JPH09259875A - Manufacture of hydrogen absorbing alloy electrode, and metal hydroxide storage battery - Google Patents

Manufacture of hydrogen absorbing alloy electrode, and metal hydroxide storage battery

Info

Publication number
JPH09259875A
JPH09259875A JP8064943A JP6494396A JPH09259875A JP H09259875 A JPH09259875 A JP H09259875A JP 8064943 A JP8064943 A JP 8064943A JP 6494396 A JP6494396 A JP 6494396A JP H09259875 A JPH09259875 A JP H09259875A
Authority
JP
Japan
Prior art keywords
electrode
hydrogen storage
storage alloy
heat treatment
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8064943A
Other languages
Japanese (ja)
Inventor
Takaaki Ikemachi
隆明 池町
Takashi Yamaguchi
貴志 山口
Hideki Okajima
英樹 岡島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP8064943A priority Critical patent/JPH09259875A/en
Publication of JPH09259875A publication Critical patent/JPH09259875A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To keep strength to suppress the reduction in discharge capacity by holding a prescribed starting material mixture by an active material support body, and sintering it at a specified temperature to form an electrode in the formation of the electrode having a hydrogen storage alloy containing Mn. SOLUTION: A paste (e.g. polyethylene oxide), and Ni or one or more Ni compounds preferably selected from NiO, Ni(NO3 )2 , NiCO3 and Ni(OH)2 or a Ni-contained alloy, preferably NiMn alloy or Ni-Fe alloy, are mixed to a hydrogen storage alloy containing Mn [e.g. MnNi3.4 Co0.8 Mn0.6 Al0.2 (Mn is a mixture of rare earth metal)] to manufacture a mixture. This mixture is held by an active material support body (e.g. a metallic porous core boy plated with Ni), and then sintered at 680-780 deg.C to from an electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気化学的に水素を吸
蔵・放出する水素吸蔵合金を負極主材料とした水素吸蔵
合金電極の製造方法に関し、特に焼結式の水素吸蔵合金
電極の製造方法の改良及びその焼結式の水素吸蔵合金電
極を使用した金属水素化物蓄電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a hydrogen storage alloy electrode using a hydrogen storage alloy which electrochemically stores and releases hydrogen as a negative electrode material, and more particularly to a method for manufacturing a sintered hydrogen storage alloy electrode. The present invention relates to an improved method and a metal hydride storage battery using a sintered hydrogen storage alloy electrode.

【0002】[0002]

【従来の技術】最近のエレクトロニクス技術の進歩は目
覚ましく、今後もますます加速する傾向にある。これに
伴い、電子機器のポータブル化やコードレス化が進むと
同時に、これらの機器の電源として、小型で軽量でかつ
高エネルギー密度の高性能二次電池の開発が強く望まれ
ている。そこで、負極に水素吸蔵合金を用いた金属水素
化物蓄電池は、ニッケルカドミウム蓄電池や鉛蓄電池等
よりも高容量で高密度の上、クリーンな電源として最近
特に注目されている。
2. Description of the Related Art Recent advances in electronics technology have been remarkable and will continue to accelerate. Along with this, portable and cordless electronic devices have been developed, and at the same time, there has been a strong demand for the development of small, lightweight, high-energy-density, high-performance secondary batteries as power supplies for these devices. Therefore, a metal hydride storage battery using a hydrogen storage alloy for the negative electrode has recently attracted particular attention as a clean power source having a higher capacity, higher density, and a higher capacity than nickel cadmium storage batteries, lead storage batteries, and the like.

【0003】ところで、アルカリ蓄電池用の水素吸蔵合
金電極としては、水素吸蔵合金に結着剤としてポリエチ
レンオキサイドやポリビニルアルコール等を混合してス
ラリーを作製した後、このスラリーをパンチングメタル
等の導電性芯体に塗着して製造する所謂非焼結式の水素
吸蔵合金電極が一般的に使用されている。
By the way, as a hydrogen storage alloy electrode for an alkaline storage battery, a slurry is prepared by mixing a hydrogen storage alloy with polyethylene oxide, polyvinyl alcohol or the like as a binder, and then forming the slurry into a conductive core such as punching metal. A so-called non-sintered hydrogen storage alloy electrode, which is manufactured by applying it to the body, is generally used.

【0004】しかしながら、これらの非焼結式の水素吸
蔵合金電極においては、水素吸蔵合金を導電性芯体に保
持させるためには、前記のような糊剤を水素吸蔵合金粒
子間及び水素吸蔵合金と導電性芯体に介在させなければ
ならない。しかしながら、前記のような糊剤は絶縁性で
あるため、放電容量の低下は免れ得ない。
However, in these non-sintered hydrogen storage alloy electrodes, in order to hold the hydrogen storage alloy in the conductive core, the above-mentioned sizing agent is used between the hydrogen storage alloy particles and in the hydrogen storage alloy. And the conductive core must be interposed. However, since the above-mentioned paste is insulative, a decrease in discharge capacity cannot be avoided.

