JP3025770B2 - Metal oxide / hydrogen battery - Google Patents

Metal oxide / hydrogen battery

Info

Publication number
JP3025770B2
JP3025770B2 JP6282430A JP28243094A JP3025770B2 JP 3025770 B2 JP3025770 B2 JP 3025770B2 JP 6282430 A JP6282430 A JP 6282430A JP 28243094 A JP28243094 A JP 28243094A JP 3025770 B2 JP3025770 B2 JP 3025770B2
Authority
JP
Japan
Prior art keywords
battery
hydrogen
metal oxide
pressure
mmni
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6282430A
Other languages
Japanese (ja)
Other versions
JPH07169462A (en
Inventor
基 神田
博一 仁木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6282430A priority Critical patent/JP3025770B2/en
Publication of JPH07169462A publication Critical patent/JPH07169462A/en
Application granted granted Critical
Publication of JP3025770B2 publication Critical patent/JP3025770B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、金属酸化物を正極活物
質とし、水素を負極活物質とする、いわゆる金属酸化物
・水素電池に係り、さらに詳しくは、その中で水素吸蔵
合金を主要構成要素とする水素負極を有する金属酸化物
・水素電池に関する。 【0002】 【従来の技術】水素吸蔵金属を主要構成要素とする金属
酸化物・水素電池が注目を集めいている。これは元来エ
ネルギー密度の大きなこの電池系を容積効率的により有
利にし、かつより安全に作動させるようにすることによ
り、特性的にも信頼性的にも優れた電池を得ることが可
能となるためである。従来は水素吸蔵金属としてLaN
5 が最も多く試みられており、かなり良好な結果が得
られている。しかしながら、密閉された電池容器内の圧
力は、水素吸蔵金属を使わない場合(>50kg/cm2
に比較し小さくなったとはいえ、依然として常温では2
〜5kg/cm2 の値を示していて、例えばニッケルカドミ
ウム電池(0〜1 kg/cm2 )に比較すれば他界圧力であ
ると言える。電池内の圧力がこのように大気圧よりも大
きいことは、電池容器の構造をある程度強いものにする
必要があるほかに、次の二つの欠点を持つ。一つは、電
池内の水素気体分子はその分子直径が小さくそのために
密閉容器からどうしても徐々に大気へ漏れやすく、安全
性の面で望ましくないこと、もう一つは、その結果水素
極から吸蔵水素が放出されることにより、容量が低下し
て自己放電を招くことである。 【0003】 【発明が解決しようとする課題】本発明は上記の欠点を
解消するものであり、金属酸化物・水素電池の電池内圧
を保持してH2 漏洩すること無く電池の安全性を確保
し、自己放電をも抑えた電池特性に優れた金属酸化物・
水素電池を提供することを目的とするものである。 【0004】 【課題を解決するための手段及び作用】本発明は、水素
吸蔵合金を主構成要素とする水素極を有する金属酸化物
・水素電池において、前記水素吸蔵合金としてMmNi
5 系でニッケルの一部をMnで置換した合金で、20℃
における平衡プラトー圧力が1atm 以下であり、かつ均
一固溶体であるものを用いたことを特徴とするものであ
る。 【0005】使用する水素吸蔵合金は、MmNi 5 系で
ニッケルの一部をMnで置換した合金で、その平衡プラ
トー圧が20℃で1atm 以下を示し、かつ均一固溶体で
あるものを用いたことを特徴とするものである。 【0006】具体的には、ANi5-xxただし、AはMm(ミッシュメタル)、MはMnある
いは、Mnと、Al,Si,Ge ,Fe,B,Ga,
Cu,In,Coの少なくとも一種、xは0.2 以上)で
示されるものが挙げられる。 【0007】なお、上記において特にMmNi5-x Fe
x の場合にはx≧2.1 、MmNi5-x Mnx の場合はx
≧0.6 とすることが好ましい。 【0008】さらに具体的には、MmNi4.2 Mn0.8
が好ましい。 【0009】これらの金属を適当な方法で水素電極と
し、一方金属酸化物電極としては、例えば、酸化銀(A
gOまたはAg2 O)あるいはニッケルオキシ水酸化物
(NiOOH)を用いて、これをセパレータを介して密
着させて容器内に収納し、これにアルカリ水溶液を加え
てから容器を密閉して、本発明に関わる金属酸化物・水
素電池とすることができる。水素電極には撥水性を有す
るフッ素系樹脂、例えばポリテトラフルオロエチレンを
含有することが好ましい。 【0010】 【実施例】次に本発明を実施例にて説明する。水素吸蔵
合金としてMmNi4.2 Mn0.8を使用する。まず、M
mNi4.2 Mn0.8 は、この元素組成に示される金属元
素の各量を、粉末状に粉砕した後混合し、真空アーク溶
解炉にて溶解し、均一固溶体を得る。次に、これを直径
5mm 程度までに粉砕し、さらににこれをいわゆる活性化
処理することにより、水素の吸蔵放出が容易に行われる
状態とする。このとき合金は50〜100 μm程度の粉末状
となる。 【0011】活性化して100 μm程度の粉末状となった
合金と、ポリテトラフルオロエチレン(PTFE)の分
散液を混合して十分に混練した後、厚さ0.5mmのシー
ト状物質とする。このときの混合比は乾燥状態での値
で、合金:PTFE=90:10とした。このシート2
枚をニッケルネットの両側から圧着して一体化し、厚さ
0.8mmの水素極用の電極体とした。 【0012】一方、正極としては、ニッケル焼結体に活
物質を含浸したNiOOH電極を使用した。セパレータ
としては厚さ0.3mm のポリアミドの不織布を使用し、電
解液は8mol/l のKOH溶液を使用した。 【0013】図1は上記構成要素を電池に組んだもので
ある。1は負極、2はセパレータ、3は正極である。4
および5はそれぞれ負極および正極の端子であり、ステ
ンレス製容器6とは電気的に独立している。なお容器6
は、電池構成要素を組み込んだ後、溶接して密閉化して
いる。また7は内圧を測定するためのパイプで、8は圧
力測定機である。正極3はセパレータ2でU字に包み、
その両側から本発明による負極1を接して配置し、アク
リル製のホルダー9で密着させた。10は電解液であ
る。正極の容量は1.0Ah、負極のMmNi4.2 Mn
