JPH03149753A - Nickel electrode for alkaline battery - Google Patents

Nickel electrode for alkaline battery

Info

Publication number
JPH03149753A
JPH03149753A JP1288367A JP28836789A JPH03149753A JP H03149753 A JPH03149753 A JP H03149753A JP 1288367 A JP1288367 A JP 1288367A JP 28836789 A JP28836789 A JP 28836789A JP H03149753 A JPH03149753 A JP H03149753A
Authority
JP
Japan
Prior art keywords
binder
electrode
nickel
conductive agent
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1288367A
Other languages
Japanese (ja)
Inventor
Tsutomu Iwaki
勉 岩城
Yoshio Moriwaki
良夫 森脇
Akiyoshi Shintani
新谷 明美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1288367A priority Critical patent/JPH03149753A/en
Publication of JPH03149753A publication Critical patent/JPH03149753A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve the utilization factor of an active material and increase the capacity for an electrode unit by using a rubber resin for a binder and fiber graphite for a conductive agent. CONSTITUTION:Rubber resin is used for a binder and fiber graphite is used as a conductive agent in an electrode added with the conductive agent and the binder to nickel hydroxide and machined into a sheet shape. Since rubber resin is used for the binder, the sheet is excellent in strength and flexibility with a small added quantity, its handling is easy, it has thermoplasticity, thus its strength when heated and pressurized is improved. The added quantity of resin may be small, the reduction of the utilization factor of an active material is decreased, fiber graphite is used, the contact with the active material is good with a small added quantity because of its shape, the utilization factor is improved, thus the capacity for an electrode unit is increased.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はニッケルーカドミウム電池、ニッケルー亜鉛電
池、ニッケル一水素電池などのニッケル極を用いるアル
カリ蓄電池に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to alkaline storage batteries using nickel electrodes, such as nickel-cadmium batteries, nickel-zinc batteries, and nickel-hydrogen batteries.

