の電極を用いた電池は、上記の捲回
脱落率に示す通り、電極の可とう性が低いため、及び結
着剤の結着力が弱いために捲回時に水素吸蔵合金の剥離
や脱落が生じる。そのため、充放電の繰り返しによる水
素吸蔵合金の微細化やガス発生による導電性支持基体か
らの剥離、脱落が生じるため、非常に短寿命であること
がわかる。また、Gを単独で添加した比較例1の電極を
用いた電池は、結着力が強いために比較例2、3よりも
良好な特性を示しているが、充放電サイクルの進行に伴
い内圧が上昇し、電解液が系外に放出され、急激な容量
劣化を示した。これは捲回時の水素吸蔵合金の脱落によ
る電極容量低下に伴う充電リザーブの不足が原因の一つ
に考えられる。もう一つの原因として、Gが水素吸蔵合
金表面をガス透過性に劣る皮膜で覆っていることが考え
られる。これらはいずれも充電時、正極から発生する酸
素ガスの吸収能を低下させるため、上記内圧上昇が起こ
ったものと考えられる。それに対し、本発明による実施
例1〜4の電極を用いた電池は、電極の可とう性、結着
剤の優れた結着力及び優れたガス透過性により、100
0サイクルまでのサイクル寿命試験でも若干の容量低下
しか見られなかった。また、実施例1〜4では併用結着
剤を用いているが、必須結着剤のみを用いた場合でもほ
ぼ同等の結果が得られた。但し、併用結着剤を必須結着
剤に加えて用いた場合の方が、電池内圧の上昇を、より
抑えることができる点で有利だった。
As is clear from Table 2, the electrode of Comparative Example 1 using G alone, which is a conventional binder, has a binding capacity but a low flexibility, so that the electrode has a high capacity (high density). In the case of the above), dropping still occurs. In addition, the electrodes of Comparative Examples 2 and 3, in which I and J were used alone, immediately peeled off and dropped off due to low binding properties between the hydrogen storage alloys and between the hydrogen storage alloy and the conductive support base. . On the other hand, the electrodes of Examples 1 to 4 according to the present invention are very excellent not only in binding force but also in flexibility, and thus are less likely to fall off even when filled with high density than the electrodes of Comparative Examples. Next, using a nickel electrode having a theoretical capacity of 1000 mAh and a nylon non-woven fabric separator using nickel hydroxide as an active material and an active material prepared by a conventional method together with the hydrogen storage alloy electrode, the outermost periphery is wound so as to be a hydrogen storage alloy electrode. did. After inserting this electrode group into a cylindrical battery container, a 31% by weight aqueous solution of potassium hydroxide was injected to produce a sealed positive-type nickel-hydrogen storage battery having a theoretical capacity of 1000 mAh. The cycle life characteristics of the produced storage batteries were evaluated. The evaluation is performed by repeatedly performing charge and discharge after performing an activation process by a conventional method.
Charging is performed at a current of 1000 mA at an ambient temperature of 20 ° C., and ends when the battery voltage drop (−ΔV) reaches 10 mV. Discharging is performed at a current of 1000 mA, and ends when the battery voltage reaches 1.0 V. FIG. 1 shows the results of the cycle life test. Batteries using the electrodes of Comparative Examples 2 and 3 using the conventional binders I and J alone, as shown in the above-mentioned winding-off rate, have low electrode flexibility, and Since the binding force of the agent is weak, peeling or falling off of the hydrogen storage alloy occurs during winding. Therefore, the hydrogen storage alloy is miniaturized due to repetition of charge and discharge, and peels off and falls off from the conductive support base due to gas generation, which indicates that the life is extremely short. Further, the battery using the electrode of Comparative Example 1 to which G was solely added exhibited better characteristics than Comparative Examples 2 and 3 due to the strong binding force, but the internal pressure increased with the progress of the charge / discharge cycle. As a result, the electrolyte solution was released outside the system, and the capacity was rapidly deteriorated. This is considered to be one of the causes of a shortage of charge reserve due to a decrease in electrode capacity due to the drop of the hydrogen storage alloy during winding. Another cause is considered to be that G covers the surface of the hydrogen storage alloy with a film having poor gas permeability. It is considered that the above-mentioned increase in the internal pressure occurred in any of these cases because the capacity of absorbing oxygen gas generated from the positive electrode was reduced during charging. On the other hand, the batteries using the electrodes of Examples 1 to 4 according to the present invention have 100% flexibility due to the flexibility of the electrodes, the excellent binding force of the binder and the excellent gas permeability.
In the cycle life test up to 0 cycles, only a slight decrease in capacity was observed. In Examples 1 to 4, the combined binder was used. However, even when only the essential binder was used, almost the same results were obtained. However, the case where the combined binder was used in addition to the essential binder was advantageous in that the increase in the internal pressure of the battery could be further suppressed.