0.8 は2.0Ah 分のH2 を吸収する量が充填され、負極の
容量が正極の容量よりも大きく設定されている。 【0014】この電池を、最初1atm(0kg/cm2 )の状態
にした後、200mAhで5時間充電し、同じく200mA で1.0V
まで放電する。(これを1サイクルとする。)このよう
にして、4サイクル繰り返し、5サイクル目の充電で止
めた場合の圧力変化を図2のAに示す。またその後24
時間経過した後に5サイクル目の放電を行った場合の圧
力変化と放電曲線を図3のBおよびDに示す。比較のた
めに水素吸蔵合金としてLaNi5 ,Ti2 Niを使用
して、電池作成方法は、本実施例とまったく同様にし
て、測定方法も同一とした結果をそれぞれ図2のa,
b、図3のc,d,e,fに示す。図2のc,eはそれ
ぞれLaNi5 、Ti2 Niの圧力変化、d,fはそれ
ぞれLaNi5 、Ti2 Niの放電曲線を示す。なお、
おんどはいずれも25℃である。なお、MmNi4.2
0.8 の20℃における平衡プラトー圧は0.2 atm (25
℃では0.4 atm )であった。 【0015】なお、図中のa,c,dはLaNi5 の充
放電サイクルによる内圧、放置による内圧、電池電圧の
データをそれぞれ示し、この結果図2からわかるように
LaNi5 では、充電のたびに電池内圧力がその平衡プ
ラトー圧に向かって上昇するのに対して、MmNi4.2
Mn0.8 ではほとんど上昇しない。また図3に示すよう
に24時間放置すると、LaNi5 を用いた電池では電
池内圧が上昇し、しかも放電時間が短くなり、明らかに
自己放電しているのに対し、MmNi4.2 Mn0.8 を用
いた電池では、圧力上昇も、自己放電もほとんど無いこ
とがわかる。またLaNi5 の20℃における平衡プラ
トー圧は2atm (25℃では3atm )であった。 【0016】また、図中のb,e,fはTi2 Niの充
放電サイクルによる内圧、放置による内圧、電池電圧の
データをそれぞれ示し、この結果図2および図3から明
らかなように、Ti2 Niでは、平衡プラトー圧は比較
的に小さいため、内圧は上昇せず、Mm4.2 Mn0.8
同等の効果が得られるが、fに示すごとく、電池電圧の
変動が大きく、電池としての実用的ではない。 【0017】 【発明の効果】以上の説明で明らかなように、本発明に
よれば、安全でしかも自己放電の極めて少なく、かつ、
電池電圧の変動の小さな、電池特性に優れた金属酸化物
・水素電池を得ることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a so-called metal oxide / hydrogen battery in which a metal oxide is used as a positive electrode active material and hydrogen is used as a negative electrode active material. The present invention relates to a metal oxide-hydrogen battery having a hydrogen negative electrode having a hydrogen storage alloy as a main component. 2. Description of the Related Art A metal oxide / hydrogen battery containing a hydrogen storage metal as a main component has attracted attention. This makes the battery system inherently large in energy density more advantageous in terms of volume efficiency and operates more safely, so that it is possible to obtain a battery having excellent characteristics and reliability. That's why. Conventionally, LaN was used as a hydrogen storage metal.
i 5 have the most tried, quite good results. However, the pressure inside the sealed battery container is higher than when the hydrogen storage metal is not used (> 50 kg / cm 2 ).
Although it was smaller than that of
And shows the values of ~5kg / cm 2, said to be died pressure in comparison to example nickel-cadmium battery (0~1 kg / cm 2). The fact that the pressure inside the battery is higher than the atmospheric pressure has the following two disadvantages in addition to the need to make the structure of the battery container strong to some extent. One is that the hydrogen gas molecules in the battery have a small molecular diameter, so they are liable to gradually leak into the atmosphere from the sealed container, which is undesirable in terms of safety. Is released, the capacity is reduced and self-discharge is caused. SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned drawbacks, and maintains the internal pressure of a metal oxide / hydrogen battery to ensure the safety of the battery without H 2 leakage. Metal oxides with excellent battery characteristics that also suppress self-discharge