【0005】そこで、この解決方法として、電極の製造
方法を、非焼結式から焼結式に変えることが特開平2−
12766号公報等で提案されている。この公報には、
水素吸蔵合金に、焼結補助剤としてCo、Ni、TiN
X等の粉末を混合させ、次にこの混合粉末を、金属製
多孔板を中心に配置して加圧成型した後、真空中若しく
は不活性雰囲気中、800℃または950℃の温度で焼
結させることによって、焼結体としての強度が強い電極
を得る方法を開示している。
Therefore, as a solution to this problem, the method of manufacturing the electrode may be changed from the non-sintering method to the sintering method.
It is proposed in Japanese Patent No. 12766. In this publication,
Hydrogen storage alloys with Co, Ni, TiN as sintering aids
After mixing powders such as i X , and then press-molding the mixed powder with the metal perforated plate placed at the center, the mixed powder is sintered at a temperature of 800 ° C or 950 ° C in a vacuum or an inert atmosphere. By doing so, a method for obtaining an electrode having a high strength as a sintered body is disclosed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前記C
o、Ni、TiNiX等の粉末をMnを含有する水素吸
蔵合金と混合した後、焼結させると、水素吸蔵合金中の
Mnが合金から流出するために、合金の組成が所望の組
成から著しく逸脱して電極の放電容量、特に高率放電時
の放電容量が低下するという問題があった。
However, the above-mentioned C
When powders such as o, Ni, and TiNi x are mixed with a hydrogen storage alloy containing Mn and then sintered, Mn in the hydrogen storage alloy flows out from the alloy, so that the composition of the alloy is significantly different from the desired composition. There has been a problem that the discharge capacity of the electrode deviates, and the discharge capacity at the time of high rate discharge is reduced.

【0007】本発明は、このような問題点に鑑みてなさ
れたものであり、電極の強度を充分維持しつつ、放電容
量の低下を抑制した水素吸蔵合金電極を提供しようとす
ることを本発明の課題とするものである。
The present invention has been made in view of the above problems, and it is an object of the present invention to provide a hydrogen storage alloy electrode which suppresses a decrease in discharge capacity while sufficiently maintaining the strength of the electrode. Is the subject of.

【0008】[0008]

【課題を解決するための手段】本発明に係る水素吸蔵合
金電極の製造方法は、Mnを含有する水素吸蔵合金に糊
剤及び金属NiまたはNi化合物あるいはNiを含有し
た合金を混合して混合物を得る工程と、前記混合物を活
物質支持体に保持させた後、不活性雰囲気中、還元性雰
囲気中又は真空中で680℃以上780℃以下の温度で
焼結させて電極を得る工程とを備えたことを特徴とす
る。
A method of manufacturing a hydrogen storage alloy electrode according to the present invention is a method for preparing a mixture by mixing a hydrogen storage alloy containing Mn with a sizing agent and metallic Ni or a Ni compound or an alloy containing Ni. And a step of obtaining the electrode by holding the mixture on an active material support and then sintering the mixture at a temperature of 680 ° C. or higher and 780 ° C. or lower in an inert atmosphere, a reducing atmosphere or a vacuum. It is characterized by that.

【0009】[0009]

【作用】Mnを含有する水素吸蔵合金と金属Niまたは
Ni化合物あるいはNiを含有した合金との混合物を高
温で焼結させると、水素吸蔵合金中のMnが合金から流
出し易く、合金の組成が所望の組成から著しく逸脱す
る。そこで、焼結する温度条件を検討した結果、680
〜780℃の比較的低温の温度範囲で熱処理することに
より電極特性の優れた水素吸蔵合金が得られることを見
いだした。これは、670℃以下の熱処理温度条件で
は、Niの焼結が充分に起こっておらず、水素吸蔵合金
の電極からの脱落が著しく、790℃以上の熱処理温度
条件では、水素吸蔵合金がNi金属または活物質支持体
金属と反応を起こし、特に水素吸蔵合金中のMnが合金
から流出することにより、水素吸蔵合金の組成にズレが
生じ、その結果として放電容量、特に高率放電時の放電
容量の低下を招くものと考えられる。
When a mixture of a hydrogen storage alloy containing Mn and metallic Ni or a Ni compound or an alloy containing Ni is sintered at a high temperature, Mn in the hydrogen storage alloy easily flows out from the alloy, and the composition of the alloy becomes Significant deviations from the desired composition. Then, as a result of examining the temperature condition for sintering, 680
It was found that a hydrogen storage alloy having excellent electrode characteristics can be obtained by heat treatment in a relatively low temperature range of ˜780 ° C. This is because Ni was not sufficiently sintered under the heat treatment temperature condition of 670 ° C. or lower, and the hydrogen storage alloy was significantly detached from the electrode. Or, when the metal reacts with the active material support metal, especially Mn in the hydrogen storage alloy flows out from the alloy, the composition of the hydrogen storage alloy is deviated, and as a result, the discharge capacity, especially the discharge capacity at high rate discharge It is thought that this will lead to a decrease in