【0011】(実験2)次に必須結着剤であるエチレン
−酢酸ビニル系樹脂及びアクリル系樹脂のTgの違いに
よる影響を調べた。実験1、実験2及び後述する実験3
〜5で用いたエチレン−酢酸ビニル系樹脂のTgは、エ
チレン含有量を変化させることにより変化させ、使用し
た。同様に実験1、実験2及び後述する実験3〜5で用
いたアクリル系樹脂Cは、Tg=10℃(昭和高分子
(株)製ポリゾールAP−6720)、Tg=2℃(昭和
高分子(株)製ポリゾールAP−4660)、Tg=−1
0℃(東洋インキ製造(株)製トーリクルS−161W)
の試薬を使用した。 実施例2、5〜8、比較例4〜6 必須結着剤であるB、Cを水素吸蔵合金重量に対してそ
れぞれ0.25重量%、併用結着剤であるEを水素吸蔵
合金重量に対して0.5重量%で使用し、その他は実施
例1と同様にして水素吸蔵合金電極を作製した。表3に
実施例2、5〜8、比較例4〜6の電極に用いた結着剤
を○で示す。これらの電極を用いて、前記実験1と同様
に捲回脱落率の測定及び電池の内圧特性を評価した。電
池の作製条件及び捲回脱落率の測定方法は実験1に記載
した方法と同様である。また、内圧特性試験は、各電池
の缶底に1mmの孔を開けて圧力センサを設置した。そ
して、各電池を1CmAで90分間充電(150%充
電)して各電池の電池内圧を測定した。捲回脱落率及び
内圧特性の試験結果を表3に示す。表3からも明らかな
ようにBのTgが−10℃以下でCのTgが0℃よりも
大きい実施例2、5〜8は、捲回脱落率が非常に低く、
また内圧特性にも優れることがわかる。比較例4、5は
CでBの一部を置換しているため内圧特性には優れる
が、Tgが−10℃よりも高いBを用いたため、捲回脱
落率が大きくなってしまっている。また、比較例6は、
Tgが−30℃のBを用いているが、Tgが0℃以下の
Cを用いたために、捲回脱落率には優れていたが、内圧
特性が大きく低下してしまった。これは、Tgが低いも
のほど結着剤が柔軟でかつ弾力性を持つため電極の可と
う性は向上するが、ガス透過性に劣る皮膜が形成され、
内圧特性が低下したものと考えられる。よって、ガス透
過性に優れるTgが0℃よりも大きなCでTgが−10
℃以下のBを一部置換することにより、捲回脱落率を低
下させ、且つ、内圧特性に優れる電極が得られることが
わかる。
(Experiment 2) Next, the influence of the difference in Tg of the ethylene-vinyl acetate resin and the acrylic resin, which are essential binders, was examined. Experiment 1, Experiment 2 and Experiment 3 described later
The Tg of the ethylene-vinyl acetate resin used in Nos. 5 to 5 was used by changing the ethylene content. Similarly, the acrylic resin C used in Experiments 1 and 2 and Experiments 3 to 5 described below has a Tg of 10 ° C. (showa polymer
Tg = 2 ° C. (Polysol AP-4660, manufactured by Showa Polymer Co., Ltd.), Tg = −1
0 ° C (Toricle S-161W manufactured by Toyo Ink Mfg. Co., Ltd.)
Was used. Examples 2, 5 to 8 and Comparative Examples 4 to 6 Each of the essential binders B and C was 0.25% by weight based on the weight of the hydrogen storage alloy, and the combined binder E was added to the weight of the hydrogen storage alloy. A hydrogen storage alloy electrode was prepared in the same manner as in Example 1 except that the amount was 0.5% by weight. In Table 3, the binders used for the electrodes of Examples 2, 5 to 8, and Comparative Examples 4 to 6 are indicated by ○. Using these electrodes, the measurement of the winding drop-off rate and the internal pressure characteristics of the battery were evaluated in the same manner as in Experiment 1. The conditions for producing the battery and the method of measuring the wound dropout rate are the same as those described in Experiment 1. In the internal pressure characteristic test, a 1 mm hole was formed in the bottom of the can of each battery, and a pressure sensor was installed. Each battery was charged at 1 CmA for 90 minutes (150% charge), and the internal pressure of each battery was measured. Table 3 shows the test results of the unrolling rate and the internal pressure characteristics. As is clear from Table 3, Examples 2, 5 to 8 in which the Tg of B is −10 ° C. or less and the Tg of C is larger than 0 ° C.
Also, it is understood that the internal pressure characteristics are excellent. Comparative Examples 4 and 5 are excellent in internal pressure characteristics because C is partially substituted for B, but the use of B having a Tg higher than −10 ° C. results in an increased wound dropout rate. Comparative Example 6
Although B having a Tg of −30 ° C. was used, C having a Tg of 0 ° C. or less was used, so that the wound drop-off rate was excellent, but the internal pressure characteristics were significantly reduced. This is because the lower the Tg, the more flexible and resilient the binder is, so that the flexibility of the electrode is improved, but a film having poor gas permeability is formed,
It is considered that the internal pressure characteristics decreased. Therefore, Tg which is excellent in gas permeability is -10 at C larger than 0 ° C.
It can be seen that by partially substituting B at a temperature of not more than 0 ° C., an electrode having a reduced rate of wound drop and excellent internal pressure characteristics can be obtained.