It is an object to provide a hydrogen battery. [0004] SUMMARY and effects of the Invention The present invention provides a metal oxide-hydrogen battery having a hydrogen electrode of a hydrogen storage alloy as the main component, MmNi as the hydrogen storage alloy
An alloy in which part of nickel is replaced by Mn in Series 5 at 20 ° C
Wherein the plateau pressure is 1 atm or less and a uniform solid solution is used. [0005] The hydrogen storage alloy used is a MmNi 5 system.
An alloy in which a part of nickel is replaced by Mn, the equilibrium plateau pressure of which is 1 atm or less at 20 ° C., and a uniform solid solution is used. More specifically, ANi 5-x M x ( where A is Mm (Misch metal) and M is Mn)
Or Mn, Al, Si, Ge, Fe, B, Ga,
At least one of Cu, In and Co, x is 0.2 or more)
What is shown is mentioned. In the above, particularly, MmNi 5-x Fe
x ≧ 2.1 in the case of x, x in the case of MmNi 5-x Mnx
It is preferred that ≧ 0.6. More specifically, MmNi 4.2 Mn 0.8
Is preferred. These metals are used as a hydrogen electrode by an appropriate method, while a metal oxide electrode is, for example, silver oxide (A
gO or Ag 2 O) or nickel oxyhydroxide (NiOOH), which are closely adhered through a separator and accommodated in a container, to which an aqueous alkali solution is added, and then the container is sealed. And a metal oxide / hydrogen battery. The hydrogen electrode preferably contains a water-repellent fluororesin, for example, polytetrafluoroethylene. Next, the present invention will be described with reference to examples. MmNi 4.2 Mn 0.8 is used as the hydrogen storage alloy. First, M
For mNi 4.2 Mn 0.8 , the respective amounts of the metal elements represented by this element composition are pulverized into a powder form, mixed, and melted in a vacuum arc melting furnace to obtain a uniform solid solution. Next, this is the diameter
By pulverizing the powder to about 5 mm and then performing a so-called activation treatment, hydrogen is easily absorbed and released. At this time, the alloy is in a powder form of about 50 to 100 μm. [0011] The activated powdery alloy of about 100 µm and a dispersion of polytetrafluoroethylene (PTFE) are mixed and sufficiently kneaded to obtain a sheet material having a thickness of 0.5 mm. The mixing ratio at this time was a value in a dry state, and the alloy: PTFE was 90:10. This sheet 2
The sheets were pressed together from both sides of the nickel net and integrated to form an electrode body for a hydrogen electrode having a thickness of 0.8 mm. On the other hand, a NiOOH electrode in which a nickel sintered body was impregnated with an active material was used as a positive electrode. A 0.3-mm-thick nonwoven fabric of polyamide was used as a separator, and an 8 mol / l KOH solution was used as an electrolyte. FIG. 1 shows the above components assembled in a battery. 1 is a negative electrode, 2 is a separator, and 3 is a positive electrode. 4
And 5 are terminals of a negative electrode and a positive electrode, respectively, and are electrically independent of the stainless steel container 6. Container 6