【0010】また、添加する金属Ni、Ni化合物、N
iを含有した合金の混合比率は、金属量換算で、Niが
水素吸蔵合金に対して4重量%以上20重量%以下であ
ることが好ましい。これは、4重量%未満の場合には、
水素吸蔵合金の電極芯体からの脱落が著しく、水素吸蔵
合金を電極に保持するのに不十分な量であり、また、2
0重量%を越えると水素吸蔵合金の保持性は限界となる
一方で、電極としての電気化学容量が低下するためであ
る。
In addition, added metal Ni, Ni compound, N
The mixing ratio of the alloy containing i is preferably 4 wt% or more and 20 wt% or less of Ni with respect to the hydrogen storage alloy in terms of metal amount. If this is less than 4% by weight,
The amount of the hydrogen storage alloy dropped from the electrode core was remarkable, which was an insufficient amount to hold the hydrogen storage alloy on the electrode.
This is because if the content exceeds 0% by weight, the retention of the hydrogen storage alloy is limited, but the electrochemical capacity as an electrode decreases.

【0011】[0011]

【実施例】【Example】

(実施例1)Mm(希土類元素の混合物):Ni:C
o:Mn:Alの各金属元素を1:3.4:0.8:
0.6:0.2の割合となるように市販の金属元素を秤
量し、Arアトマイズ法により、組成式MmNi3.4
0.8Mn0.6Al0.2で表される水素吸蔵合金鋳塊を作
製した。
(Example 1) Mm (mixture of rare earth elements): Ni: C
Each metal element of o: Mn: Al is 1: 3.4: 0.8:
A commercially available metal element was weighed so that the ratio was 0.6: 0.2, and a composition formula MmNi 3.4 C was obtained by an Ar atomizing method.
A hydrogen storage alloy ingot represented by o 0.8 Mn 0.6 Al 0.2 was prepared.

【0012】次に、この合金鋳塊を平均粒径約80μm
となるように機械的に粉砕し、150μm以上、25μ
m以下の粒径のものについては、メッシュパスして取り
除いて、水素吸蔵合金粉末を作製した。 [焼結式水素吸蔵合金電極の作製]前記Mnを含有した
水素吸蔵合金粉末に対して、金属Ni粉末10重量%
と、ポリエチレンオキサイド約1重量%とを混合し、水
を適量を用いてスラリー化し、活物質支持体としてのニ
ッケルメッキを施した金属製開孔芯体に塗着する。乾燥
後、充填密度を上げるため10%圧縮した後、水素とア
ルゴン混合ガス(水素4vol%)中、720℃、3時
間還元熱処理させて焼結式の水素吸蔵合金電極を作製
し、本発明電極Aと称する。
Next, this alloy ingot is made to have an average particle size of about 80 μm.
Mechanically crushed to 150μm or more, 25μ
Those having a particle size of m or less were removed by passing through a mesh to prepare a hydrogen storage alloy powder. [Preparation of Sintered Hydrogen Storage Alloy Electrode] 10% by weight of metal Ni powder with respect to the hydrogen storage alloy powder containing Mn
And about 1% by weight of polyethylene oxide are mixed, and an appropriate amount of water is slurried, and the slurry is applied to a nickel-plated metal open-core core as an active material support. After drying, 10% compression was performed to increase the packing density, and then reduction heat treatment was performed in hydrogen and argon mixed gas (hydrogen 4 vol%) for 3 hours at 720 ° C. to produce a sintered hydrogen storage alloy electrode, Called A.

【0013】本熱処理後の水素吸蔵合金を元素分析した
ところその組成は、MmNi3.4Co0.8Mn0.6Al0.2
となり、熱処理前とほとんど変化がないことがわかっ
た。
[0013] The composition was the hydrogen storage alloy elemental analysis after the heat treatment, MmNi 3.4 Co 0.8 Mn 0.6 Al 0.2
It was found that there was almost no change from that before the heat treatment.

【0014】(実施例2)熱処理の温度を680℃にす
る以外は、前記実施例1と同様にして本発明電極Bを作
製した。
Example 2 An electrode B of the present invention was produced in the same manner as in Example 1 except that the heat treatment temperature was 680 ° C.

【0015】本熱処理後の水素吸蔵合金を元素分析した
ところその組成は、MmNi3.4Co0.8Mn0.6Al0.2
となり、熱処理前とほとんど変化がないことがわかっ
た。
[0015] The composition was the hydrogen storage alloy elemental analysis after the heat treatment, MmNi 3.4 Co 0.8 Mn 0.6 Al 0.2
It was found that there was almost no change from that before the heat treatment.

【0016】(実施例3)熱処理の温度を690℃にす
る以外は、前記実施例1と同様にして本発明電極Cを作
製した。
Example 3 An electrode C of the present invention was produced in the same manner as in Example 1 except that the heat treatment temperature was 690 ° C.