【0012】[0012]

【表3】 [Table 3]

【0013】ここでは、必須結着剤であるエチレン−酢
酸ビニル系樹脂にBを、アクリル系樹脂にCを用いた
が、A、Dを用いてTgを本発明の範囲で変えた場合も
同様の効果であった。又、併用結着剤にはEを用いた
が、その他の、F、J等のセルロース誘導体及びG、H
を用いた場合、あるいは前記併用結着剤を1つ以上用い
た場合も同様の効果が得られた。また、本実験で使用し
た以外のCでも、Tgが0℃よりも高ければ同様の結果
だった。
Here, B is used for the ethylene-vinyl acetate resin, which is an essential binder, and C is used for the acrylic resin, but the same applies when Tg is changed using A and D within the scope of the present invention. Was the effect. Although E was used as the combined binder, other cellulose derivatives such as F and J and G and H were also used.
The same effect was obtained in the case of using or the use of one or more of the above binders. The same result was obtained for C other than those used in this experiment if Tg was higher than 0 ° C.

【0014】(実験3)必須結着剤と同時に添加する併
用結着剤の種類による電極特性への影響について調べ
た。 実施例2、9〜13 必須結着剤として、B(Tg:−30℃)、C(Tg:
2℃)を用い、水素吸蔵合金重量に対してそれぞれ0.
25重量%で使用し、併用結着剤として表4に示したも
のをそれぞれ表4に示した水素吸蔵合金に対する重量%
で使用し、その他は実施例1と同様にして水素吸蔵合金
電極を作製した。これらの電極を用いて、前記実験1と
同様に捲回脱落率の測定及び電池のサイクル寿命特性を
評価した。電池の作製条件及び試験方法は、実験1に記
載した方法と同様である。捲回脱落率の試験結果を表4
に示す。実施例2及び9〜13のように、結着剤の必須
成分にエチレン−酢酸ビニル系樹脂とアクリル系樹脂を
用いた場合、併用する結着剤に従来のどの結着剤を使用
しても従来の結着剤を単独で用いたものよりも捲回脱落
率は低かった。特に併用結着剤にセルロース誘導体であ
るFやEやJ、またG、Hを用いた時は、Iを用いた時
より優れた特性が得られることがわかる。
(Experiment 3) The effect of the type of combined binder added simultaneously with the essential binder on the electrode characteristics was examined. Examples 2, 9 to 13 As essential binders, B (Tg: −30 ° C.), C (Tg:
2 ° C.), and with respect to the weight of the hydrogen-absorbing alloy, each is 0.1%.
25% by weight, and the binders shown in Table 4 were used in combination with the hydrogen storage alloys shown in Table 4 as weight percentages.
The hydrogen storage alloy electrode was produced in the same manner as in Example 1 except for the above. Using these electrodes, the measurement of the rate of winding-off and the cycle life characteristics of the battery were evaluated in the same manner as in Experiment 1. The conditions for producing the battery and the test method are the same as those described in Experiment 1. Table 4 shows the test results of the winding dropout rate.
Shown in As in Examples 2 and 9 to 13, when an ethylene-vinyl acetate resin and an acrylic resin are used as essential components of the binder, any conventional binder can be used as the binder to be used in combination. The rate of falling off by winding was lower than that obtained by using the conventional binder alone. In particular, it can be seen that when cellulose derivatives F, E and J, and G and H are used as the combined binder, more excellent properties are obtained than when I is used.