従来の技術 各種の電源として使われる蓄電池として鉛電池とアルカ
リ電池がある。このうちアルカリ蓄電池は高信預性が期
待でき、小型なものは各種ポータブル機器用に 大型な
ものは産業用として広く使われてきた このアルカリ蓄電池において、負極としてはカドミウム
の他に亜抵 鉄、水素などが対象となっていも しかし
 正極としては一部空気極や酸化銀極なども取り上げら
れているがほとんどの場合ニッケル極であa このニッ
ケル極は近年焼結式が用いられ ニッケル極の特性が向
上し さらに密閉化が可能になるとともに用途も広がっ
てきていも しかし 焼結式では基板の多孔度を85%以上にすると
強度が大幅に低下するので活物質の充填に限界があり、
したがって高容量化に限界があった そのた八 発泡状
基板や繊維状基板が取り上げられ一部実用化されていも
 一方において、水酸化ニッケルに導電剤と結着剤を加
えてシート状に加工して得られる非焼結式が広く研究さ
れていも 発明が解決しようとする課題 しかし ニッケル極の活物質である水酸化ニラケルは充
電 放電いずれの状態でも電子伝導性がほとんどないこ
とと充放電の繰り返しで電極が膨潤する傾向があるので
充分特性が優れ長寿命の非焼結式ニッケル極は出現して
いなく〜 すなわ板導電性を高め活物質の利用率を向上
するために他の電子伝導性に優れた導電剤を多量に加え
ると活物質の絶対量が減ってしま賎 また膨潤や活物質
の脱落を抑えるために有効な結着剤の量を増すと電極の
電子伝導が低下して電圧低下や容量が減少すム 本発明
はこのような問題を解決出来るアルカリ電池用ニッケル
極を提供せんとするものであ課題を解決するための手段 本発明は水酸化ニッケルに導電剤と結着剤を加えてシー
ト状に加工して得られる電極として、結着剤としてゴム
系樹脂 導電剤として繊維状黒鉛を用いるアルカリ電池
用ニッケル極であ4作用 上記の如く、結着剤としてゴム系樹脂を用いているので
、少ない添加量でシートの強度や可撓性に優れていて取
扱が容易であり、また熱可塑性であるので加熱下で加圧
する強度が向上すも しかも樹脂の添加量が少なくても
よいので活物質の利用率の低下も少なし 又 繊維状の
黒鉛を用いているので少ない添加量でもその形状から活
物質との接触がよく利用率が向上するので電極単位当り
の容量が大きくなも 実施例 以下、本発明の実施例を説明す4 市販の水酸化ニッケ
ル粉末75凰 コバルト粉末6部それに導電体として繊
維状黒鉛12WL ニッケル粉末3昆 補強剤としてア
クリロニトリル系単繊維0゜8部これにスチレン−ブタ
ジエン共重合体の2(重量)%のトルエン溶液をこの樹
脂が水酸化ニッケルに対して3.5部になるように加え
てペーストとすム このペーストを厚さO,17mm、
  孔径1、 8mm、  開口度53%の鉄製でニッ
ケルメッキを施したパンチングメタル板に塗着し0.6
mmのスリットを通して平滑化した その後120℃で
1時間乾燥し九 得られた電極はエンボス加工を施した
ローラプレス機を3回通して厚さ0゜5mmに調整しt
4  このようにして得られたペースト式ニッケル極を
幅39mra  長さ310mmに裁断し リード板を
スポット溶接により取り付けた 相手極として公知のペ
ースト式カドミウム楓 ボリアミド不織布セパレータを
用いて密閉形ニッケルーカドミウム電池を構成し九 電
解液として比重1、22の苛性カリ水溶液に15g/1
の水酸化リチウムを溶解して用いた 電池は単2型とし
九 この電池をAとする。
BACKGROUND ART There are lead batteries and alkaline batteries as storage batteries used as various power sources. Among these, alkaline storage batteries can be expected to have high reliability, and the small ones are widely used for various portable devices and the large ones for industrial purposes.In addition to cadmium, the negative electrode of alkaline storage batteries is Even if hydrogen is the target, however, some air electrodes and silver oxide electrodes are used as positive electrodes, but in most cases nickel electrodes are used.In recent years, sintered type nickel electrodes have been used for these nickel electrodes, and the characteristics of nickel electrodes. However, with the sintering method, if the porosity of the substrate is increased to 85% or more, the strength decreases significantly, so there is a limit to how much active material can be filled.
Therefore, there was a limit to increasing the capacity.Although foamed substrates and fibrous substrates have been taken up and put into practical use to some extent, on the other hand, nickel hydroxide is processed into a sheet by adding a conductive agent and a binder. Although the non-sintered type obtained by the nickel electrode has been widely researched, the problem that the invention aims to solve is that the active material of the nickel electrode, nylacel hydroxide, has almost no electronic conductivity in either the charging or discharging state, and the repeated charging and discharging. Therefore, a non-sintered nickel electrode with sufficient characteristics and long life has not appeared because the electrode tends to swell. Adding a large amount of an excellent conductive agent to the electrode will reduce the absolute amount of the active material.Additionally, if the amount of a binder, which is effective in suppressing swelling and shedding of the active material, is increased, the electronic conduction of the electrode will decrease and the voltage will decrease. The present invention aims to provide a nickel electrode for alkaline batteries that can solve these problems.Means for solving the problems The present invention provides nickel hydroxide with a conductive agent and a binder. As described above, the electrode obtained by processing into a sheet shape is a nickel electrode for an alkaline battery that uses a rubber resin as a binder and fibrous graphite as a conductive agent. Because it uses a small amount of resin, the sheet has excellent strength and flexibility and is easy to handle, and because it is thermoplastic, its strength when pressed under heat is improved, and the amount of resin added is small. Since fibrous graphite is used, even if the amount added is small, the shape allows for good contact with the active material, improving the utilization rate, resulting in a large capacity per electrode unit. Examples Examples of the present invention will be described below. 4 Commercially available nickel hydroxide powder 75 parts Cobalt powder 6 parts and fibrous graphite as a conductor 12WL Nickel powder 3 parts Acrylonitrile single fiber 0°8 parts as a reinforcing agent To this, add a 2% (by weight) toluene solution of styrene-butadiene copolymer so that the resin is in an amount of 3.5 parts based on nickel hydroxide to form a paste.
Painted on a nickel-plated punched metal plate made of iron with a hole diameter of 1.8 mm and an opening degree of 53%.
The electrode was passed through a slit of mm in diameter and then dried for 1 hour at 120°C.The resulting electrode was passed through an embossed roller press three times to a thickness of 0.
4 The thus obtained paste-type nickel electrode was cut to a width of 39 mra and length of 310 mm, and a lead plate was attached by spot welding.A sealed nickel-cadmium battery was used as a mating electrode using a known paste-type cadmium maple boryamide nonwoven fabric separator. 15g/1 in a caustic potassium aqueous solution with a specific gravity of 1.22 as an electrolyte.
The battery used by dissolving lithium hydroxide is AA type.9 This battery is designated as A.