Is sealed by welding after the battery components are assembled. Reference numeral 7 denotes a pipe for measuring the internal pressure, and reference numeral 8 denotes a pressure measuring device. The positive electrode 3 is wrapped in a U shape by the separator 2,
The negative electrode 1 according to the present invention was placed in contact with both sides thereof, and was brought into close contact with an acrylic holder 9. Reference numeral 10 denotes an electrolytic solution. The capacity of the positive electrode is 1.0 Ah, and that of the negative electrode is MmNi 4.2 Mn.
0.8 is filled amount of absorbing of H 2 2.0Ah content, capacity of the negative electrode is set to be larger than the capacity of the positive electrode. After the battery is initially set at 1 atm (0 kg / cm 2 ), it is charged at 200 mAh for 5 hours, and then charged at 200 mAh for 1.0 V.
Discharge until. (This is referred to as one cycle.) FIG. 2A shows the pressure change when charging is stopped at the fifth cycle after repeating four cycles. 24
FIG. 3B and FIG. 3D show the pressure change and the discharge curve in the case where the discharge at the fifth cycle is performed after the lapse of time. For comparison, using LaNi 5 and Ti 2 Ni as the hydrogen storage alloy, the battery preparation method was exactly the same as that of the present embodiment, and the measurement method was the same.
b, c, d, e, and f in FIG. Of c, e are each LaNi 5, Ti 2 Ni pressure change of FIG. 2, d, f represents the discharge curve of LaNi 5, Ti 2 Ni, respectively. In addition,
All of them are at 25 ° C. Note that MmNi 4.2 M
The equilibrium plateau pressure at 20 ° C of n 0.8 is 0.2 atm (25
0.4 atm). [0015] Incidentally, the internal pressure due to charging and discharging cycle of a, c, d are LaNi 5 in the figure shows the internal pressure due to standing, the data of the battery voltage, respectively, the LaNi 5 As can be seen from the results Figure 2, each of the charge At the same time, the pressure in the battery increases toward its equilibrium plateau pressure, while the MmNi 4.2
Mn 0.8 hardly increases. Further, as shown in FIG. 3, when the battery using LaNi 5 was left for 24 hours, the internal pressure of the battery increased, the discharge time was shortened, and the battery self-discharged, whereas MmNi 4.2 Mn 0.8 was used. It can be seen that the battery has almost no pressure rise and almost no self-discharge. The equilibrium plateau pressure of LaNi 5 at 20 ° C. was 2 atm (3 atm at 25 ° C.). In the figures, b, e, and f indicate the data of the internal pressure during the charge / discharge cycle of Ti 2 Ni, the internal pressure during the standing, and the battery voltage, respectively. As a result, as shown in FIGS. in 2 Ni, since the equilibrium plateau pressure is relatively small, the internal pressure does not rise, but the same effect as Mm 4.2 Mn 0.8 is obtained, as shown in f, variations of the battery voltage is large, practical as a battery is not. As is apparent from the above description, according to the present invention, safe and extremely low self-discharge, and
A metal oxide / hydrogen battery with small battery voltage fluctuation and excellent battery characteristics can be obtained.