【0015】[0015]

【表4】 [Table 4]

【0016】また、サイクル寿命試験の結果を図2に示
す。比較として比較例1の電池のサイクル寿命試験の結
果も併せて示す。図2からもわかるように本実施例はい
ずれも、優れた結着力とガス透過性を合わせ持った結着
剤を用いていることから、比較例1よりもサイクル寿命
特性が良好であり、1000サイクルまでのサイクル寿
命試験でも若干の容量低下しか見られなかった。但し、
実施例12は、捲回時に水素吸蔵合金が脱落したため、
他の実施例の電池よりサイクル特性が多少劣っていた。
このように、結着剤の必須成分にエチレン−酢酸ビニル
系樹脂とアクリル系樹脂を用いた場合、併用する結着剤
に従来のどの結着剤を使用しても従来の結着剤を単独で
用いたものより効果は得られる。しかしながら、併用結
着剤にF、E、J、G、Hを用いた時、より優れた特性
が得られることがわかる。ここでは、必須結着剤である
エチレン−酢酸ビニル系樹脂にB(Tg:−30℃)
を、アクリル系樹脂にC(Tg:2℃)を用いたが、そ
れら以外の、Tg:−10℃以下のBまたはA、Tg:
0℃よりも高いCまたはDを用いた場合も同様の効果で
あった。また、本実験では、E、F、G、H、Jを単独
で使用したが、それらを1つ以上併せて使用しても同様
の効果が得られた。
FIG. 2 shows the results of the cycle life test. For comparison, the results of the cycle life test of the battery of Comparative Example 1 are also shown. As can be seen from FIG. 2, in each of the examples, the cycle life characteristics were better than that of Comparative Example 1 because the binder having both excellent binding force and gas permeability was used. In the cycle life test up to the cycle, only a slight decrease in capacity was observed. However,
In Example 12, since the hydrogen storage alloy fell off during winding,
The cycle characteristics were somewhat inferior to the batteries of the other examples.
As described above, when the ethylene-vinyl acetate resin and the acrylic resin are used as the essential components of the binder, the conventional binder is used alone regardless of which conventional binder is used as the combined binder. The effect is obtained more than that used in the above. However, when F, E, J, G, and H were used as the combined binder, it was found that more excellent characteristics were obtained. Here, B (Tg: −30 ° C.) is added to the ethylene-vinyl acetate resin as an essential binder.
Used C (Tg: 2 ° C.) as an acrylic resin, but other than those, B or A, Tg: Tg: −10 ° C. or less
Similar effects were obtained when C or D higher than 0 ° C. was used. In this experiment, E, F, G, H, and J were used alone, but the same effect was obtained by using one or more of them.

【0017】(実験4)次に必須結着剤であるエチレン
−酢酸ビニル系樹脂及びアクリル系樹脂の添加量及び併
用結着剤を含む結着剤総量の電極特性への影響を調べ
た。 実施例2、14〜28 必須結着剤と併用結着剤を、水素吸蔵合金に対して表
5、表6に示す重量%で使用し、その他は実施例1と同
様に実施例2、14〜28の水素吸蔵合金電極を作製し
た。これらの電極を用いて、実験1と同様に捲回脱落率
の測定及び実験2と同様に電池の内圧特性を評価した。
電池の作製及び試験は実験1及び実験2と同条件であ
る。
(Experiment 4) Next, the influence on the electrode characteristics of the addition amount of the ethylene-vinyl acetate resin and the acrylic resin, which are essential binders, and the total amount of the binders including the combined binders was examined. Examples 2, 14 to 28 The essential binders and the combined binders were used at the weight percentages shown in Tables 5 and 6 with respect to the hydrogen storage alloy, and the others were the same as in Examples 1 and 2 as in Example 1. To 28 hydrogen storage alloy electrodes were produced. Using these electrodes, the measurement of the winding drop-off rate was performed as in Experiment 1, and the internal pressure characteristics of the battery were evaluated as in Experiment 2.
The production and test of the battery were performed under the same conditions as in Experiments 1 and 2.

【0018】[0018]

【表5】 [Table 5]

【0019】[0019]

【表6】 [Table 6]