【0017】本熱処理後の水素吸蔵合金を元素分析した
ところその組成は、MmNi3.4Co0.8Mn0.6Al0.2
となり、熱処理前とほとんど変化がないことがわかっ
た。
[0017] The composition was the hydrogen storage alloy elemental analysis after the heat treatment, MmNi 3.4 Co 0.8 Mn 0.6 Al 0.2
It was found that there was almost no change from that before the heat treatment.

【0018】(実施例4)熱処理の温度を700℃にす
る以外は、前記実施例1と同様にして本発明電極Dを作
製した。
Example 4 An electrode D of the present invention was produced in the same manner as in Example 1 except that the heat treatment temperature was 700 ° C.

【0019】本熱処理後の水素吸蔵合金を元素分析した
ところその組成は、MmNi3.4Co0.8Mn0.6Al0.2
となり、熱処理前とほとんど変化がないことがわかっ
た。
[0019] The composition was the hydrogen storage alloy elemental analysis after the heat treatment, MmNi 3.4 Co 0.8 Mn 0.6 Al 0.2
It was found that there was almost no change from that before the heat treatment.

【0020】(実施例5)熱処理の温度を710℃にす
る以外は、前記実施例1と同様にして本発明電極Eを作
製した。
Example 5 An electrode E of the present invention was produced in the same manner as in Example 1 except that the heat treatment temperature was 710 ° C.

【0021】本熱処理後の水素吸蔵合金を元素分析した
ところその組成は、MmNi3.4Co0.8Mn0.6Al0.2
となり、熱処理前とほとんど変化がないことがわかっ
た。
[0021] The composition was the hydrogen storage alloy elemental analysis after the heat treatment, MmNi 3.4 Co 0.8 Mn 0.6 Al 0.2
It was found that there was almost no change from that before the heat treatment.

【0022】(実施例6)熱処理の温度を730℃にす
る以外は、前記実施例1と同様にして本発明電極Fを作
製した。
Example 6 An electrode F of the present invention was produced in the same manner as in Example 1 except that the heat treatment temperature was 730 ° C.

【0023】本熱処理後の水素吸蔵合金を元素分析した
ところその組成は、MmNi3.4Co0.8Mn0.6Al0.2
となり、熱処理前とほとんど変化がないことがわかっ
た。
[0023] The composition was the hydrogen storage alloy elemental analysis after the heat treatment, MmNi 3.4 Co 0.8 Mn 0.6 Al 0.2
It was found that there was almost no change from that before the heat treatment.

【0024】(実施例7)熱処理の温度を740℃にす
る以外は、前記実施例1と同様にして本発明電極Gを作
製した。
(Example 7) An electrode G of the present invention was produced in the same manner as in Example 1 except that the heat treatment temperature was 740 ° C.

【0025】本熱処理後の水素吸蔵合金を元素分析した
ところその組成は、MmNi3.4Co0.8Mn0.6Al0.2
となり、熱処理前とほとんど変化がないことがわかっ
た。
[0025] The composition was the hydrogen storage alloy elemental analysis after the heat treatment, MmNi 3.4 Co 0.8 Mn 0.6 Al 0.2
It was found that there was almost no change from that before the heat treatment.

【0026】(実施例8)熱処理の温度を750℃にす
る以外は、前記実施例1と同様にして本発明電極Hを作
製した。
Example 8 An electrode H of the present invention was produced in the same manner as in Example 1 except that the heat treatment temperature was 750 ° C.

【0027】本熱処理後の水素吸蔵合金を元素分析した
ところその組成は、MmNi3.4Co0.8Mn0.6Al0.2
となり、熱処理前とほとんど変化がないことがわかっ
た。
[0027] The composition was the hydrogen storage alloy elemental analysis after the heat treatment, MmNi 3.4 Co 0.8 Mn 0.6 Al 0.2
It was found that there was almost no change from that before the heat treatment.

【0028】(実施例9)熱処理の温度を760℃にす
る以外は、前記実施例1と同様にして本発明電極Iを作
製した。
(Example 9) An electrode I of the present invention was prepared in the same manner as in Example 1 except that the heat treatment temperature was 760 ° C.

【0029】本熱処理後の水素吸蔵合金を元素分析した
ところその組成は、MmNi3.4Co0.8Mn0.6Al0.2
となり、熱処理前とほとんど変化がないことがわかっ
た。
[0029] The composition was the hydrogen storage alloy elemental analysis after the heat treatment, MmNi 3.4 Co 0.8 Mn 0.6 Al 0.2
It was found that there was almost no change from that before the heat treatment.

【0030】(実施例10)熱処理の温度を770℃に
する以外は、前記実施例1と同様にして本発明電極Jを
作製した。
(Example 10) An electrode J of the present invention was produced in the same manner as in Example 1 except that the heat treatment temperature was changed to 770 ° C.

【0031】本熱処理後の水素吸蔵合金を元素分析した
ところその組成は、MmNi3.4Co0.8Mn0.6Al0.2
となり、熱処理前とほとんど変化がないことがわかっ
た。
[0031] The composition was the hydrogen storage alloy elemental analysis after the heat treatment, MmNi 3.4 Co 0.8 Mn 0.6 Al 0.2
It was found that there was almost no change from that before the heat treatment.