【図面の簡単な説明】 【図1】 本発明に関わる金属酸化物・水素電池の構造
図。 【図2】 5サイクル充電までの電池内圧の変化を示す
曲線図。 【図3】 5サイクル充電終了後、24時間放置したと
きの電池内圧変化とその後の放電曲線図。 【符号の説明】 1…水素負極 2…セパレータ 3…金属酸化物正極 4、5…端子 6…電池容器 7…圧力測定用パイプ 8…圧力計 9…ホルダー 10…電解液
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a structural view of a metal oxide / hydrogen battery according to the present invention. FIG. 2 is a curve diagram showing a change in battery internal pressure up to five-cycle charging. FIG. 3 is a diagram showing a change in the internal pressure of a battery when the battery is left standing for 24 hours after the completion of the 5-cycle charging and a discharge curve after that. [Description of Signs] 1 ... Hydrogen negative electrode 2 ... Separator 3 ... Metal oxide positive electrode 4, 5 ... Terminal 6 ... Battery container 7 ... Pressure measuring pipe 8 ... Pressure gauge 9 ... Holder 10 ... Electrolyte

フロントページの続き (56)参考文献 特開 昭51−45234(JP,A) 特開 昭53−111439(JP,A) 特開 昭53−140222(JP,A) 特開 昭51−13934(JP,A) 英国特許2003927(GB,A) “HYDRIDES FOR ENE RGY STORAGE”PERGAM ON PRESS(英)(1978)p. 485−−490 (58)調査した分野(Int.Cl.7,DB名) H01M 4/24,4/38 Continuation of the front page (56) References JP-A-51-45234 (JP, A) JP-A-53-111439 (JP, A) JP-A-53-140222 (JP, A) JP-A-51-13934 (JP, A) , a) UK Patent 2003927 (GB, a) "HYDRIDES FOR ENE RGY STORAGE" PERGAM ON PRESS ( UK) (1978) p. 485--490 ( 58) investigated the field (Int.Cl. 7, DB name) H01M 4 / 24,4 / 38

Claims (1)

(57)【特許請求の範囲】 1.金属酸化物を活物質とする正極と、水素吸蔵合金を
主成分とし水素を活物質とする負極と、アルカリ性の電
解液と、該正極および該負極を分離するセパレータから
なる金属酸化 物・水素電池において、前記水素吸蔵合
金としてMmNi 5 系でニッケルの一部をMnで置換し
た合金で、20℃における平衡プラトー圧力が1atm以下
であり、かつ均一固溶体であるものを用いたことを特徴
とする金属酸化物・水素電池
(57) [Claims] A metal oxide / hydrogen battery comprising a positive electrode using a metal oxide as an active material, a negative electrode mainly containing a hydrogen storage alloy and using hydrogen as an active material, an alkaline electrolyte, and a separator for separating the positive electrode and the negative electrode In the above , a part of nickel is replaced with Mn in the MmNi 5 system as the hydrogen storage alloy.
In alloy, the equilibrium plateau pressure at 20 ° C. is not more than 1 atm, and a metal oxide, characterized in that used as a uniform solid solution-hydrogen batteries
JP6282430A 1994-10-24 1994-10-24 Metal oxide / hydrogen battery Expired - Lifetime JP3025770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6282430A JP3025770B2 (en) 1994-10-24 1994-10-24 Metal oxide / hydrogen battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6282430A JP3025770B2 (en) 1994-10-24 1994-10-24 Metal oxide / hydrogen battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP58053757A Division JPS59181459A (en) 1983-03-31 1983-03-31 Metal oxide hydrogen battery