【0020】捲回脱落率及び内圧特性の試験結果を表
5、表6に示した。表5、表6からわかるように、必須
結着剤であるBあるいはCの添加量が0.1重量%より
も少ない実施例22、実施例23による電極(0.05
重量%)は、電池内圧特性上は有利であるが結着力の低
下から脱落量が若干多くなっている。また、必須結着剤
であるBの添加量あるいは、Cの添加量が1.0重量%
よりも多い実施例16、19は、多少電池内圧が高くな
っている。実施例16の場合はガス透過性の劣るBの被
膜が過剰に存在するため、実施例19の場合はガス透過
性に優れたCの被膜であってもそれが過剰に存在するた
めに電池内圧を多少高めていると考えられる。また、結
着剤の総量が2.0重量%よりも多い実施例26、実施
例27、実施例28の電極は、結着剤量が多いため捲回
脱落率は低かったが、水素吸蔵合金が過剰に皮膜で覆わ
れ、そのため電池内圧が多少増加している。また、電極
の充填密度を大きくする上でも多少不利である。必須結
着剤であるB及びCの添加量が0.1重量%以上1.0
重量%以下であり、結着剤総量も2重量%以下ににした
実施例2、14、15、17、18、20、21、2
4、25は、高い充填密度を維持したまま捲回時の脱落
も低く、内圧特性を向上させる上でもより好ましいこと
がわかる。ここでは、必須結着剤であるエチレン−酢酸
ビニル系樹脂にB(Tg:−30℃)を、アクリル系樹
脂にC(Tg:2℃)を用いたが、それら以外の、T
g:−10℃以下のBまたはA、Tg:0℃よりも高い
CまたはDを用いた場合も同様の効果であった。又、併
用結着剤にはEを用いたが、その他の、F、J等のセル
ロース誘導体及びG、Hを用いた場合、あるいは前記併
用結着剤を1つ以上用いた場合も同様の効果が得られ
た。
Tables 5 and 6 show the test results of the falling-off rate of the wound and the internal pressure characteristics. As can be seen from Tables 5 and 6, the electrodes (0.05) of Examples 22 and 23 in which the added amount of B or C as an essential binder was less than 0.1% by weight.
% By weight) is advantageous in terms of battery internal pressure characteristics, but the amount of falling off is slightly increased due to a decrease in binding force. In addition, the addition amount of B, which is an essential binder, or the addition amount of C is 1.0% by weight.
In Examples 16 and 19, which are larger than the above, the internal pressure of the battery is slightly higher. In the case of Example 16, the B film having poor gas permeability is excessively present, and in the case of Example 19, even the C film having excellent gas permeability is present excessively, so that the internal pressure of the battery is reduced. Is considered to be slightly higher. The electrodes of Examples 26, 27, and 28 in which the total amount of the binder was more than 2.0% by weight had a low wound dropout rate due to the large amount of the binder, but the hydrogen storage alloy Is excessively covered with the film, and thus the internal pressure of the battery is slightly increased. It is also disadvantageous in increasing the electrode packing density. B and C, which are essential binders, are added in an amount of 0.1% by weight or more and 1.0% or more.
Examples 2, 14, 15, 17, 18, 20, 21, and 2 in which the total amount of the binder was 2% by weight or less.
Nos. 4 and 25 have low dropout during winding while maintaining a high packing density, and are more preferable in improving the internal pressure characteristics. Here, B (Tg: −30 ° C.) was used for the ethylene-vinyl acetate resin, which is an essential binder, and C (Tg: 2 ° C.), was used for the acrylic resin.
The same effect was obtained when using B or A with g: -10 ° C or lower and C or D with Tg higher than 0 ° C. Although E was used as the combined binder, the same effect was obtained when other cellulose derivatives such as F and J and G and H were used, or when one or more of the combined binders were used. was gotten.