つぎに比較のために添加剤として通常の黒鉛粉末を同量
用賎 他はすべてA(!:同じにした電池をBとして加
えた まず初期の放電電圧と容量を比較し九 5時間率で容量
の130%定電流充電−1、OAで0゜9部までの定電
流放電を行なったとこ&  A、  Bとも平均電圧は
1.22Vであった力(放電容量はAが2−8Ahであ
り、Bは2.6Ahであっ島 つぎに両電池それぞれ10セルm1 この充放電の条件
で寿命特性を比較した その結果 放電容量が初期の6
0%にまで劣化するサイクル数戟Aでは750〜820
サイクルであったのに対して、Bでは650〜710サ
イクルであった この結果から明らかなようにAが長寿
命であっ九発明の効果 以上 本発明によると非焼結式ニッケル極に結着剤とし
てゴム系樹脂 導電剤として繊維状黒鉛を用いると活−
貫の利用率の低下が少なく高容量で長寿命が達成できも
Next, for comparison, the same amount of ordinary graphite powder was used as an additive, and all others were added to A (!: the same battery was added as B.) First, the initial discharge voltage and capacity were compared, and the capacity was calculated at a 95-hour rate. 130% constant current charging -1, constant current discharging to 0°9 parts with OA & the average voltage was 1.22V for both A and B (discharge capacity was 2-8Ah for A). , B was 2.6Ah, and then both batteries were each 10 cells m1.The life characteristics were compared under these charging and discharging conditions.As a result, the discharge capacity was 6 at the initial stage.
The number of cycles that deteriorates to 0% is 750 to 820 in A.
In contrast, in B, it took 650 to 710 cycles.As is clear from these results, A had a longer life and was more effective than the present invention. When rubber-based resin is used as a conductive agent and fibrous graphite is used as a conductive agent, it becomes active.
It is possible to achieve high capacity and long life with less decrease in the utilization rate of the core.

Claims (2)

【特許請求の範囲】[Claims] (1)水酸化ニッケルに導電剤と結着剤を加えてなるシ
ート状電極であり、結着剤としてゴム系樹脂、導電剤と
して繊維状黒鉛を用いることを特徴とするアルカリ電池
用ニッケル極。
(1) A nickel electrode for alkaline batteries, which is a sheet-like electrode made by adding a conductive agent and a binder to nickel hydroxide, and is characterized by using a rubber-based resin as the binder and fibrous graphite as the conductive agent.
(2)導電剤として少なくともコバルト、酸化カドミウ
ム粉末を含むことを特徴とする請求項1記載のアルカリ
電池用ニッケル極。
(2) The nickel electrode for an alkaline battery according to claim 1, characterized in that it contains at least cobalt and cadmium oxide powder as a conductive agent.
JP1288367A 1989-11-06 1989-11-06 Nickel electrode for alkaline battery Pending JPH03149753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1288367A JPH03149753A (en) 1989-11-06 1989-11-06 Nickel electrode for alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1288367A JPH03149753A (en) 1989-11-06 1989-11-06 Nickel electrode for alkaline battery

Publications (1)

Publication Number Publication Date
JPH03149753A true JPH03149753A (en) 1991-06-26

Family

ID=17729288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1288367A Pending JPH03149753A (en) 1989-11-06 1989-11-06 Nickel electrode for alkaline battery

Country Status (1)

Country Link
JP (1) JPH03149753A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012023049A (en) * 1998-08-17 2012-02-02 Ovonic Battery Co Inc Composite positive electrode material and its manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5298941A (en) * 1976-02-13 1977-08-19 Japan Storage Battery Co Ltd Method of manufacturing positive electrode plate for alkaline storage battery
JPS63170855A (en) * 1987-01-09 1988-07-14 Hitachi Ltd Alkaline storage battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5298941A (en) * 1976-02-13 1977-08-19 Japan Storage Battery Co Ltd Method of manufacturing positive electrode plate for alkaline storage battery
JPS63170855A (en) * 1987-01-09 1988-07-14 Hitachi Ltd Alkaline storage battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012023049A (en) * 1998-08-17 2012-02-02 Ovonic Battery Co Inc Composite positive electrode material and its manufacturing method

Similar Documents

Publication Publication Date Title
JP3097347B2 (en) Nickel-metal hydride battery
TW478202B (en) Collector substrate of electrode for alkaline secondary battery, the electrode using the same, and the alkaline secondary battery mounted with the same
JP3387158B2 (en) Zinc plate
JPH1186898A (en) Alkaline storage battery
JPH03149753A (en) Nickel electrode for alkaline battery
JP3010992B2 (en) Battery electrode
JPS63266767A (en) Manufacture of hydrogen storage electrode
JP3116681B2 (en) Non-sintered nickel electrode and its manufacturing method
JPH04269454A (en) Nickel electrode for alkaline battery
JPH0758614B2 (en) Hydrogen storage alloy electrode and manufacturing method thereof
JP3575578B2 (en) Alkaline secondary battery
JPS5931177B2 (en) Zinc electrode for alkaline storage battery
JPH10144313A (en) Alkaline secondary battery
JPH05205772A (en) Cylindrical nickel-zinc storage battery
JPH03165469A (en) Manufacture of alkaline storage battery having nickel electrode
JP3182790B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP2011018493A (en) Nickel hydrogen secondary battery
JP3818705B2 (en) Alkaline secondary battery
JP4531874B2 (en) Nickel metal hydride battery
JPH03165461A (en) Manufacture of nickel electrode for alkaline battery
JP3082341B2 (en) Hydrogen storage electrode
JPH0734364B2 (en) Nickel electrode for alkaline batteries
JP2855754B2 (en) Nickel / cadmium storage battery
JPH05198302A (en) Sealed alkaline storage battery and formation thereof
JPH06275261A (en) Alkaline storage battery