【0032】(実施例11)熱処理の温度を780℃に
する以外は、前記実施例1と同様にして本発明電極Kを
作製した。
Example 11 An electrode K of the present invention was produced in the same manner as in Example 1 except that the heat treatment temperature was 780 ° C.

【0033】本熱処理後の水素吸蔵合金を元素分析した
ところその組成は、MmNi3.4Co0.8Mn0.6Al0.2
となり、熱処理前とほとんど変化がないことがわかっ
た。
[0033] The composition was the hydrogen storage alloy elemental analysis after the heat treatment, MmNi 3.4 Co 0.8 Mn 0.6 Al 0.2
It was found that there was almost no change from that before the heat treatment.

【0034】(比較例1)熱処理を施さない以外は、前
記実施例1と同様にして比較電極Wを作製した。
Comparative Example 1 A comparative electrode W was prepared in the same manner as in Example 1 except that the heat treatment was not performed.

【0035】(比較例2)熱処理の温度を790℃にす
る以外は、前記実施例1と同様にして比較電極Xを作製
した。
Comparative Example 2 A comparative electrode X was prepared in the same manner as in Example 1 except that the heat treatment temperature was 790 ° C.

【0036】本熱処理後の水素吸蔵合金を元素分析した
ところその組成は、MmNi3.4Co0.8Mn0.4Al0.2
となり、初期の組成に対し、Mnの流出が観察された。
[0036] The composition was the hydrogen storage alloy elemental analysis after the heat treatment, MmNi 3.4 Co 0.8 Mn 0.4 Al 0.2
Therefore, outflow of Mn was observed with respect to the initial composition.

【0037】(比較例3)熱処理の温度を800℃にす
る以外は、前記実施例1と同様にして比較電極Yを作製
した。
Comparative Example 3 A comparative electrode Y was prepared in the same manner as in Example 1 except that the heat treatment temperature was 800 ° C.

【0038】本熱処理後の水素吸蔵合金を元素分析した
ところその組成は、MmNi3.4Co0.8Mn0.3Al0.2
となり、初期の組成に対し、Mnの流出が観察された。
[0038] The composition was the hydrogen storage alloy elemental analysis after the heat treatment, MmNi 3.4 Co 0.8 Mn 0.3 Al 0.2
Therefore, outflow of Mn was observed with respect to the initial composition.

【0039】(比較例4)熱処理の温度を670℃にす
る以外は、前記実施例1と同様にして比較電極Zを作製
した。
(Comparative Example 4) A comparative electrode Z was prepared in the same manner as in Example 1 except that the heat treatment temperature was 670 ° C.

【0040】本熱処理後の水素吸蔵合金を元素分析した
ところその組成は、MmNi3.4Co0.8Mn0.6Al0.2
となり、熱処理前とほとんど変化がないことがわかっ
た。
[0040] The composition was the hydrogen storage alloy elemental analysis after the heat treatment, MmNi 3.4 Co 0.8 Mn 0.6 Al 0.2
It was found that there was almost no change from that before the heat treatment.

【0041】[実験1]この実験では、本発明電極A及
び比較電極W、Xについて内部抵抗、放電容量及び
作動電圧を測定し、比較を行った。
[Experiment 1] In this experiment, the internal resistance, discharge capacity and operating voltage of the electrode A of the present invention and the comparative electrodes W and X were measured and compared.

【0042】本発明電極A及び比較電極W、Xを用い
て、以下の試験セルを作製した。
Using the electrode A of the present invention and the comparative electrodes W and X, the following test cell was prepared.

【0043】前記電極A、W及びXを負極として用い、
負極容量に対して充分な放電容量を有している公知の焼
結式Ni正極を、セパレータを介して、前記負極の両側
に配置した後、外装缶に挿入して公称容量1000mA
hのAAサイズのニッケル水素蓄電池を各々作製した。
Using the electrodes A, W and X as negative electrodes,
A known sintered Ni positive electrode having a sufficient discharge capacity with respect to the negative electrode capacity was placed on both sides of the negative electrode via a separator and then inserted into an outer can to have a nominal capacity of 1000 mA.
A nickel-metal hydride storage battery of AA size was manufactured.

【0044】その後、常温で下記の条件で充放電を10
サイクル実施し、特性の安定化を行った。
After that, charge and discharge is carried out at room temperature under the following conditions:
Cycles were performed to stabilize the characteristics.

【0045】充電は0.1C(100mA)の電流値で
12時間行った後、放電は0.2C(200mA)の電
流値で終止電圧が0.8Vになる迄行う。但し、放電か
ら次の充電までの休止時間は1時間とした。
Charging is performed at a current value of 0.1 C (100 mA) for 12 hours, and then discharging is performed at a current value of 0.2 C (200 mA) until the final voltage reaches 0.8V. However, the rest time from discharging to the next charging was 1 hour.