【0021】(実験5)次に導電材の種類と添加量が電
池特性に及ぼす影響について調べた。 実施例29〜37 種々のニッケル粉末を水素吸蔵合金に対して表7に示す
重量%で添加し、その他は実施例1と同条件で水素吸蔵
合金電極を作製した。表7に示すNi1はスパイク状突起
を持つ球体が鎖状に連なった形状のニッケル粉末、Ni2
はスパイク状突起を持つ球状粒子ニッケル粉末、Ni3は
フィラメント状の超微粉である。また、表7に示した充
填密度は、電極における水素吸蔵合金の単位体積あたり
の重量を示した。これらの電極を用いて作製した電池に
ついて、実験1と同様に捲回脱落率の測定及び電池の高
率放電特性及び、実験2と同様に電池内圧特性を評価し
た。電池の高率放電特性試験は、充電を1CmAの電流
で90分行った後、0.2CmA、1.0CmA、3.
0CmAの放電率にて電池電圧が1.0Vになるまで放
電した。また、比較として、ニッケル粉末を添加しない
実施例1の高率放電特性試験も行った。捲回脱落率及び
電池内圧特性及び高率放電試験における1.0CmA放
電容量/0.2CmA放電容量(以下、1.0C/0.
2Cと記す)、3.0CmA放電容量/0.2CmA放
電容量(以下、3.0C/0.2Cと記す)の結果を表
7に示す。表7から明らかなように、どの形状のニッケ
ル粉末を用いた場合でも添加量が3重量%以下であれば
ニッケル粉末を添加しない実施例1よりも良好な高率放
電特性を示した。しかし、添加量が3重量%を越える
と、高率放電特性の低下がみられた。これは、添加量が
3重量%を越えると、捲回脱落率が多少増加しているこ
とに起因すると考えられる。つまり本来、ニッケル粉末
がスパイク状やフィラメント状の形状をしていると、粒
子間の結着剤層でくさびの役割を果たすことにより、結
着力の低下を補ったり、不導体である結着剤層において
も導電ネットワークの働きをするものと考えられる。し
かしながら、一定量を越えると、結着剤と、芯材や合金
との層間に多く存在し、結着性を弱めたり、それによる
剥離、脱落から高率放電特性の低下を招くものと考えら
れる。さらに、添加量が3重量%を越えると、充填密度
が低下する点でも不利である。また、表7に示すよう
に、ニッケル粉末を添加することによる電池内圧への影
響はなく、全ての実施例で良好な特性を示した。以上の
ことから、用いるニッケル粉末の種類による影響はない
が、添加量は水素吸蔵合金重量に対して3重量%以下と
するのが好ましい。ここでは、必須結着剤であるエチレ
ン−酢酸ビニル系樹脂にA(Tg:−30℃)を、アク
リル系樹脂にC(Tg:2℃)を用いたが、それら以外
の、Tg:−10℃以下のBまたはA、Tg:0℃より
も高いCまたはDを用いた場合も同様の効果であった。
又、併用結着剤にはEを用いたが、その他の、F、J等
のセルロース誘導体及びG、Hを用いた場合、あるいは
前記併用結着剤を1つ以上用いた場合も同様の効果が得
られた。
(Experiment 5) Next, the effect of the type and amount of the conductive material on the battery characteristics was examined. Examples 29 to 37 Various nickel powders were added to the hydrogen storage alloy at the weight percentages shown in Table 7, and the other conditions were the same as in Example 1 to produce hydrogen storage alloy electrodes. Ni1 shown in Table 7 is nickel powder in the form of a chain of spheres having spiky projections, Ni2
Is a spherical nickel powder having spike-like protrusions, and Ni3 is a filament-like ultrafine powder. Further, the packing density shown in Table 7 indicates the weight per unit volume of the hydrogen storage alloy in the electrode. For the batteries fabricated using these electrodes, the measurement of the rate of winding-off and the high-rate discharge characteristics of the batteries and the internal pressure characteristics of the batteries were evaluated as in Experiment 2, as in Experiment 1. In the high rate discharge characteristic test of the battery, after charging was performed at a current of 1 CmA for 90 minutes, 0.2 CmA, 1.0 CmA, and 3.
The battery was discharged at a discharge rate of 0 CmA until the battery voltage reached 1.0 V. For comparison, a high-rate discharge characteristic test of Example 1 in which no nickel powder was added was also performed. 1.0 CmA discharge capacity / 0.2 CmA discharge capacity (hereinafter referred to as 1.0 C / 0.
The results of 3.0 CmA discharge capacity / 0.2 CmA discharge capacity (hereinafter referred to as 3.0 C / 0.2 C) are shown in Table 7. As is evident from Table 7, no matter which shape of the nickel powder was used, if the addition amount was 3% by weight or less, the high-rate discharge characteristics better than those of Example 1 in which the nickel powder was not added were exhibited. However, when the addition amount exceeded 3% by weight, a decrease in high-rate discharge characteristics was observed. This is considered to be due to the fact that when the amount of addition exceeds 3% by weight, the rate of falling off the winding is slightly increased. In other words, if the nickel powder is originally in the form of a spike or a filament, it plays a role of a wedge in the binder layer between the particles, thereby compensating for a decrease in the binding force or as a non-conductive binder. It is believed that the layers also act as conductive networks. However, when the amount exceeds a certain amount, it is considered that a large amount is present between the binder and the layer between the core material and the alloy, and the binding property is weakened, or the peeling-off and falling off of the binder cause the deterioration of the high-rate discharge characteristics. . Further, if the addition amount exceeds 3% by weight, it is disadvantageous in that the packing density is reduced. Further, as shown in Table 7, the addition of the nickel powder did not affect the internal pressure of the battery, and all the examples exhibited good characteristics. From the above, there is no influence by the type of the nickel powder used, but it is preferable that the addition amount is 3% by weight or less based on the weight of the hydrogen storage alloy. Here, A (Tg: −30 ° C.) was used for the ethylene-vinyl acetate resin, which is an essential binder, and C (Tg: 2 ° C.), for the acrylic resin. The same effect was obtained when B or A at a temperature of 0 ° C. or lower and C or D at a temperature higher than 0 ° C. were used.
Although E was used as the combined binder, the same effect was obtained when other cellulose derivatives such as F and J and G and H were used, or when one or more of the combined binders were used. was gotten.

【0022】[0022]

【表7】 [Table 7]

【0023】上記の実施例では、円筒密閉形ニッケル−
水素蓄電池のみについて述べたが、水素吸蔵合金電極を
用いる電池であれば、それ以外の形状、それ以外の電池
系にも適用可能である。
In the above embodiment, the cylindrical closed nickel-
Although only the hydrogen storage battery has been described, any other battery using a hydrogen storage alloy electrode can be applied to other shapes and other battery systems.