Publications (2)

Publication Number Publication Date
JPH07169462A JPH07169462A (en) 1995-07-04
JP3025770B2 true JP3025770B2 (en) 2000-03-27

Family

ID=17652317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6282430A Expired - Lifetime JP3025770B2 (en) 1994-10-24 1994-10-24 Metal oxide / hydrogen battery

Country Status (1)

Country Link
JP (1) JP3025770B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2003927A (en) 1977-08-02 1979-03-21 Anvar Lanthanum and nickel based alloys their manufacture and their electrochemical applications

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7411045A (en) * 1974-08-19 1976-02-23 Philips Nv RECHARGEABLE ELECTROCHEMICAL CELL.
NL176893C (en) * 1977-03-03 1985-06-17 Philips Nv RECHARGEABLE ELECTROCHEMICAL CELL CONCLUDED FROM THE SURROUNDING ATMOSPHERE AND METHODS FOR MANUFACTURING SUCH CELLS.
JPS53140222A (en) * 1977-05-13 1978-12-07 Agency Of Ind Science & Technol Hydrogen storing mmni l5 -xm lnx alloy
US4107395A (en) * 1977-09-20 1978-08-15 Communication Satellite Corporation Overchargeable sealed metal oxide/lanthanum nickel hydride battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2003927A (en) 1977-08-02 1979-03-21 Anvar Lanthanum and nickel based alloys their manufacture and their electrochemical applications

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"HYDRIDES FOR ENERGY STORAGE"PERGAMON PRESS(英)(1978)p.485−−490

Also Published As

Publication number Publication date
JPH07169462A (en) 1995-07-04

Similar Documents

Publication Publication Date Title
EP0284333B1 (en) Sealed type nickel-hydride battery and production process thereof
JP2771592B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP2752970B2 (en) Hydrogen storage electrode
JPH0677451B2 (en) Manufacturing method of hydrogen storage electrode
JPH0582024B2 (en)
JP3025770B2 (en) Metal oxide / hydrogen battery
JP3598665B2 (en) Active materials for batteries and batteries
JP3093294B2 (en) Hydrogen storage alloy electrodes for nickel-metal hydride secondary batteries
JP2566912B2 (en) Nickel oxide / hydrogen battery
JP3588933B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP3012658B2 (en) Nickel hydride rechargeable battery
EP1012894A1 (en) Hydrogen storage alloy
JP2629807B2 (en) Hydrogen storage alloy electrode and its manufacturing method
JP3182790B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPS61168870A (en) Metal-hydrogen alkaline storage battery
JP3221040B2 (en) Alkaline storage battery
JP3101622B2 (en) Nickel-hydrogen alkaline storage battery
JPH0690924B2 (en) Storage battery electrode
JP2679441B2 (en) Nickel-metal hydride battery
JPH1040950A (en) Alkaline secondary battery
JPS60119079A (en) Hydrogen absorption electrode
JP2568967B2 (en) Manufacturing method of sealed nickel-hydrogen secondary battery
JP2857148B2 (en) Construction method of sealed nickel-hydrogen storage battery
JPH0517659B2 (en)
EP0484964A1 (en) Hydrogen-occlusion alloy electrode