【0046】内部抵抗測定 前記AAサイズのニッケル水素蓄電池の内部抵抗を交流
法1kHz下で測定した結果を下記表1に示す。
Measurement of Internal Resistance Table 1 below shows the results of measuring the internal resistance of the AA size nickel-metal hydride storage battery under an alternating current method of 1 kHz.

【0047】放電容量及び作動電圧の測定 常温において、0.1C(100mA)の電流値で12
時間充電を行った後、1時間休止後、0.2C(200
mA)の電流値で終止電圧が1.0Vになるまで放電を
行い、その時の放電容量を測定すると共に、前記50%
放電時の電池電圧(作動電圧)を測定し、その結果を下
記表1に併せて示す。
Measurement of discharge capacity and operating voltage 12 at a current value of 0.1 C (100 mA) at room temperature
After charging for 1 hour, resting for 1 hour, then 0.2C (200
discharge at a current value of mA) until the final voltage becomes 1.0 V, and the discharge capacity at that time is measured.
The battery voltage (operating voltage) during discharging was measured, and the results are also shown in Table 1 below.

【0048】[0048]

【表1】 [Table 1]

【0049】表1から、明らかなように、本発明電極A
は比較電極Xよりも、放電容量及び内部抵抗の特性にお
いて優れていることがわかる。また、本発明電極Aは比
較電極Wと比較して、同等の放電容量を維持しつつ内部
抵抗及び作動電圧の特性において優れていることが分か
る。
As is clear from Table 1, the electrode A of the present invention is
It is understood that is superior to the reference electrode X in the characteristics of discharge capacity and internal resistance. Further, it can be seen that the electrode A of the present invention is superior to the comparative electrode W in characteristics of internal resistance and operating voltage while maintaining the same discharge capacity.

【0050】これは、本発明電極Aでは、680〜78
0℃の温度範囲で焼結を行っているために焼結時にMn
が合金から溶出することに起因する放電容量の低下及び
内部抵抗の増大を防止しかつ、糊剤の除去がなされたた
めに作動電圧が高くなったものと考えられる。
This is 680 to 78 in the electrode A of the present invention.
Since sintering is performed in the temperature range of 0 ° C., Mn is
It is considered that the reduction of the discharge capacity and the increase of the internal resistance due to the elution of Al from the alloy were prevented and the operating voltage was increased because the sizing agent was removed.

【0051】[実験2]この実験では、本発明電極A〜
K及び比較電極X〜Zについて水素吸蔵合金1g当りの
放電容量を測定し、比較を行った。
[Experiment 2] In this experiment, electrodes A to A of the present invention were used.
The discharge capacities per 1 g of the hydrogen storage alloy were measured and compared for K and the comparative electrodes X to Z.

【0052】本発明電極A〜K及び比較電極X〜Zを用
いて以下の試験セルを作製した。
The following test cells were prepared using the electrodes A to K of the present invention and the comparative electrodes X to Z.

【0053】前記電極A〜K及び比較電極X〜Z(水素
吸蔵合金量はいずれも1.0gなるように設定した。)
を負極として用いて、負極容量の見込み容量に対して十
分に大きな容量を持った水酸化ニッケル電極を対極とし
て組み合わせ、水酸化カリウムを主とし、水酸化ナトリ
ウム及び水酸化リチウムが添加された比重1.30の電
解液を充分使用した液リッチ系の試験セルをそれぞれ作
製した。
The electrodes A to K and the comparative electrodes X to Z (the hydrogen storage alloy amount was set to 1.0 g in each case).
Is used as a negative electrode, and a nickel hydroxide electrode having a sufficiently large capacity with respect to the expected capacity of the negative electrode is combined as a counter electrode, and a specific gravity of 1 containing potassium hydroxide and sodium hydroxide and lithium hydroxide is mainly used. A liquid-rich type test cell was prepared by sufficiently using the electrolytic solution of 0.30.

【0054】その後、常温で下記条件にて、充放電を3
サイクル行い、放電容量を測定した結果を図1に示す。
尚、図1に示したデータはそれぞれの最大値で比較した
ものである。
After that, charge and discharge is carried out at room temperature under the following conditions:
The result of measuring the discharge capacity after cycling is shown in FIG.
In addition, the data shown in FIG. 1 is a comparison for each maximum value.

【0055】充電は30mAの電流値で12時間行った
後、1時間休止し、放電は60mAの電流値で終止電圧
が1.0Vになる迄行った。
Charging was carried out at a current value of 30 mA for 12 hours, then rested for 1 hour, and discharging was carried out at a current value of 60 mA until the final voltage reached 1.0V.

【0056】図1より明らかなように熱処理温度が68
0〜780℃で良好な特性が得られており、780℃を
越えると水素吸蔵合金の放電容量が顕著に低下すること
が分かる。特に、680〜750℃の範囲で熱処理する
ことが好ましく、更に好ましくは710〜730℃の範
囲で熱処理することである。
As is apparent from FIG. 1, the heat treatment temperature is 68.
Good characteristics are obtained at 0 to 780 ° C, and it is understood that when the temperature exceeds 780 ° C, the discharge capacity of the hydrogen storage alloy is remarkably reduced. In particular, the heat treatment is preferably performed in the range of 680 to 750 ° C, more preferably 710 to 730 ° C.

【0057】尚、670℃以下の場合には、合金の電極
からの脱落が激しく、測定することができなかった。
When the temperature was 670 ° C. or lower, the alloy was severely detached from the electrode, and measurement could not be performed.

【0058】以上のことから、本発明電極のように68
0℃以上780℃以下の温度で焼結することが重要であ
る。
From the above, as in the electrode of the present invention, 68
It is important to sinter at a temperature of 0 ° C or higher and 780 ° C or lower.

【0059】[実験3]この実験では、本発明電極Aと
比較電極Xについて、前記[実験2]と同様の試験セル
を作製し、放電曲線の比較を行った。
[Experiment 3] In this experiment, with respect to the electrode A of the present invention and the comparative electrode X, the same test cell as in [Experiment 2] was prepared and the discharge curves were compared.

【0060】その後、常温で下記条件にて、放電容量と
電池電圧との関係を測定した結果を図2に示す。
Then, the result of measuring the relationship between the discharge capacity and the battery voltage under the following conditions at room temperature is shown in FIG.

【0061】充電は30mAの電流値で12時間行った
後、1時間休止し、放電は60mAの電流値で終止電圧
が1.0Vになる迄行った。
Charging was carried out at a current value of 30 mA for 12 hours, then rested for 1 hour, and discharging was carried out at a current value of 60 mA until the final voltage reached 1.0V.

【0062】図2より明らかなように本発明電極Aの方
が比較電極Xよりも、放電容量が大きいことがわかる。
As is apparent from FIG. 2, the discharge capacity of the electrode A of the present invention is larger than that of the reference electrode X.

【0063】尚、本実施例では、金属Ni粉末を用いた
が、これらに限らず不活性雰囲気中または還元性雰囲気
中での熱処理により金属Niに変化するものであればよ
く、例えば、金属Ni粉末の代わりにNiO、Ni(N
32、NiCO3またはNi(OH)2 を用いること
ができる。また、NiO、Ni(NO32、NiCO 3
及びNi(OH)2 の中から選ばれた少なくとも1種以
上を用いても良い。
In this example, metallic Ni powder was used.
However, not limited to these, in an inert atmosphere or a reducing atmosphere
Any material that can be converted to metallic Ni by heat treatment in
For example, instead of metallic Ni powder, NiO, Ni (N
OThree)Two, NiCOThreeOr Ni (OH)Two Using
Can be. In addition, NiO, Ni (NOThree)Two, NiCO Three
And Ni (OH)Two At least one selected from
You may use the above.

【0064】また、金属Ni粉末の代わりにNi−Mn
合金またはNi−Fe合金を使用しても良い。
Also, instead of the metallic Ni powder, Ni--Mn is used.
Alloys or Ni-Fe alloys may be used.

【0065】本実施例では、不活性雰囲気中または還元
性雰囲気中として水素とアルゴン混合ガス中で熱処理を
施したが、水素ガスまたはアルゴンガス単独でも良く、
また真空中で熱処理を施しても良い。
In this embodiment, the heat treatment is carried out in a mixed gas of hydrogen and argon in an inert atmosphere or a reducing atmosphere. However, hydrogen gas or argon gas may be used alone,
Moreover, you may heat-process in a vacuum.

【0066】[0066]

【発明の効果】以上から明らかなように、本発明の製造
方法によれば、極めて簡単な方法により、電極の強度を
充分維持しつつ、放電容量の低下を抑制した焼結式の水
素吸蔵合金電極が得られ、その工業的価値は極めて高
い。
As is apparent from the above, according to the production method of the present invention, a sintered hydrogen storage alloy in which the reduction of the discharge capacity is suppressed while the electrode strength is sufficiently maintained by a very simple method. An electrode is obtained and its industrial value is extremely high.

【図面の簡単な説明】[Brief description of drawings]

【図1】熱処理温度と放電容量との関係を示す図であ
る。
FIG. 1 is a diagram showing the relationship between heat treatment temperature and discharge capacity.

【図2】本発明電極Aと比較電極Xとの放電曲線の比較
を示す図である。
FIG. 2 is a diagram showing a comparison of discharge curves of an electrode A of the present invention and a comparative electrode X.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Mnを含有する水素吸蔵合金を備えた水
素吸蔵合金電極の製造方法において、前記Mnを含有す
る水素吸蔵合金に糊剤及び金属NiまたはNi化合物あ
るいはNiを含有した合金を混合して混合物を得る工程
と、前記混合物を活物質支持体に保持させた後、680
℃以上780℃以下の温度で焼結させて電極を得る工程
とを備えたことを特徴とする水素吸蔵合金電極の製造方
法。
1. A method for producing a hydrogen storage alloy electrode comprising a hydrogen storage alloy containing Mn, wherein a hydrogen storage alloy containing Mn is mixed with a sizing agent and metal Ni or a Ni compound or an alloy containing Ni. To obtain a mixture, and after holding the mixture on an active material support, 680
And a step of obtaining an electrode by sintering at a temperature of 750 ° C. or higher and 780 ° C. or lower.
【請求項2】 前記Ni化合物として、NiO、Ni
(NO32、NiCO 3及びNi(OH)2 の中から選
ばれた少なくとも1種以上を用いたことを特徴とする請
求項1記載の水素吸蔵合金電極の製造方法。
2. NiO, Ni as the Ni compound
(NOThree)Two, NiCO ThreeAnd Ni (OH)Two Select from
A contract characterized by using at least one kind of exposed
The method for producing a hydrogen storage alloy electrode according to claim 1.
【請求項3】 前記Niを含有した合金として、Ni−
Mn合金またはNi−Fe合金を用いたことを特徴とす
る請求項1記載の水素吸蔵合金電極の製造方法。
3. The alloy containing Ni is Ni--
The method for producing a hydrogen storage alloy electrode according to claim 1, wherein a Mn alloy or a Ni-Fe alloy is used.
【請求項4】 前記金属NiまたはNi化合物あるいは
Niを含有した合金の混合比率は、金属Ni量換算で、
前記Mnを含有する水素吸蔵合金に対して4重量%以上
20重量%以下であることを特徴とする請求項1記載の
水素吸蔵合金電極の製造方法。
4. The mixing ratio of the metallic Ni or the Ni compound or the alloy containing Ni is calculated in terms of the metallic Ni amount.
The method for producing a hydrogen storage alloy electrode according to claim 1, wherein the content is 4% by weight or more and 20% by weight or less with respect to the hydrogen storage alloy containing Mn.
【請求項5】 請求項1の製造方法で作製した水素吸蔵
合金電極を負極として用いることを特徴とする金属水素
化物蓄電池。
5. A metal hydride storage battery, wherein the hydrogen storage alloy electrode produced by the production method of claim 1 is used as a negative electrode.
JP8064943A 1996-03-21 1996-03-21 Manufacture of hydrogen absorbing alloy electrode, and metal hydroxide storage battery Pending JPH09259875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8064943A JPH09259875A (en) 1996-03-21 1996-03-21 Manufacture of hydrogen absorbing alloy electrode, and metal hydroxide storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8064943A JPH09259875A (en) 1996-03-21 1996-03-21 Manufacture of hydrogen absorbing alloy electrode, and metal hydroxide storage battery

Publications (1)

Publication Number Publication Date
JPH09259875A true JPH09259875A (en) 1997-10-03

Family

ID=13272636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8064943A Pending JPH09259875A (en) 1996-03-21 1996-03-21 Manufacture of hydrogen absorbing alloy electrode, and metal hydroxide storage battery

Country Status (1)

Country Link
JP (1) JPH09259875A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100410702B1 (en) * 2001-12-18 2003-12-18 현대자동차주식회사 Anode manufacturing method of Ni-MH cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100410702B1 (en) * 2001-12-18 2003-12-18 현대자동차주식회사 Anode manufacturing method of Ni-MH cell

Similar Documents

Publication Publication Date Title
JP2004221057A (en) Hydrogen storage alloy for alkaline storage battery, and alkaline storage battery
US6368748B1 (en) Nickel-metal hydride storage cell having a high capacity and an excellent cycle characteristic and manufacturing
KR100398709B1 (en) Manufacturing method of hydrogen storage alloy electrode and hydrogen storage alloy electrode
JPH09259875A (en) Manufacture of hydrogen absorbing alloy electrode, and metal hydroxide storage battery
JP3519836B2 (en) Hydrogen storage alloy electrode
JP3136738B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3399265B2 (en) Alkaline battery with nickel positive electrode and method of activating the same
JPH0212765A (en) Manufacture of hydrogen storage electrode
JP3583837B2 (en) Method for producing hydrogen storage alloy electrode
JP2642144B2 (en) Method for producing hydrogen storage electrode
JPH04301045A (en) Hydrogen storage alloy electrode
JPH1167264A (en) Manufacture of nickel-hydrogen storage battery
JPH06145849A (en) Hydrogen storage alloy electrode
JPH0675398B2 (en) Sealed alkaline storage battery
JP2538610B2 (en) Metal oxide / hydrogen battery
JP2840336B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3322452B2 (en) Rare earth hydrogen storage alloy for alkaline storage batteries
JP4458749B2 (en) Alkaline storage battery
JPH103940A (en) Nickel-metal hydride storage battery and its manufacture
JPH06283170A (en) Nickel-hydrogen battery
JP2001266860A (en) Nickel hydrogen storage battery
JP3362400B2 (en) Nickel-metal hydride storage battery
JPH1021904A (en) Alkaline storage battery
JP2005183339A (en) Nickel electrode for alkaline storage battery and alkaline storage battery
US5902700A (en) Hydrogen storage alloy electrode and manufacturing method of the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040921