【0024】また、実験1〜5で使用したCは、前述し
た試薬を用いたが、それ以外のCを用いても、Tgが0
℃より高いものであれば同様の結果が得られる。
The C used in Experiments 1 to 5 used the reagent described above.
Similar results are obtained if the temperature is higher than ° C.

【0025】[0025]

【発明の効果】以上のように、本発明によると、充分な
可とう性と結着性を保持したまま、さらにガス吸収性能
にも優れる水素吸蔵合金電極及びそれを用いたニッケル
−水素蓄電池を提供することができた。また、高率放電
性能を向上させた水素吸蔵合金電極及びそれを用いたニ
ッケル−水素蓄電池を提供することもできた。
As described above, according to the present invention, it is possible to provide a hydrogen storage alloy electrode having excellent gas absorption performance while maintaining sufficient flexibility and binding properties, and a nickel-hydrogen storage battery using the same. Could be provided. In addition, a hydrogen storage alloy electrode with improved high rate discharge performance and a nickel-hydrogen storage battery using the same can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施例1、2、3、4による水素吸蔵合金電
極を用いた電池と比較例1、2、3の電池のサイクル寿
命特性を示した図である。
FIG. 1 is a diagram showing cycle life characteristics of a battery using a hydrogen storage alloy electrode according to Examples 1, 2, 3, and 4, and batteries of Comparative Examples 1, 2, and 3.

【図2】本実施例2、9、10、11、12、13によ
る水素吸蔵合金電極を用いた電池と比較例1の電池のサ
イクル寿命特性を示した図である。
FIG. 2 is a diagram showing cycle life characteristics of a battery using a hydrogen storage alloy electrode according to Examples 2, 9, 10, 11, 12, and 13 and a battery of Comparative Example 1.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 4/24 - 4/26 H01M 4/62 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) H01M 4/24-4/26 H01M 4/62

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】水素を可逆的に吸蔵・放出する水素吸蔵合
金を導電性支持基体に保持させた水素吸蔵合金電極にお
いて、前記合金粉末を固定する結着剤の必須成分に、ガ
ラス転移点(Tg)が−10℃以下のエチレン−酢酸ビ
ニル系樹脂とガラス転移点(Tg)が0℃よりも高いア
クリル系樹脂を用いたことを特徴とする水素吸蔵合金電
極。
In a hydrogen storage alloy electrode in which a hydrogen storage alloy that reversibly stores and releases hydrogen is held on a conductive support base, an essential component of a binder for fixing the alloy powder is a glass transition point ( A hydrogen storage alloy electrode using an ethylene-vinyl acetate resin having a glass transition point (Tg) higher than 0 ° C. and an ethylene-vinyl acetate resin having a glass transition point (Tg) of −10 ° C. or lower.
【請求項2】エチレン−酢酸ビニル系樹脂が、エチレン
−酢酸ビニル−アクリル共重合体、エチレン−酢酸ビニ
ル−長鎖ビニルエステル共重合体から選ばれることを特
徴とする請求項1記載の水素吸蔵合金電極。
2. The hydrogen storage according to claim 1, wherein the ethylene-vinyl acetate resin is selected from an ethylene-vinyl acetate-acryl copolymer and an ethylene-vinyl acetate-long chain vinyl ester copolymer. Alloy electrode.
【請求項3】アクリル系樹脂が、アクリル酸−アルキル
アクリレート共重合体、アクリル酸−スチレン−アルキ
ルアクリレート共重合体から選ばれることを特徴とする
請求項1または2に記載の水素吸蔵合金電極。
3. The hydrogen storage alloy electrode according to claim 1, wherein the acrylic resin is selected from an acrylic acid-alkyl acrylate copolymer and an acrylic acid-styrene-alkyl acrylate copolymer.
【請求項4】結着剤として、セルロース誘導体、ポリエ
チレンオキサイド、ポリアクリル酸塩から選ばれる1つ
以上をエチレン−酢酸ビニル系樹脂及びアクリル系樹脂
と同時に用いたことを特徴とする請求項1〜3のいずれ
かに記載の水素吸蔵合金電極。
4. The method according to claim 1, wherein at least one selected from the group consisting of cellulose derivatives, polyethylene oxides and polyacrylates is used simultaneously with the ethylene-vinyl acetate resin and the acrylic resin. 4. The hydrogen storage alloy electrode according to any one of 3.
【請求項5】エチレン−酢酸ビニル系樹脂とアクリル系
樹脂の添加量が電極中の水素吸蔵合金重量に対してそれ
ぞれ0.1重量%以上1.0重量%以下としたことを特
徴とする請求項1〜4のいずれかに記載の水素吸蔵合金
電極。
5. The method according to claim 1, wherein the amounts of the ethylene-vinyl acetate resin and the acrylic resin are each 0.1% by weight or more and 1.0% by weight or less based on the weight of the hydrogen storage alloy in the electrode. Item 5. A hydrogen storage alloy electrode according to any one of Items 1 to 4.
【請求項6】結着剤の総添加量が電極中の水素吸蔵合金
重量に対して2重量%以下であることを特徴とする請求
項1〜5のいずれかに記載の水素吸蔵合金電極。
6. The hydrogen storage alloy electrode according to claim 1, wherein the total amount of the binder is 2% by weight or less based on the weight of the hydrogen storage alloy in the electrode.
【請求項7】水素吸蔵合金電極が、ニッケル粉末を電極
中の水素吸蔵合金重量に対し3重量%以下含有すること
を特徴とする請求項1〜6のいずれかに記載された水素
吸蔵合金電極。
7. The hydrogen storage alloy electrode according to claim 1, wherein the hydrogen storage alloy electrode contains 3% by weight or less of nickel powder based on the weight of the hydrogen storage alloy in the electrode. .
【請求項8】ニッケル極と水素吸蔵合金電極の間にセパ
レータを介在させて構成した電極群を備えるニッケル−
水素蓄電池において、前記水素吸蔵合金電極が請求項1
〜7のいずれかに記載の水素吸蔵合金電極であることを
特徴とするニッケル−水素蓄電池。
8. A nickel alloy comprising an electrode group having a separator interposed between a nickel electrode and a hydrogen storage alloy electrode.
2. The hydrogen storage battery according to claim 1, wherein the hydrogen storage alloy electrode is provided.
8. A nickel-hydrogen storage battery, which is the hydrogen storage alloy electrode according to any one of claims 7 to 7.
JP06847495A 1995-03-28 1995-03-28 Hydrogen storage alloy electrode and nickel-hydrogen storage battery Expired - Fee Related JP3216689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06847495A JP3216689B2 (en) 1995-03-28 1995-03-28 Hydrogen storage alloy electrode and nickel-hydrogen storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06847495A JP3216689B2 (en) 1995-03-28 1995-03-28 Hydrogen storage alloy electrode and nickel-hydrogen storage battery

Publications (2)

Publication Number Publication Date
JPH08264175A JPH08264175A (en) 1996-10-11
JP3216689B2 true JP3216689B2 (en) 2001-10-09

Family

ID=13374728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06847495A Expired - Fee Related JP3216689B2 (en) 1995-03-28 1995-03-28 Hydrogen storage alloy electrode and nickel-hydrogen storage battery

Country Status (1)

Country Link
JP (1) JP3216689B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2851081B1 (en) * 2003-02-11 2016-06-03 Cit Alcatel NON-SINTERED ELECTRODE FOR ALKALINE ELECTROLYTE ELECTROCHEMICAL GENERATOR
KR100845702B1 (en) * 2005-08-23 2008-07-11 주식회사 엘지화학 Binder with improved adhesive strength and coating properties for secondary battery

Also Published As

Publication number Publication date
JPH08264175A (en) 1996-10-11

Similar Documents

Publication Publication Date Title
EP0284333B1 (en) Sealed type nickel-hydride battery and production process thereof
US6136473A (en) Hydrogen absorbing electrode, nickel electrode and alkaline storage battery
CA2137318A1 (en) Electric accumulator
JP3387381B2 (en) Alkaline storage battery
JP3216689B2 (en) Hydrogen storage alloy electrode and nickel-hydrogen storage battery
JP2692786B2 (en) Hydrogen storage electrode
JP2001325957A (en) Alkaline secondary cell
JP3478030B2 (en) Alkaline storage battery
JPH0580106B2 (en)
JP2792938B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP2989877B2 (en) Nickel hydride rechargeable battery
JPH0736333B2 (en) Sealed alkaline storage battery
JP3253162B2 (en) Nickel hydride rechargeable battery
JP3071026B2 (en) Metal hydride storage battery
JP3101622B2 (en) Nickel-hydrogen alkaline storage battery
JP3012658B2 (en) Nickel hydride rechargeable battery
JPH07107848B2 (en) Non-sintered positive electrode for alkaline storage battery
JP3521585B2 (en) Hydrogen storage alloy plates for sealed nickel-hydrogen storage batteries
JP2000021398A (en) Alkaline secondary battery
JP3268013B2 (en) Hydrogen storage alloy electrode
JP2857148B2 (en) Construction method of sealed nickel-hydrogen storage battery
JPH08102325A (en) Hydrogen storage alloy electrode and nickel-hydrogen storage battery
JP3071033B2 (en) Hydrogen storage electrode
JP2940952B2 (en) Method for manufacturing nickel-hydrogen alkaline storage battery
JP2000188106A (en) Alkaline secondary battery

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070803

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080803

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090803

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees